torch.nn.functional.normalize#
- torch.nn.functional.normalize(input, p=2.0, dim=1, eps=1e-12, out=None)[source]#
Perform Lp normalization of inputs over specified dimension.
For a tensor
input
of sizes (n0,...,ndim,...,nk), each ndim -element vector v along dimensiondim
is transformed asv=max(∥v∥p,ϵ)v.With the default arguments it uses the Euclidean norm over vectors along dimension 1 for normalization.
- Parameters
input (Tensor) – input tensor of any shape
p (float) – the exponent value in the norm formulation. Default: 2
dim (int or tuple of ints) – the dimension to reduce. Default: 1
eps (float) – small value to avoid division by zero. Default: 1e-12
out (Tensor, optional) – the output tensor. If
out
is used, this operation won’t be differentiable.
- Return type