ReflectionPad3d#
- class torch.nn.ReflectionPad3d(padding)[source]#
Pads the input tensor using the reflection of the input boundary.
For N-dimensional padding, use
torch.nn.functional.pad()
.- Parameters
padding (int, tuple) – the size of the padding. If is int, uses the same padding in all boundaries. If a 6-tuple, uses (padding_left, padding_right, padding_top, padding_bottom, padding_front, padding_back) Note that padding size should be less than the corresponding input dimension.
- Shape:
Input: (N,C,Din,Hin,Win) or (C,Din,Hin,Win).
Output: (N,C,Dout,Hout,Wout) or (C,Dout,Hout,Wout), where
Dout=Din+padding_front+padding_back
Hout=Hin+padding_top+padding_bottom
Wout=Win+padding_left+padding_right
Examples:
>>> m = nn.ReflectionPad3d(1) >>> input = torch.arange(8, dtype=torch.float).reshape(1, 1, 2, 2, 2) >>> m(input) tensor([[[[[7., 6., 7., 6.], [5., 4., 5., 4.], [7., 6., 7., 6.], [5., 4., 5., 4.]], [[3., 2., 3., 2.], [1., 0., 1., 0.], [3., 2., 3., 2.], [1., 0., 1., 0.]], [[7., 6., 7., 6.], [5., 4., 5., 4.], [7., 6., 7., 6.], [5., 4., 5., 4.]], [[3., 2., 3., 2.], [1., 0., 1., 0.], [3., 2., 3., 2.], [1., 0., 1., 0.]]]]])