Rate this Page

Softshrink#

class torch.nn.modules.activation.Softshrink(lambd=0.5)[source]#

Applies the soft shrinkage function element-wise.

SoftShrinkage(x)=xλ,x+λ,0, if x>λ if x<λ otherwise 
Parameters

lambd (float) – the λ (must be no less than zero) value for the Softshrink formulation. Default: 0.5

Shape:
  • Input: (), where means any number of dimensions.

  • Output: (), same shape as the input.

../_images/Softshrink.png

Examples:

>>> m = nn.Softshrink()
>>> input = torch.randn(2)
>>> output = m(input)
extra_repr()[source]#

Return the extra representation of the module.

Return type

str

forward(input)[source]#

Run forward pass.

Return type

Tensor

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources
Morty Proxy This is a proxified and sanitized view of the page, visit original site.