Rate this Page

ELU#

class torch.nn.modules.activation.ELU(alpha=1.0, inplace=False)[source]#

Applies the Exponential Linear Unit (ELU) function, element-wise.

Method described in the paper: Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs).

ELU is defined as:

ELU(x)={x,α(exp(x)1), if x>0 if x0
Parameters
  • alpha (float) – the α value for the ELU formulation. Default: 1.0

  • inplace (bool) – can optionally do the operation in-place. Default: False

Shape:
  • Input: (), where means any number of dimensions.

  • Output: (), same shape as the input.

../_images/ELU.png

Examples:

>>> m = nn.ELU()
>>> input = torch.randn(2)
>>> output = m(input)
extra_repr()[source]#

Return the extra representation of the module.

Return type

str

forward(input)[source]#

Runs the forward pass.

Return type

Tensor

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources
Morty Proxy This is a proxified and sanitized view of the page, visit original site.