Rate this Page

ReflectionPad3d#

class torch.nn.ReflectionPad3d(padding)[source]#

Pads the input tensor using the reflection of the input boundary.

For N-dimensional padding, use torch.nn.functional.pad().

Parameters

padding (int, tuple) – the size of the padding. If is int, uses the same padding in all boundaries. If a 6-tuple, uses (padding_left, padding_right, padding_top, padding_bottom, padding_front, padding_back) Note that padding size should be less than the corresponding input dimension.

Shape:
  • Input: (N,C,Din,Hin,Win) or (C,Din,Hin,Win).

  • Output: (N,C,Dout,Hout,Wout) or (C,Dout,Hout,Wout), where

    Dout=Din+padding_front+padding_back

    Hout=Hin+padding_top+padding_bottom

    Wout=Win+padding_left+padding_right

Examples:

>>> m = nn.ReflectionPad3d(1)
>>> input = torch.arange(8, dtype=torch.float).reshape(1, 1, 2, 2, 2)
>>> m(input)
tensor([[[[[7., 6., 7., 6.],
           [5., 4., 5., 4.],
           [7., 6., 7., 6.],
           [5., 4., 5., 4.]],
          [[3., 2., 3., 2.],
           [1., 0., 1., 0.],
           [3., 2., 3., 2.],
           [1., 0., 1., 0.]],
          [[7., 6., 7., 6.],
           [5., 4., 5., 4.],
           [7., 6., 7., 6.],
           [5., 4., 5., 4.]],
          [[3., 2., 3., 2.],
           [1., 0., 1., 0.],
           [3., 2., 3., 2.],
           [1., 0., 1., 0.]]]]])

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources
Morty Proxy This is a proxified and sanitized view of the page, visit original site.