GRUCell#
- class torch.nn.GRUCell(input_size, hidden_size, bias=True, device=None, dtype=None)[source]#
A gated recurrent unit (GRU) cell.
r=σ(Wirx+bir+Whrh+bhr)z=σ(Wizx+biz+Whzh+bhz)n=tanh(Winx+bin+r⊙(Whnh+bhn))h′=(1−z)⊙n+z⊙hwhere σ is the sigmoid function, and ⊙ is the Hadamard product.
- Parameters
- Inputs: input, hidden
input : tensor containing input features
hidden : tensor containing the initial hidden state for each element in the batch. Defaults to zero if not provided.
- Outputs: h’
h’ : tensor containing the next hidden state for each element in the batch
- Shape:
input: (N,Hin) or (Hin) tensor containing input features where Hin = input_size.
hidden: (N,Hout) or (Hout) tensor containing the initial hidden state where Hout = hidden_size. Defaults to zero if not provided.
output: (N,Hout) or (Hout) tensor containing the next hidden state.
- Variables
weight_ih (torch.Tensor) – the learnable input-hidden weights, of shape (3*hidden_size, input_size)
weight_hh (torch.Tensor) – the learnable hidden-hidden weights, of shape (3*hidden_size, hidden_size)
bias_ih – the learnable input-hidden bias, of shape (3*hidden_size)
bias_hh – the learnable hidden-hidden bias, of shape (3*hidden_size)
Note
All the weights and biases are initialized from U(−k,k) where k=hidden_size1
On certain ROCm devices, when using float16 inputs this module will use different precision for backward.
Examples:
>>> rnn = nn.GRUCell(10, 20) >>> input = torch.randn(6, 3, 10) >>> hx = torch.randn(3, 20) >>> output = [] >>> for i in range(6): ... hx = rnn(input[i], hx) ... output.append(hx)