AdaptiveMaxPool3d#
- class torch.nn.AdaptiveMaxPool3d(output_size, return_indices=False)[source]#
Applies a 3D adaptive max pooling over an input signal composed of several input planes.
The output is of size Dout×Hout×Wout, for any input size. The number of output features is equal to the number of input planes.
- Parameters
output_size (Union[int, None, tuple[Optional[int], Optional[int], Optional[int]]]) – the target output size of the image of the form Dout×Hout×Wout. Can be a tuple (Dout,Hout,Wout) or a single Dout for a cube Dout×Dout×Dout. Dout, Hout and Wout can be either a
int
, orNone
which means the size will be the same as that of the input.return_indices (bool) – if
True
, will return the indices along with the outputs. Useful to pass to nn.MaxUnpool3d. Default:False
- Shape:
Input: (N,C,Din,Hin,Win) or (C,Din,Hin,Win).
Output: (N,C,Dout,Hout,Wout) or (C,Dout,Hout,Wout), where (Dout,Hout,Wout)=output_size.
Examples
>>> # target output size of 5x7x9 >>> m = nn.AdaptiveMaxPool3d((5, 7, 9)) >>> input = torch.randn(1, 64, 8, 9, 10) >>> output = m(input) >>> # target output size of 7x7x7 (cube) >>> m = nn.AdaptiveMaxPool3d(7) >>> input = torch.randn(1, 64, 10, 9, 8) >>> output = m(input) >>> # target output size of 7x9x8 >>> m = nn.AdaptiveMaxPool3d((7, None, None)) >>> input = torch.randn(1, 64, 10, 9, 8) >>> output = m(input)