torch.vander#
- torch.vander(x, N=None, increasing=False) Tensor #
Generates a Vandermonde matrix.
The columns of the output matrix are elementwise powers of the input vector x(N−1),x(N−2),...,x0. If increasing is True, the order of the columns is reversed x0,x1,...,x(N−1). Such a matrix with a geometric progression in each row is named for Alexandre-Theophile Vandermonde.
- Parameters
x (Tensor) – 1-D input tensor.
N (int, optional) – Number of columns in the output. If N is not specified, a square array is returned (N=len(x)).
increasing (bool, optional) – Order of the powers of the columns. If True, the powers increase from left to right, if False (the default) they are reversed.
- Returns
Vandermonde matrix. If increasing is False, the first column is x(N−1), the second x(N−2) and so forth. If increasing is True, the columns are x0,x1,...,x(N−1).
- Return type
Example:
>>> x = torch.tensor([1, 2, 3, 5]) >>> torch.vander(x) tensor([[ 1, 1, 1, 1], [ 8, 4, 2, 1], [ 27, 9, 3, 1], [125, 25, 5, 1]]) >>> torch.vander(x, N=3) tensor([[ 1, 1, 1], [ 4, 2, 1], [ 9, 3, 1], [25, 5, 1]]) >>> torch.vander(x, N=3, increasing=True) tensor([[ 1, 1, 1], [ 1, 2, 4], [ 1, 3, 9], [ 1, 5, 25]])