| 1 | /* SPDX-License-Identifier: GPL-2.0-only */ |
| 2 | #ifndef __KVM_HOST_H |
| 3 | #define __KVM_HOST_H |
| 4 | |
| 5 | |
| 6 | #include <linux/types.h> |
| 7 | #include <linux/hardirq.h> |
| 8 | #include <linux/list.h> |
| 9 | #include <linux/mutex.h> |
| 10 | #include <linux/spinlock.h> |
| 11 | #include <linux/signal.h> |
| 12 | #include <linux/sched.h> |
| 13 | #include <linux/sched/stat.h> |
| 14 | #include <linux/bug.h> |
| 15 | #include <linux/minmax.h> |
| 16 | #include <linux/mm.h> |
| 17 | #include <linux/mmu_notifier.h> |
| 18 | #include <linux/preempt.h> |
| 19 | #include <linux/msi.h> |
| 20 | #include <linux/slab.h> |
| 21 | #include <linux/vmalloc.h> |
| 22 | #include <linux/rcupdate.h> |
| 23 | #include <linux/ratelimit.h> |
| 24 | #include <linux/err.h> |
| 25 | #include <linux/irqflags.h> |
| 26 | #include <linux/context_tracking.h> |
| 27 | #include <linux/irqbypass.h> |
| 28 | #include <linux/rcuwait.h> |
| 29 | #include <linux/refcount.h> |
| 30 | #include <linux/nospec.h> |
| 31 | #include <linux/notifier.h> |
| 32 | #include <linux/ftrace.h> |
| 33 | #include <linux/hashtable.h> |
| 34 | #include <linux/instrumentation.h> |
| 35 | #include <linux/interval_tree.h> |
| 36 | #include <linux/rbtree.h> |
| 37 | #include <linux/xarray.h> |
| 38 | #include <asm/signal.h> |
| 39 | |
| 40 | #include <linux/kvm.h> |
| 41 | #include <linux/kvm_para.h> |
| 42 | |
| 43 | #include <linux/kvm_types.h> |
| 44 | |
| 45 | #include <asm/kvm_host.h> |
| 46 | #include <linux/kvm_dirty_ring.h> |
| 47 | |
| 48 | #ifndef KVM_MAX_VCPU_IDS |
| 49 | #define KVM_MAX_VCPU_IDS KVM_MAX_VCPUS |
| 50 | #endif |
| 51 | |
| 52 | /* |
| 53 | * The bit 16 ~ bit 31 of kvm_userspace_memory_region::flags are internally |
| 54 | * used in kvm, other bits are visible for userspace which are defined in |
| 55 | * include/linux/kvm_h. |
| 56 | */ |
| 57 | #define KVM_MEMSLOT_INVALID (1UL << 16) |
| 58 | |
| 59 | /* |
| 60 | * Bit 63 of the memslot generation number is an "update in-progress flag", |
| 61 | * e.g. is temporarily set for the duration of kvm_swap_active_memslots(). |
| 62 | * This flag effectively creates a unique generation number that is used to |
| 63 | * mark cached memslot data, e.g. MMIO accesses, as potentially being stale, |
| 64 | * i.e. may (or may not) have come from the previous memslots generation. |
| 65 | * |
| 66 | * This is necessary because the actual memslots update is not atomic with |
| 67 | * respect to the generation number update. Updating the generation number |
| 68 | * first would allow a vCPU to cache a spte from the old memslots using the |
| 69 | * new generation number, and updating the generation number after switching |
| 70 | * to the new memslots would allow cache hits using the old generation number |
| 71 | * to reference the defunct memslots. |
| 72 | * |
| 73 | * This mechanism is used to prevent getting hits in KVM's caches while a |
| 74 | * memslot update is in-progress, and to prevent cache hits *after* updating |
| 75 | * the actual generation number against accesses that were inserted into the |
| 76 | * cache *before* the memslots were updated. |
| 77 | */ |
| 78 | #define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63) |
| 79 | |
| 80 | /* Two fragments for cross MMIO pages. */ |
| 81 | #define KVM_MAX_MMIO_FRAGMENTS 2 |
| 82 | |
| 83 | #ifndef KVM_MAX_NR_ADDRESS_SPACES |
| 84 | #define KVM_MAX_NR_ADDRESS_SPACES 1 |
| 85 | #endif |
| 86 | |
| 87 | /* |
| 88 | * For the normal pfn, the highest 12 bits should be zero, |
| 89 | * so we can mask bit 62 ~ bit 52 to indicate the error pfn, |
| 90 | * mask bit 63 to indicate the noslot pfn. |
| 91 | */ |
| 92 | #define KVM_PFN_ERR_MASK (0x7ffULL << 52) |
| 93 | #define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52) |
| 94 | #define KVM_PFN_NOSLOT (0x1ULL << 63) |
| 95 | |
| 96 | #define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK) |
| 97 | #define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1) |
| 98 | #define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2) |
| 99 | #define KVM_PFN_ERR_SIGPENDING (KVM_PFN_ERR_MASK + 3) |
| 100 | #define KVM_PFN_ERR_NEEDS_IO (KVM_PFN_ERR_MASK + 4) |
| 101 | |
| 102 | /* |
| 103 | * error pfns indicate that the gfn is in slot but faild to |
| 104 | * translate it to pfn on host. |
| 105 | */ |
| 106 | static inline bool is_error_pfn(kvm_pfn_t pfn) |
| 107 | { |
| 108 | return !!(pfn & KVM_PFN_ERR_MASK); |
| 109 | } |
| 110 | |
| 111 | /* |
| 112 | * KVM_PFN_ERR_SIGPENDING indicates that fetching the PFN was interrupted |
| 113 | * by a pending signal. Note, the signal may or may not be fatal. |
| 114 | */ |
| 115 | static inline bool is_sigpending_pfn(kvm_pfn_t pfn) |
| 116 | { |
| 117 | return pfn == KVM_PFN_ERR_SIGPENDING; |
| 118 | } |
| 119 | |
| 120 | /* |
| 121 | * error_noslot pfns indicate that the gfn can not be |
| 122 | * translated to pfn - it is not in slot or failed to |
| 123 | * translate it to pfn. |
| 124 | */ |
| 125 | static inline bool is_error_noslot_pfn(kvm_pfn_t pfn) |
| 126 | { |
| 127 | return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK); |
| 128 | } |
| 129 | |
| 130 | /* noslot pfn indicates that the gfn is not in slot. */ |
| 131 | static inline bool is_noslot_pfn(kvm_pfn_t pfn) |
| 132 | { |
| 133 | return pfn == KVM_PFN_NOSLOT; |
| 134 | } |
| 135 | |
| 136 | /* |
| 137 | * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390) |
| 138 | * provide own defines and kvm_is_error_hva |
| 139 | */ |
| 140 | #ifndef KVM_HVA_ERR_BAD |
| 141 | |
| 142 | #define KVM_HVA_ERR_BAD (PAGE_OFFSET) |
| 143 | #define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE) |
| 144 | |
| 145 | static inline bool kvm_is_error_hva(unsigned long addr) |
| 146 | { |
| 147 | return addr >= PAGE_OFFSET; |
| 148 | } |
| 149 | |
| 150 | #endif |
| 151 | |
| 152 | static inline bool kvm_is_error_gpa(gpa_t gpa) |
| 153 | { |
| 154 | return gpa == INVALID_GPA; |
| 155 | } |
| 156 | |
| 157 | #define KVM_REQUEST_MASK GENMASK(7,0) |
| 158 | #define KVM_REQUEST_NO_WAKEUP BIT(8) |
| 159 | #define KVM_REQUEST_WAIT BIT(9) |
| 160 | #define KVM_REQUEST_NO_ACTION BIT(10) |
| 161 | /* |
| 162 | * Architecture-independent vcpu->requests bit members |
| 163 | * Bits 3-7 are reserved for more arch-independent bits. |
| 164 | */ |
| 165 | #define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) |
| 166 | #define KVM_REQ_VM_DEAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) |
| 167 | #define KVM_REQ_UNBLOCK 2 |
| 168 | #define KVM_REQ_DIRTY_RING_SOFT_FULL 3 |
| 169 | #define KVM_REQUEST_ARCH_BASE 8 |
| 170 | |
| 171 | /* |
| 172 | * KVM_REQ_OUTSIDE_GUEST_MODE exists is purely as way to force the vCPU to |
| 173 | * OUTSIDE_GUEST_MODE. KVM_REQ_OUTSIDE_GUEST_MODE differs from a vCPU "kick" |
| 174 | * in that it ensures the vCPU has reached OUTSIDE_GUEST_MODE before continuing |
| 175 | * on. A kick only guarantees that the vCPU is on its way out, e.g. a previous |
| 176 | * kick may have set vcpu->mode to EXITING_GUEST_MODE, and so there's no |
| 177 | * guarantee the vCPU received an IPI and has actually exited guest mode. |
| 178 | */ |
| 179 | #define KVM_REQ_OUTSIDE_GUEST_MODE (KVM_REQUEST_NO_ACTION | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) |
| 180 | |
| 181 | #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \ |
| 182 | BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \ |
| 183 | (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \ |
| 184 | }) |
| 185 | #define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0) |
| 186 | |
| 187 | bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, |
| 188 | unsigned long *vcpu_bitmap); |
| 189 | bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req); |
| 190 | |
| 191 | #define KVM_USERSPACE_IRQ_SOURCE_ID 0 |
| 192 | #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1 |
| 193 | |
| 194 | extern struct mutex kvm_lock; |
| 195 | extern struct list_head vm_list; |
| 196 | |
| 197 | struct kvm_io_range { |
| 198 | gpa_t addr; |
| 199 | int len; |
| 200 | struct kvm_io_device *dev; |
| 201 | }; |
| 202 | |
| 203 | #define NR_IOBUS_DEVS 1000 |
| 204 | |
| 205 | struct kvm_io_bus { |
| 206 | int dev_count; |
| 207 | int ioeventfd_count; |
| 208 | struct kvm_io_range range[]; |
| 209 | }; |
| 210 | |
| 211 | enum kvm_bus { |
| 212 | KVM_MMIO_BUS, |
| 213 | KVM_PIO_BUS, |
| 214 | KVM_VIRTIO_CCW_NOTIFY_BUS, |
| 215 | KVM_FAST_MMIO_BUS, |
| 216 | KVM_IOCSR_BUS, |
| 217 | KVM_NR_BUSES |
| 218 | }; |
| 219 | |
| 220 | int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, |
| 221 | int len, const void *val); |
| 222 | int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, |
| 223 | gpa_t addr, int len, const void *val, long cookie); |
| 224 | int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, |
| 225 | int len, void *val); |
| 226 | int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, |
| 227 | int len, struct kvm_io_device *dev); |
| 228 | int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, |
| 229 | struct kvm_io_device *dev); |
| 230 | struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, |
| 231 | gpa_t addr); |
| 232 | |
| 233 | #ifdef CONFIG_KVM_ASYNC_PF |
| 234 | struct kvm_async_pf { |
| 235 | struct work_struct work; |
| 236 | struct list_head link; |
| 237 | struct list_head queue; |
| 238 | struct kvm_vcpu *vcpu; |
| 239 | gpa_t cr2_or_gpa; |
| 240 | unsigned long addr; |
| 241 | struct kvm_arch_async_pf arch; |
| 242 | bool wakeup_all; |
| 243 | bool notpresent_injected; |
| 244 | }; |
| 245 | |
| 246 | void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu); |
| 247 | void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu); |
| 248 | bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, |
| 249 | unsigned long hva, struct kvm_arch_async_pf *arch); |
| 250 | int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu); |
| 251 | #endif |
| 252 | |
| 253 | #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER |
| 254 | union kvm_mmu_notifier_arg { |
| 255 | unsigned long attributes; |
| 256 | }; |
| 257 | |
| 258 | enum kvm_gfn_range_filter { |
| 259 | KVM_FILTER_SHARED = BIT(0), |
| 260 | KVM_FILTER_PRIVATE = BIT(1), |
| 261 | }; |
| 262 | |
| 263 | struct kvm_gfn_range { |
| 264 | struct kvm_memory_slot *slot; |
| 265 | gfn_t start; |
| 266 | gfn_t end; |
| 267 | union kvm_mmu_notifier_arg arg; |
| 268 | enum kvm_gfn_range_filter attr_filter; |
| 269 | bool may_block; |
| 270 | bool lockless; |
| 271 | }; |
| 272 | bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range); |
| 273 | bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range); |
| 274 | bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range); |
| 275 | #endif |
| 276 | |
| 277 | enum { |
| 278 | OUTSIDE_GUEST_MODE, |
| 279 | IN_GUEST_MODE, |
| 280 | EXITING_GUEST_MODE, |
| 281 | READING_SHADOW_PAGE_TABLES, |
| 282 | }; |
| 283 | |
| 284 | struct kvm_host_map { |
| 285 | /* |
| 286 | * Only valid if the 'pfn' is managed by the host kernel (i.e. There is |
| 287 | * a 'struct page' for it. When using mem= kernel parameter some memory |
| 288 | * can be used as guest memory but they are not managed by host |
| 289 | * kernel). |
| 290 | */ |
| 291 | struct page *pinned_page; |
| 292 | struct page *page; |
| 293 | void *hva; |
| 294 | kvm_pfn_t pfn; |
| 295 | kvm_pfn_t gfn; |
| 296 | bool writable; |
| 297 | }; |
| 298 | |
| 299 | /* |
| 300 | * Used to check if the mapping is valid or not. Never use 'kvm_host_map' |
| 301 | * directly to check for that. |
| 302 | */ |
| 303 | static inline bool kvm_vcpu_mapped(struct kvm_host_map *map) |
| 304 | { |
| 305 | return !!map->hva; |
| 306 | } |
| 307 | |
| 308 | static inline bool kvm_vcpu_can_poll(ktime_t cur, ktime_t stop) |
| 309 | { |
| 310 | return single_task_running() && !need_resched() && ktime_before(cmp1: cur, cmp2: stop); |
| 311 | } |
| 312 | |
| 313 | /* |
| 314 | * Sometimes a large or cross-page mmio needs to be broken up into separate |
| 315 | * exits for userspace servicing. |
| 316 | */ |
| 317 | struct kvm_mmio_fragment { |
| 318 | gpa_t gpa; |
| 319 | void *data; |
| 320 | unsigned len; |
| 321 | }; |
| 322 | |
| 323 | struct kvm_vcpu { |
| 324 | struct kvm *kvm; |
| 325 | #ifdef CONFIG_PREEMPT_NOTIFIERS |
| 326 | struct preempt_notifier preempt_notifier; |
| 327 | #endif |
| 328 | int cpu; |
| 329 | int vcpu_id; /* id given by userspace at creation */ |
| 330 | int vcpu_idx; /* index into kvm->vcpu_array */ |
| 331 | int ____srcu_idx; /* Don't use this directly. You've been warned. */ |
| 332 | #ifdef CONFIG_PROVE_RCU |
| 333 | int srcu_depth; |
| 334 | #endif |
| 335 | int mode; |
| 336 | u64 requests; |
| 337 | unsigned long guest_debug; |
| 338 | |
| 339 | struct mutex mutex; |
| 340 | struct kvm_run *run; |
| 341 | |
| 342 | #ifndef __KVM_HAVE_ARCH_WQP |
| 343 | struct rcuwait wait; |
| 344 | #endif |
| 345 | struct pid *pid; |
| 346 | rwlock_t pid_lock; |
| 347 | int sigset_active; |
| 348 | sigset_t sigset; |
| 349 | unsigned int halt_poll_ns; |
| 350 | bool valid_wakeup; |
| 351 | |
| 352 | #ifdef CONFIG_HAS_IOMEM |
| 353 | int mmio_needed; |
| 354 | int mmio_read_completed; |
| 355 | int mmio_is_write; |
| 356 | int mmio_cur_fragment; |
| 357 | int mmio_nr_fragments; |
| 358 | struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS]; |
| 359 | #endif |
| 360 | |
| 361 | #ifdef CONFIG_KVM_ASYNC_PF |
| 362 | struct { |
| 363 | u32 queued; |
| 364 | struct list_head queue; |
| 365 | struct list_head done; |
| 366 | spinlock_t lock; |
| 367 | } async_pf; |
| 368 | #endif |
| 369 | |
| 370 | #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT |
| 371 | /* |
| 372 | * Cpu relax intercept or pause loop exit optimization |
| 373 | * in_spin_loop: set when a vcpu does a pause loop exit |
| 374 | * or cpu relax intercepted. |
| 375 | * dy_eligible: indicates whether vcpu is eligible for directed yield. |
| 376 | */ |
| 377 | struct { |
| 378 | bool in_spin_loop; |
| 379 | bool dy_eligible; |
| 380 | } spin_loop; |
| 381 | #endif |
| 382 | bool wants_to_run; |
| 383 | bool preempted; |
| 384 | bool ready; |
| 385 | bool scheduled_out; |
| 386 | struct kvm_vcpu_arch arch; |
| 387 | struct kvm_vcpu_stat stat; |
| 388 | char stats_id[KVM_STATS_NAME_SIZE]; |
| 389 | struct kvm_dirty_ring dirty_ring; |
| 390 | |
| 391 | /* |
| 392 | * The most recently used memslot by this vCPU and the slots generation |
| 393 | * for which it is valid. |
| 394 | * No wraparound protection is needed since generations won't overflow in |
| 395 | * thousands of years, even assuming 1M memslot operations per second. |
| 396 | */ |
| 397 | struct kvm_memory_slot *last_used_slot; |
| 398 | u64 last_used_slot_gen; |
| 399 | }; |
| 400 | |
| 401 | /* |
| 402 | * Start accounting time towards a guest. |
| 403 | * Must be called before entering guest context. |
| 404 | */ |
| 405 | static __always_inline void guest_timing_enter_irqoff(void) |
| 406 | { |
| 407 | /* |
| 408 | * This is running in ioctl context so its safe to assume that it's the |
| 409 | * stime pending cputime to flush. |
| 410 | */ |
| 411 | instrumentation_begin(); |
| 412 | vtime_account_guest_enter(); |
| 413 | instrumentation_end(); |
| 414 | } |
| 415 | |
| 416 | /* |
| 417 | * Enter guest context and enter an RCU extended quiescent state. |
| 418 | * |
| 419 | * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is |
| 420 | * unsafe to use any code which may directly or indirectly use RCU, tracing |
| 421 | * (including IRQ flag tracing), or lockdep. All code in this period must be |
| 422 | * non-instrumentable. |
| 423 | */ |
| 424 | static __always_inline void guest_context_enter_irqoff(void) |
| 425 | { |
| 426 | /* |
| 427 | * KVM does not hold any references to rcu protected data when it |
| 428 | * switches CPU into a guest mode. In fact switching to a guest mode |
| 429 | * is very similar to exiting to userspace from rcu point of view. In |
| 430 | * addition CPU may stay in a guest mode for quite a long time (up to |
| 431 | * one time slice). Lets treat guest mode as quiescent state, just like |
| 432 | * we do with user-mode execution. |
| 433 | */ |
| 434 | if (!context_tracking_guest_enter()) { |
| 435 | instrumentation_begin(); |
| 436 | rcu_virt_note_context_switch(); |
| 437 | instrumentation_end(); |
| 438 | } |
| 439 | } |
| 440 | |
| 441 | /* |
| 442 | * Deprecated. Architectures should move to guest_timing_enter_irqoff() and |
| 443 | * guest_state_enter_irqoff(). |
| 444 | */ |
| 445 | static __always_inline void guest_enter_irqoff(void) |
| 446 | { |
| 447 | guest_timing_enter_irqoff(); |
| 448 | guest_context_enter_irqoff(); |
| 449 | } |
| 450 | |
| 451 | /** |
| 452 | * guest_state_enter_irqoff - Fixup state when entering a guest |
| 453 | * |
| 454 | * Entry to a guest will enable interrupts, but the kernel state is interrupts |
| 455 | * disabled when this is invoked. Also tell RCU about it. |
| 456 | * |
| 457 | * 1) Trace interrupts on state |
| 458 | * 2) Invoke context tracking if enabled to adjust RCU state |
| 459 | * 3) Tell lockdep that interrupts are enabled |
| 460 | * |
| 461 | * Invoked from architecture specific code before entering a guest. |
| 462 | * Must be called with interrupts disabled and the caller must be |
| 463 | * non-instrumentable. |
| 464 | * The caller has to invoke guest_timing_enter_irqoff() before this. |
| 465 | * |
| 466 | * Note: this is analogous to exit_to_user_mode(). |
| 467 | */ |
| 468 | static __always_inline void guest_state_enter_irqoff(void) |
| 469 | { |
| 470 | instrumentation_begin(); |
| 471 | trace_hardirqs_on_prepare(); |
| 472 | lockdep_hardirqs_on_prepare(); |
| 473 | instrumentation_end(); |
| 474 | |
| 475 | guest_context_enter_irqoff(); |
| 476 | lockdep_hardirqs_on(CALLER_ADDR0); |
| 477 | } |
| 478 | |
| 479 | /* |
| 480 | * Exit guest context and exit an RCU extended quiescent state. |
| 481 | * |
| 482 | * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is |
| 483 | * unsafe to use any code which may directly or indirectly use RCU, tracing |
| 484 | * (including IRQ flag tracing), or lockdep. All code in this period must be |
| 485 | * non-instrumentable. |
| 486 | */ |
| 487 | static __always_inline void guest_context_exit_irqoff(void) |
| 488 | { |
| 489 | /* |
| 490 | * Guest mode is treated as a quiescent state, see |
| 491 | * guest_context_enter_irqoff() for more details. |
| 492 | */ |
| 493 | if (!context_tracking_guest_exit()) { |
| 494 | instrumentation_begin(); |
| 495 | rcu_virt_note_context_switch(); |
| 496 | instrumentation_end(); |
| 497 | } |
| 498 | } |
| 499 | |
| 500 | /* |
| 501 | * Stop accounting time towards a guest. |
| 502 | * Must be called after exiting guest context. |
| 503 | */ |
| 504 | static __always_inline void guest_timing_exit_irqoff(void) |
| 505 | { |
| 506 | instrumentation_begin(); |
| 507 | /* Flush the guest cputime we spent on the guest */ |
| 508 | vtime_account_guest_exit(); |
| 509 | instrumentation_end(); |
| 510 | } |
| 511 | |
| 512 | /* |
| 513 | * Deprecated. Architectures should move to guest_state_exit_irqoff() and |
| 514 | * guest_timing_exit_irqoff(). |
| 515 | */ |
| 516 | static __always_inline void guest_exit_irqoff(void) |
| 517 | { |
| 518 | guest_context_exit_irqoff(); |
| 519 | guest_timing_exit_irqoff(); |
| 520 | } |
| 521 | |
| 522 | static inline void guest_exit(void) |
| 523 | { |
| 524 | unsigned long flags; |
| 525 | |
| 526 | local_irq_save(flags); |
| 527 | guest_exit_irqoff(); |
| 528 | local_irq_restore(flags); |
| 529 | } |
| 530 | |
| 531 | /** |
| 532 | * guest_state_exit_irqoff - Establish state when returning from guest mode |
| 533 | * |
| 534 | * Entry from a guest disables interrupts, but guest mode is traced as |
| 535 | * interrupts enabled. Also with NO_HZ_FULL RCU might be idle. |
| 536 | * |
| 537 | * 1) Tell lockdep that interrupts are disabled |
| 538 | * 2) Invoke context tracking if enabled to reactivate RCU |
| 539 | * 3) Trace interrupts off state |
| 540 | * |
| 541 | * Invoked from architecture specific code after exiting a guest. |
| 542 | * Must be invoked with interrupts disabled and the caller must be |
| 543 | * non-instrumentable. |
| 544 | * The caller has to invoke guest_timing_exit_irqoff() after this. |
| 545 | * |
| 546 | * Note: this is analogous to enter_from_user_mode(). |
| 547 | */ |
| 548 | static __always_inline void guest_state_exit_irqoff(void) |
| 549 | { |
| 550 | lockdep_hardirqs_off(CALLER_ADDR0); |
| 551 | guest_context_exit_irqoff(); |
| 552 | |
| 553 | instrumentation_begin(); |
| 554 | trace_hardirqs_off_finish(); |
| 555 | instrumentation_end(); |
| 556 | } |
| 557 | |
| 558 | static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu) |
| 559 | { |
| 560 | /* |
| 561 | * The memory barrier ensures a previous write to vcpu->requests cannot |
| 562 | * be reordered with the read of vcpu->mode. It pairs with the general |
| 563 | * memory barrier following the write of vcpu->mode in VCPU RUN. |
| 564 | */ |
| 565 | smp_mb__before_atomic(); |
| 566 | return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE); |
| 567 | } |
| 568 | |
| 569 | /* |
| 570 | * Some of the bitops functions do not support too long bitmaps. |
| 571 | * This number must be determined not to exceed such limits. |
| 572 | */ |
| 573 | #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1) |
| 574 | |
| 575 | /* |
| 576 | * Since at idle each memslot belongs to two memslot sets it has to contain |
| 577 | * two embedded nodes for each data structure that it forms a part of. |
| 578 | * |
| 579 | * Two memslot sets (one active and one inactive) are necessary so the VM |
| 580 | * continues to run on one memslot set while the other is being modified. |
| 581 | * |
| 582 | * These two memslot sets normally point to the same set of memslots. |
| 583 | * They can, however, be desynchronized when performing a memslot management |
| 584 | * operation by replacing the memslot to be modified by its copy. |
| 585 | * After the operation is complete, both memslot sets once again point to |
| 586 | * the same, common set of memslot data. |
| 587 | * |
| 588 | * The memslots themselves are independent of each other so they can be |
| 589 | * individually added or deleted. |
| 590 | */ |
| 591 | struct kvm_memory_slot { |
| 592 | struct hlist_node id_node[2]; |
| 593 | struct interval_tree_node hva_node[2]; |
| 594 | struct rb_node gfn_node[2]; |
| 595 | gfn_t base_gfn; |
| 596 | unsigned long npages; |
| 597 | unsigned long *dirty_bitmap; |
| 598 | struct kvm_arch_memory_slot arch; |
| 599 | unsigned long userspace_addr; |
| 600 | u32 flags; |
| 601 | short id; |
| 602 | u16 as_id; |
| 603 | |
| 604 | #ifdef CONFIG_KVM_PRIVATE_MEM |
| 605 | struct { |
| 606 | /* |
| 607 | * Writes protected by kvm->slots_lock. Acquiring a |
| 608 | * reference via kvm_gmem_get_file() is protected by |
| 609 | * either kvm->slots_lock or kvm->srcu. |
| 610 | */ |
| 611 | struct file *file; |
| 612 | pgoff_t pgoff; |
| 613 | } gmem; |
| 614 | #endif |
| 615 | }; |
| 616 | |
| 617 | static inline bool kvm_slot_can_be_private(const struct kvm_memory_slot *slot) |
| 618 | { |
| 619 | return slot && (slot->flags & KVM_MEM_GUEST_MEMFD); |
| 620 | } |
| 621 | |
| 622 | static inline bool kvm_slot_dirty_track_enabled(const struct kvm_memory_slot *slot) |
| 623 | { |
| 624 | return slot->flags & KVM_MEM_LOG_DIRTY_PAGES; |
| 625 | } |
| 626 | |
| 627 | static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot) |
| 628 | { |
| 629 | return ALIGN(memslot->npages, BITS_PER_LONG) / 8; |
| 630 | } |
| 631 | |
| 632 | static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot) |
| 633 | { |
| 634 | unsigned long len = kvm_dirty_bitmap_bytes(memslot); |
| 635 | |
| 636 | return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap); |
| 637 | } |
| 638 | |
| 639 | #ifndef KVM_DIRTY_LOG_MANUAL_CAPS |
| 640 | #define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE |
| 641 | #endif |
| 642 | |
| 643 | struct kvm_s390_adapter_int { |
| 644 | u64 ind_addr; |
| 645 | u64 summary_addr; |
| 646 | u64 ind_offset; |
| 647 | u32 summary_offset; |
| 648 | u32 adapter_id; |
| 649 | }; |
| 650 | |
| 651 | struct kvm_hv_sint { |
| 652 | u32 vcpu; |
| 653 | u32 sint; |
| 654 | }; |
| 655 | |
| 656 | struct kvm_xen_evtchn { |
| 657 | u32 port; |
| 658 | u32 vcpu_id; |
| 659 | int vcpu_idx; |
| 660 | u32 priority; |
| 661 | }; |
| 662 | |
| 663 | struct kvm_kernel_irq_routing_entry { |
| 664 | u32 gsi; |
| 665 | u32 type; |
| 666 | int (*set)(struct kvm_kernel_irq_routing_entry *e, |
| 667 | struct kvm *kvm, int irq_source_id, int level, |
| 668 | bool line_status); |
| 669 | union { |
| 670 | struct { |
| 671 | unsigned irqchip; |
| 672 | unsigned pin; |
| 673 | } irqchip; |
| 674 | struct { |
| 675 | u32 address_lo; |
| 676 | u32 address_hi; |
| 677 | u32 data; |
| 678 | u32 flags; |
| 679 | u32 devid; |
| 680 | } msi; |
| 681 | struct kvm_s390_adapter_int adapter; |
| 682 | struct kvm_hv_sint hv_sint; |
| 683 | struct kvm_xen_evtchn xen_evtchn; |
| 684 | }; |
| 685 | struct hlist_node link; |
| 686 | }; |
| 687 | |
| 688 | #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING |
| 689 | struct kvm_irq_routing_table { |
| 690 | int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS]; |
| 691 | u32 nr_rt_entries; |
| 692 | /* |
| 693 | * Array indexed by gsi. Each entry contains list of irq chips |
| 694 | * the gsi is connected to. |
| 695 | */ |
| 696 | struct hlist_head map[] __counted_by(nr_rt_entries); |
| 697 | }; |
| 698 | #endif |
| 699 | |
| 700 | bool kvm_arch_irqchip_in_kernel(struct kvm *kvm); |
| 701 | |
| 702 | #ifndef KVM_INTERNAL_MEM_SLOTS |
| 703 | #define KVM_INTERNAL_MEM_SLOTS 0 |
| 704 | #endif |
| 705 | |
| 706 | #define KVM_MEM_SLOTS_NUM SHRT_MAX |
| 707 | #define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_INTERNAL_MEM_SLOTS) |
| 708 | |
| 709 | #if KVM_MAX_NR_ADDRESS_SPACES == 1 |
| 710 | static inline int kvm_arch_nr_memslot_as_ids(struct kvm *kvm) |
| 711 | { |
| 712 | return KVM_MAX_NR_ADDRESS_SPACES; |
| 713 | } |
| 714 | |
| 715 | static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu) |
| 716 | { |
| 717 | return 0; |
| 718 | } |
| 719 | #endif |
| 720 | |
| 721 | /* |
| 722 | * Arch code must define kvm_arch_has_private_mem if support for private memory |
| 723 | * is enabled. |
| 724 | */ |
| 725 | #if !defined(kvm_arch_has_private_mem) && !IS_ENABLED(CONFIG_KVM_PRIVATE_MEM) |
| 726 | static inline bool kvm_arch_has_private_mem(struct kvm *kvm) |
| 727 | { |
| 728 | return false; |
| 729 | } |
| 730 | #endif |
| 731 | |
| 732 | #ifndef kvm_arch_has_readonly_mem |
| 733 | static inline bool kvm_arch_has_readonly_mem(struct kvm *kvm) |
| 734 | { |
| 735 | return IS_ENABLED(CONFIG_HAVE_KVM_READONLY_MEM); |
| 736 | } |
| 737 | #endif |
| 738 | |
| 739 | struct kvm_memslots { |
| 740 | u64 generation; |
| 741 | atomic_long_t last_used_slot; |
| 742 | struct rb_root_cached hva_tree; |
| 743 | struct rb_root gfn_tree; |
| 744 | /* |
| 745 | * The mapping table from slot id to memslot. |
| 746 | * |
| 747 | * 7-bit bucket count matches the size of the old id to index array for |
| 748 | * 512 slots, while giving good performance with this slot count. |
| 749 | * Higher bucket counts bring only small performance improvements but |
| 750 | * always result in higher memory usage (even for lower memslot counts). |
| 751 | */ |
| 752 | DECLARE_HASHTABLE(id_hash, 7); |
| 753 | int node_idx; |
| 754 | }; |
| 755 | |
| 756 | struct kvm { |
| 757 | #ifdef KVM_HAVE_MMU_RWLOCK |
| 758 | rwlock_t mmu_lock; |
| 759 | #else |
| 760 | spinlock_t mmu_lock; |
| 761 | #endif /* KVM_HAVE_MMU_RWLOCK */ |
| 762 | |
| 763 | struct mutex slots_lock; |
| 764 | |
| 765 | /* |
| 766 | * Protects the arch-specific fields of struct kvm_memory_slots in |
| 767 | * use by the VM. To be used under the slots_lock (above) or in a |
| 768 | * kvm->srcu critical section where acquiring the slots_lock would |
| 769 | * lead to deadlock with the synchronize_srcu in |
| 770 | * kvm_swap_active_memslots(). |
| 771 | */ |
| 772 | struct mutex slots_arch_lock; |
| 773 | struct mm_struct *mm; /* userspace tied to this vm */ |
| 774 | unsigned long nr_memslot_pages; |
| 775 | /* The two memslot sets - active and inactive (per address space) */ |
| 776 | struct kvm_memslots __memslots[KVM_MAX_NR_ADDRESS_SPACES][2]; |
| 777 | /* The current active memslot set for each address space */ |
| 778 | struct kvm_memslots __rcu *memslots[KVM_MAX_NR_ADDRESS_SPACES]; |
| 779 | struct xarray vcpu_array; |
| 780 | /* |
| 781 | * Protected by slots_lock, but can be read outside if an |
| 782 | * incorrect answer is acceptable. |
| 783 | */ |
| 784 | atomic_t nr_memslots_dirty_logging; |
| 785 | |
| 786 | /* Used to wait for completion of MMU notifiers. */ |
| 787 | spinlock_t mn_invalidate_lock; |
| 788 | unsigned long mn_active_invalidate_count; |
| 789 | struct rcuwait mn_memslots_update_rcuwait; |
| 790 | |
| 791 | /* For management / invalidation of gfn_to_pfn_caches */ |
| 792 | spinlock_t gpc_lock; |
| 793 | struct list_head gpc_list; |
| 794 | |
| 795 | /* |
| 796 | * created_vcpus is protected by kvm->lock, and is incremented |
| 797 | * at the beginning of KVM_CREATE_VCPU. online_vcpus is only |
| 798 | * incremented after storing the kvm_vcpu pointer in vcpus, |
| 799 | * and is accessed atomically. |
| 800 | */ |
| 801 | atomic_t online_vcpus; |
| 802 | int max_vcpus; |
| 803 | int created_vcpus; |
| 804 | int last_boosted_vcpu; |
| 805 | struct list_head vm_list; |
| 806 | struct mutex lock; |
| 807 | struct kvm_io_bus __rcu *buses[KVM_NR_BUSES]; |
| 808 | #ifdef CONFIG_HAVE_KVM_IRQCHIP |
| 809 | struct { |
| 810 | spinlock_t lock; |
| 811 | struct list_head items; |
| 812 | /* resampler_list update side is protected by resampler_lock. */ |
| 813 | struct list_head resampler_list; |
| 814 | struct mutex resampler_lock; |
| 815 | } irqfds; |
| 816 | #endif |
| 817 | struct list_head ioeventfds; |
| 818 | struct kvm_vm_stat stat; |
| 819 | struct kvm_arch arch; |
| 820 | refcount_t users_count; |
| 821 | #ifdef CONFIG_KVM_MMIO |
| 822 | struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; |
| 823 | spinlock_t ring_lock; |
| 824 | struct list_head coalesced_zones; |
| 825 | #endif |
| 826 | |
| 827 | struct mutex irq_lock; |
| 828 | #ifdef CONFIG_HAVE_KVM_IRQCHIP |
| 829 | /* |
| 830 | * Update side is protected by irq_lock. |
| 831 | */ |
| 832 | struct kvm_irq_routing_table __rcu *irq_routing; |
| 833 | |
| 834 | struct hlist_head irq_ack_notifier_list; |
| 835 | #endif |
| 836 | |
| 837 | #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER |
| 838 | struct mmu_notifier mmu_notifier; |
| 839 | unsigned long mmu_invalidate_seq; |
| 840 | long mmu_invalidate_in_progress; |
| 841 | gfn_t mmu_invalidate_range_start; |
| 842 | gfn_t mmu_invalidate_range_end; |
| 843 | #endif |
| 844 | struct list_head devices; |
| 845 | u64 manual_dirty_log_protect; |
| 846 | struct dentry *debugfs_dentry; |
| 847 | struct kvm_stat_data **debugfs_stat_data; |
| 848 | struct srcu_struct srcu; |
| 849 | struct srcu_struct irq_srcu; |
| 850 | pid_t userspace_pid; |
| 851 | bool override_halt_poll_ns; |
| 852 | unsigned int max_halt_poll_ns; |
| 853 | u32 dirty_ring_size; |
| 854 | bool dirty_ring_with_bitmap; |
| 855 | bool vm_bugged; |
| 856 | bool vm_dead; |
| 857 | |
| 858 | #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER |
| 859 | struct notifier_block pm_notifier; |
| 860 | #endif |
| 861 | #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES |
| 862 | /* Protected by slots_locks (for writes) and RCU (for reads) */ |
| 863 | struct xarray mem_attr_array; |
| 864 | #endif |
| 865 | char stats_id[KVM_STATS_NAME_SIZE]; |
| 866 | }; |
| 867 | |
| 868 | #define kvm_err(fmt, ...) \ |
| 869 | pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) |
| 870 | #define kvm_info(fmt, ...) \ |
| 871 | pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) |
| 872 | #define kvm_debug(fmt, ...) \ |
| 873 | pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) |
| 874 | #define kvm_debug_ratelimited(fmt, ...) \ |
| 875 | pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \ |
| 876 | ## __VA_ARGS__) |
| 877 | #define kvm_pr_unimpl(fmt, ...) \ |
| 878 | pr_err_ratelimited("kvm [%i]: " fmt, \ |
| 879 | task_tgid_nr(current), ## __VA_ARGS__) |
| 880 | |
| 881 | /* The guest did something we don't support. */ |
| 882 | #define vcpu_unimpl(vcpu, fmt, ...) \ |
| 883 | kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \ |
| 884 | (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__) |
| 885 | |
| 886 | #define vcpu_debug(vcpu, fmt, ...) \ |
| 887 | kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) |
| 888 | #define vcpu_debug_ratelimited(vcpu, fmt, ...) \ |
| 889 | kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \ |
| 890 | ## __VA_ARGS__) |
| 891 | #define vcpu_err(vcpu, fmt, ...) \ |
| 892 | kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) |
| 893 | |
| 894 | static inline void kvm_vm_dead(struct kvm *kvm) |
| 895 | { |
| 896 | kvm->vm_dead = true; |
| 897 | kvm_make_all_cpus_request(kvm, KVM_REQ_VM_DEAD); |
| 898 | } |
| 899 | |
| 900 | static inline void kvm_vm_bugged(struct kvm *kvm) |
| 901 | { |
| 902 | kvm->vm_bugged = true; |
| 903 | kvm_vm_dead(kvm); |
| 904 | } |
| 905 | |
| 906 | |
| 907 | #define KVM_BUG(cond, kvm, fmt...) \ |
| 908 | ({ \ |
| 909 | bool __ret = !!(cond); \ |
| 910 | \ |
| 911 | if (WARN_ONCE(__ret && !(kvm)->vm_bugged, fmt)) \ |
| 912 | kvm_vm_bugged(kvm); \ |
| 913 | unlikely(__ret); \ |
| 914 | }) |
| 915 | |
| 916 | #define KVM_BUG_ON(cond, kvm) \ |
| 917 | ({ \ |
| 918 | bool __ret = !!(cond); \ |
| 919 | \ |
| 920 | if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged)) \ |
| 921 | kvm_vm_bugged(kvm); \ |
| 922 | unlikely(__ret); \ |
| 923 | }) |
| 924 | |
| 925 | /* |
| 926 | * Note, "data corruption" refers to corruption of host kernel data structures, |
| 927 | * not guest data. Guest data corruption, suspected or confirmed, that is tied |
| 928 | * and contained to a single VM should *never* BUG() and potentially panic the |
| 929 | * host, i.e. use this variant of KVM_BUG() if and only if a KVM data structure |
| 930 | * is corrupted and that corruption can have a cascading effect to other parts |
| 931 | * of the hosts and/or to other VMs. |
| 932 | */ |
| 933 | #define KVM_BUG_ON_DATA_CORRUPTION(cond, kvm) \ |
| 934 | ({ \ |
| 935 | bool __ret = !!(cond); \ |
| 936 | \ |
| 937 | if (IS_ENABLED(CONFIG_BUG_ON_DATA_CORRUPTION)) \ |
| 938 | BUG_ON(__ret); \ |
| 939 | else if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged)) \ |
| 940 | kvm_vm_bugged(kvm); \ |
| 941 | unlikely(__ret); \ |
| 942 | }) |
| 943 | |
| 944 | static inline void kvm_vcpu_srcu_read_lock(struct kvm_vcpu *vcpu) |
| 945 | { |
| 946 | #ifdef CONFIG_PROVE_RCU |
| 947 | WARN_ONCE(vcpu->srcu_depth++, |
| 948 | "KVM: Illegal vCPU srcu_idx LOCK, depth=%d" , vcpu->srcu_depth - 1); |
| 949 | #endif |
| 950 | vcpu->____srcu_idx = srcu_read_lock(ssp: &vcpu->kvm->srcu); |
| 951 | } |
| 952 | |
| 953 | static inline void kvm_vcpu_srcu_read_unlock(struct kvm_vcpu *vcpu) |
| 954 | { |
| 955 | srcu_read_unlock(ssp: &vcpu->kvm->srcu, idx: vcpu->____srcu_idx); |
| 956 | |
| 957 | #ifdef CONFIG_PROVE_RCU |
| 958 | WARN_ONCE(--vcpu->srcu_depth, |
| 959 | "KVM: Illegal vCPU srcu_idx UNLOCK, depth=%d" , vcpu->srcu_depth); |
| 960 | #endif |
| 961 | } |
| 962 | |
| 963 | static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm) |
| 964 | { |
| 965 | return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET); |
| 966 | } |
| 967 | |
| 968 | static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx) |
| 969 | { |
| 970 | return srcu_dereference_check(kvm->buses[idx], &kvm->srcu, |
| 971 | lockdep_is_held(&kvm->slots_lock) || |
| 972 | !refcount_read(&kvm->users_count)); |
| 973 | } |
| 974 | |
| 975 | static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i) |
| 976 | { |
| 977 | int num_vcpus = atomic_read(v: &kvm->online_vcpus); |
| 978 | |
| 979 | /* |
| 980 | * Explicitly verify the target vCPU is online, as the anti-speculation |
| 981 | * logic only limits the CPU's ability to speculate, e.g. given a "bad" |
| 982 | * index, clamping the index to 0 would return vCPU0, not NULL. |
| 983 | */ |
| 984 | if (i >= num_vcpus) |
| 985 | return NULL; |
| 986 | |
| 987 | i = array_index_nospec(i, num_vcpus); |
| 988 | |
| 989 | /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */ |
| 990 | smp_rmb(); |
| 991 | return xa_load(&kvm->vcpu_array, index: i); |
| 992 | } |
| 993 | |
| 994 | #define kvm_for_each_vcpu(idx, vcpup, kvm) \ |
| 995 | if (atomic_read(&kvm->online_vcpus)) \ |
| 996 | xa_for_each_range(&kvm->vcpu_array, idx, vcpup, 0, \ |
| 997 | (atomic_read(&kvm->online_vcpus) - 1)) |
| 998 | |
| 999 | static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id) |
| 1000 | { |
| 1001 | struct kvm_vcpu *vcpu = NULL; |
| 1002 | unsigned long i; |
| 1003 | |
| 1004 | if (id < 0) |
| 1005 | return NULL; |
| 1006 | if (id < KVM_MAX_VCPUS) |
| 1007 | vcpu = kvm_get_vcpu(kvm, i: id); |
| 1008 | if (vcpu && vcpu->vcpu_id == id) |
| 1009 | return vcpu; |
| 1010 | kvm_for_each_vcpu(i, vcpu, kvm) |
| 1011 | if (vcpu->vcpu_id == id) |
| 1012 | return vcpu; |
| 1013 | return NULL; |
| 1014 | } |
| 1015 | |
| 1016 | void kvm_destroy_vcpus(struct kvm *kvm); |
| 1017 | |
| 1018 | int kvm_trylock_all_vcpus(struct kvm *kvm); |
| 1019 | int kvm_lock_all_vcpus(struct kvm *kvm); |
| 1020 | void kvm_unlock_all_vcpus(struct kvm *kvm); |
| 1021 | |
| 1022 | void vcpu_load(struct kvm_vcpu *vcpu); |
| 1023 | void vcpu_put(struct kvm_vcpu *vcpu); |
| 1024 | |
| 1025 | #ifdef __KVM_HAVE_IOAPIC |
| 1026 | void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm); |
| 1027 | void kvm_arch_post_irq_routing_update(struct kvm *kvm); |
| 1028 | #else |
| 1029 | static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm) |
| 1030 | { |
| 1031 | } |
| 1032 | static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm) |
| 1033 | { |
| 1034 | } |
| 1035 | #endif |
| 1036 | |
| 1037 | #ifdef CONFIG_HAVE_KVM_IRQCHIP |
| 1038 | int kvm_irqfd_init(void); |
| 1039 | void kvm_irqfd_exit(void); |
| 1040 | #else |
| 1041 | static inline int kvm_irqfd_init(void) |
| 1042 | { |
| 1043 | return 0; |
| 1044 | } |
| 1045 | |
| 1046 | static inline void kvm_irqfd_exit(void) |
| 1047 | { |
| 1048 | } |
| 1049 | #endif |
| 1050 | int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module); |
| 1051 | void kvm_exit(void); |
| 1052 | |
| 1053 | void kvm_get_kvm(struct kvm *kvm); |
| 1054 | bool kvm_get_kvm_safe(struct kvm *kvm); |
| 1055 | void kvm_put_kvm(struct kvm *kvm); |
| 1056 | bool file_is_kvm(struct file *file); |
| 1057 | void kvm_put_kvm_no_destroy(struct kvm *kvm); |
| 1058 | |
| 1059 | static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id) |
| 1060 | { |
| 1061 | as_id = array_index_nospec(as_id, KVM_MAX_NR_ADDRESS_SPACES); |
| 1062 | return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu, |
| 1063 | lockdep_is_held(&kvm->slots_lock) || |
| 1064 | !refcount_read(&kvm->users_count)); |
| 1065 | } |
| 1066 | |
| 1067 | static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm) |
| 1068 | { |
| 1069 | return __kvm_memslots(kvm, as_id: 0); |
| 1070 | } |
| 1071 | |
| 1072 | static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu) |
| 1073 | { |
| 1074 | int as_id = kvm_arch_vcpu_memslots_id(vcpu); |
| 1075 | |
| 1076 | return __kvm_memslots(kvm: vcpu->kvm, as_id); |
| 1077 | } |
| 1078 | |
| 1079 | static inline bool kvm_memslots_empty(struct kvm_memslots *slots) |
| 1080 | { |
| 1081 | return RB_EMPTY_ROOT(&slots->gfn_tree); |
| 1082 | } |
| 1083 | |
| 1084 | bool kvm_are_all_memslots_empty(struct kvm *kvm); |
| 1085 | |
| 1086 | #define kvm_for_each_memslot(memslot, bkt, slots) \ |
| 1087 | hash_for_each(slots->id_hash, bkt, memslot, id_node[slots->node_idx]) \ |
| 1088 | if (WARN_ON_ONCE(!memslot->npages)) { \ |
| 1089 | } else |
| 1090 | |
| 1091 | static inline |
| 1092 | struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id) |
| 1093 | { |
| 1094 | struct kvm_memory_slot *slot; |
| 1095 | int idx = slots->node_idx; |
| 1096 | |
| 1097 | hash_for_each_possible(slots->id_hash, slot, id_node[idx], id) { |
| 1098 | if (slot->id == id) |
| 1099 | return slot; |
| 1100 | } |
| 1101 | |
| 1102 | return NULL; |
| 1103 | } |
| 1104 | |
| 1105 | /* Iterator used for walking memslots that overlap a gfn range. */ |
| 1106 | struct kvm_memslot_iter { |
| 1107 | struct kvm_memslots *slots; |
| 1108 | struct rb_node *node; |
| 1109 | struct kvm_memory_slot *slot; |
| 1110 | }; |
| 1111 | |
| 1112 | static inline void kvm_memslot_iter_next(struct kvm_memslot_iter *iter) |
| 1113 | { |
| 1114 | iter->node = rb_next(iter->node); |
| 1115 | if (!iter->node) |
| 1116 | return; |
| 1117 | |
| 1118 | iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[iter->slots->node_idx]); |
| 1119 | } |
| 1120 | |
| 1121 | static inline void kvm_memslot_iter_start(struct kvm_memslot_iter *iter, |
| 1122 | struct kvm_memslots *slots, |
| 1123 | gfn_t start) |
| 1124 | { |
| 1125 | int idx = slots->node_idx; |
| 1126 | struct rb_node *tmp; |
| 1127 | struct kvm_memory_slot *slot; |
| 1128 | |
| 1129 | iter->slots = slots; |
| 1130 | |
| 1131 | /* |
| 1132 | * Find the so called "upper bound" of a key - the first node that has |
| 1133 | * its key strictly greater than the searched one (the start gfn in our case). |
| 1134 | */ |
| 1135 | iter->node = NULL; |
| 1136 | for (tmp = slots->gfn_tree.rb_node; tmp; ) { |
| 1137 | slot = container_of(tmp, struct kvm_memory_slot, gfn_node[idx]); |
| 1138 | if (start < slot->base_gfn) { |
| 1139 | iter->node = tmp; |
| 1140 | tmp = tmp->rb_left; |
| 1141 | } else { |
| 1142 | tmp = tmp->rb_right; |
| 1143 | } |
| 1144 | } |
| 1145 | |
| 1146 | /* |
| 1147 | * Find the slot with the lowest gfn that can possibly intersect with |
| 1148 | * the range, so we'll ideally have slot start <= range start |
| 1149 | */ |
| 1150 | if (iter->node) { |
| 1151 | /* |
| 1152 | * A NULL previous node means that the very first slot |
| 1153 | * already has a higher start gfn. |
| 1154 | * In this case slot start > range start. |
| 1155 | */ |
| 1156 | tmp = rb_prev(iter->node); |
| 1157 | if (tmp) |
| 1158 | iter->node = tmp; |
| 1159 | } else { |
| 1160 | /* a NULL node below means no slots */ |
| 1161 | iter->node = rb_last(&slots->gfn_tree); |
| 1162 | } |
| 1163 | |
| 1164 | if (iter->node) { |
| 1165 | iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[idx]); |
| 1166 | |
| 1167 | /* |
| 1168 | * It is possible in the slot start < range start case that the |
| 1169 | * found slot ends before or at range start (slot end <= range start) |
| 1170 | * and so it does not overlap the requested range. |
| 1171 | * |
| 1172 | * In such non-overlapping case the next slot (if it exists) will |
| 1173 | * already have slot start > range start, otherwise the logic above |
| 1174 | * would have found it instead of the current slot. |
| 1175 | */ |
| 1176 | if (iter->slot->base_gfn + iter->slot->npages <= start) |
| 1177 | kvm_memslot_iter_next(iter); |
| 1178 | } |
| 1179 | } |
| 1180 | |
| 1181 | static inline bool kvm_memslot_iter_is_valid(struct kvm_memslot_iter *iter, gfn_t end) |
| 1182 | { |
| 1183 | if (!iter->node) |
| 1184 | return false; |
| 1185 | |
| 1186 | /* |
| 1187 | * If this slot starts beyond or at the end of the range so does |
| 1188 | * every next one |
| 1189 | */ |
| 1190 | return iter->slot->base_gfn < end; |
| 1191 | } |
| 1192 | |
| 1193 | /* Iterate over each memslot at least partially intersecting [start, end) range */ |
| 1194 | #define kvm_for_each_memslot_in_gfn_range(iter, slots, start, end) \ |
| 1195 | for (kvm_memslot_iter_start(iter, slots, start); \ |
| 1196 | kvm_memslot_iter_is_valid(iter, end); \ |
| 1197 | kvm_memslot_iter_next(iter)) |
| 1198 | |
| 1199 | struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn); |
| 1200 | struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu); |
| 1201 | struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn); |
| 1202 | |
| 1203 | /* |
| 1204 | * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations: |
| 1205 | * - create a new memory slot |
| 1206 | * - delete an existing memory slot |
| 1207 | * - modify an existing memory slot |
| 1208 | * -- move it in the guest physical memory space |
| 1209 | * -- just change its flags |
| 1210 | * |
| 1211 | * Since flags can be changed by some of these operations, the following |
| 1212 | * differentiation is the best we can do for kvm_set_memory_region(): |
| 1213 | */ |
| 1214 | enum kvm_mr_change { |
| 1215 | KVM_MR_CREATE, |
| 1216 | KVM_MR_DELETE, |
| 1217 | KVM_MR_MOVE, |
| 1218 | KVM_MR_FLAGS_ONLY, |
| 1219 | }; |
| 1220 | |
| 1221 | int kvm_set_internal_memslot(struct kvm *kvm, |
| 1222 | const struct kvm_userspace_memory_region2 *mem); |
| 1223 | void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot); |
| 1224 | void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen); |
| 1225 | int kvm_arch_prepare_memory_region(struct kvm *kvm, |
| 1226 | const struct kvm_memory_slot *old, |
| 1227 | struct kvm_memory_slot *new, |
| 1228 | enum kvm_mr_change change); |
| 1229 | void kvm_arch_commit_memory_region(struct kvm *kvm, |
| 1230 | struct kvm_memory_slot *old, |
| 1231 | const struct kvm_memory_slot *new, |
| 1232 | enum kvm_mr_change change); |
| 1233 | /* flush all memory translations */ |
| 1234 | void kvm_arch_flush_shadow_all(struct kvm *kvm); |
| 1235 | /* flush memory translations pointing to 'slot' */ |
| 1236 | void kvm_arch_flush_shadow_memslot(struct kvm *kvm, |
| 1237 | struct kvm_memory_slot *slot); |
| 1238 | |
| 1239 | int kvm_prefetch_pages(struct kvm_memory_slot *slot, gfn_t gfn, |
| 1240 | struct page **pages, int nr_pages); |
| 1241 | |
| 1242 | struct page *__gfn_to_page(struct kvm *kvm, gfn_t gfn, bool write); |
| 1243 | static inline struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) |
| 1244 | { |
| 1245 | return __gfn_to_page(kvm, gfn, write: true); |
| 1246 | } |
| 1247 | |
| 1248 | unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn); |
| 1249 | unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable); |
| 1250 | unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn); |
| 1251 | unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn, |
| 1252 | bool *writable); |
| 1253 | |
| 1254 | static inline void kvm_release_page_unused(struct page *page) |
| 1255 | { |
| 1256 | if (!page) |
| 1257 | return; |
| 1258 | |
| 1259 | put_page(page); |
| 1260 | } |
| 1261 | |
| 1262 | void kvm_release_page_clean(struct page *page); |
| 1263 | void kvm_release_page_dirty(struct page *page); |
| 1264 | |
| 1265 | static inline void kvm_release_faultin_page(struct kvm *kvm, struct page *page, |
| 1266 | bool unused, bool dirty) |
| 1267 | { |
| 1268 | lockdep_assert_once(lockdep_is_held(&kvm->mmu_lock) || unused); |
| 1269 | |
| 1270 | if (!page) |
| 1271 | return; |
| 1272 | |
| 1273 | /* |
| 1274 | * If the page that KVM got from the *primary MMU* is writable, and KVM |
| 1275 | * installed or reused a SPTE, mark the page/folio dirty. Note, this |
| 1276 | * may mark a folio dirty even if KVM created a read-only SPTE, e.g. if |
| 1277 | * the GFN is write-protected. Folios can't be safely marked dirty |
| 1278 | * outside of mmu_lock as doing so could race with writeback on the |
| 1279 | * folio. As a result, KVM can't mark folios dirty in the fast page |
| 1280 | * fault handler, and so KVM must (somewhat) speculatively mark the |
| 1281 | * folio dirty if KVM could locklessly make the SPTE writable. |
| 1282 | */ |
| 1283 | if (unused) |
| 1284 | kvm_release_page_unused(page); |
| 1285 | else if (dirty) |
| 1286 | kvm_release_page_dirty(page); |
| 1287 | else |
| 1288 | kvm_release_page_clean(page); |
| 1289 | } |
| 1290 | |
| 1291 | kvm_pfn_t __kvm_faultin_pfn(const struct kvm_memory_slot *slot, gfn_t gfn, |
| 1292 | unsigned int foll, bool *writable, |
| 1293 | struct page **refcounted_page); |
| 1294 | |
| 1295 | static inline kvm_pfn_t kvm_faultin_pfn(struct kvm_vcpu *vcpu, gfn_t gfn, |
| 1296 | bool write, bool *writable, |
| 1297 | struct page **refcounted_page) |
| 1298 | { |
| 1299 | return __kvm_faultin_pfn(slot: kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, |
| 1300 | foll: write ? FOLL_WRITE : 0, writable, refcounted_page); |
| 1301 | } |
| 1302 | |
| 1303 | int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, |
| 1304 | int len); |
| 1305 | int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len); |
| 1306 | int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, |
| 1307 | void *data, unsigned long len); |
| 1308 | int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, |
| 1309 | void *data, unsigned int offset, |
| 1310 | unsigned long len); |
| 1311 | int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data, |
| 1312 | int offset, int len); |
| 1313 | int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, |
| 1314 | unsigned long len); |
| 1315 | int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, |
| 1316 | void *data, unsigned long len); |
| 1317 | int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, |
| 1318 | void *data, unsigned int offset, |
| 1319 | unsigned long len); |
| 1320 | int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, |
| 1321 | gpa_t gpa, unsigned long len); |
| 1322 | |
| 1323 | #define __kvm_get_guest(kvm, gfn, offset, v) \ |
| 1324 | ({ \ |
| 1325 | unsigned long __addr = gfn_to_hva(kvm, gfn); \ |
| 1326 | typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \ |
| 1327 | int __ret = -EFAULT; \ |
| 1328 | \ |
| 1329 | if (!kvm_is_error_hva(__addr)) \ |
| 1330 | __ret = get_user(v, __uaddr); \ |
| 1331 | __ret; \ |
| 1332 | }) |
| 1333 | |
| 1334 | #define kvm_get_guest(kvm, gpa, v) \ |
| 1335 | ({ \ |
| 1336 | gpa_t __gpa = gpa; \ |
| 1337 | struct kvm *__kvm = kvm; \ |
| 1338 | \ |
| 1339 | __kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT, \ |
| 1340 | offset_in_page(__gpa), v); \ |
| 1341 | }) |
| 1342 | |
| 1343 | #define __kvm_put_guest(kvm, gfn, offset, v) \ |
| 1344 | ({ \ |
| 1345 | unsigned long __addr = gfn_to_hva(kvm, gfn); \ |
| 1346 | typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \ |
| 1347 | int __ret = -EFAULT; \ |
| 1348 | \ |
| 1349 | if (!kvm_is_error_hva(__addr)) \ |
| 1350 | __ret = put_user(v, __uaddr); \ |
| 1351 | if (!__ret) \ |
| 1352 | mark_page_dirty(kvm, gfn); \ |
| 1353 | __ret; \ |
| 1354 | }) |
| 1355 | |
| 1356 | #define kvm_put_guest(kvm, gpa, v) \ |
| 1357 | ({ \ |
| 1358 | gpa_t __gpa = gpa; \ |
| 1359 | struct kvm *__kvm = kvm; \ |
| 1360 | \ |
| 1361 | __kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT, \ |
| 1362 | offset_in_page(__gpa), v); \ |
| 1363 | }) |
| 1364 | |
| 1365 | int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len); |
| 1366 | bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn); |
| 1367 | bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn); |
| 1368 | unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn); |
| 1369 | void mark_page_dirty_in_slot(struct kvm *kvm, const struct kvm_memory_slot *memslot, gfn_t gfn); |
| 1370 | void mark_page_dirty(struct kvm *kvm, gfn_t gfn); |
| 1371 | |
| 1372 | int __kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map, |
| 1373 | bool writable); |
| 1374 | void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map); |
| 1375 | |
| 1376 | static inline int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, |
| 1377 | struct kvm_host_map *map) |
| 1378 | { |
| 1379 | return __kvm_vcpu_map(vcpu, gpa, map, writable: true); |
| 1380 | } |
| 1381 | |
| 1382 | static inline int kvm_vcpu_map_readonly(struct kvm_vcpu *vcpu, gpa_t gpa, |
| 1383 | struct kvm_host_map *map) |
| 1384 | { |
| 1385 | return __kvm_vcpu_map(vcpu, gpa, map, writable: false); |
| 1386 | } |
| 1387 | |
| 1388 | unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn); |
| 1389 | unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable); |
| 1390 | int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset, |
| 1391 | int len); |
| 1392 | int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, |
| 1393 | unsigned long len); |
| 1394 | int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, |
| 1395 | unsigned long len); |
| 1396 | int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data, |
| 1397 | int offset, int len); |
| 1398 | int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, |
| 1399 | unsigned long len); |
| 1400 | void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn); |
| 1401 | |
| 1402 | /** |
| 1403 | * kvm_gpc_init - initialize gfn_to_pfn_cache. |
| 1404 | * |
| 1405 | * @gpc: struct gfn_to_pfn_cache object. |
| 1406 | * @kvm: pointer to kvm instance. |
| 1407 | * |
| 1408 | * This sets up a gfn_to_pfn_cache by initializing locks and assigning the |
| 1409 | * immutable attributes. Note, the cache must be zero-allocated (or zeroed by |
| 1410 | * the caller before init). |
| 1411 | */ |
| 1412 | void kvm_gpc_init(struct gfn_to_pfn_cache *gpc, struct kvm *kvm); |
| 1413 | |
| 1414 | /** |
| 1415 | * kvm_gpc_activate - prepare a cached kernel mapping and HPA for a given guest |
| 1416 | * physical address. |
| 1417 | * |
| 1418 | * @gpc: struct gfn_to_pfn_cache object. |
| 1419 | * @gpa: guest physical address to map. |
| 1420 | * @len: sanity check; the range being access must fit a single page. |
| 1421 | * |
| 1422 | * @return: 0 for success. |
| 1423 | * -EINVAL for a mapping which would cross a page boundary. |
| 1424 | * -EFAULT for an untranslatable guest physical address. |
| 1425 | * |
| 1426 | * This primes a gfn_to_pfn_cache and links it into the @gpc->kvm's list for |
| 1427 | * invalidations to be processed. Callers are required to use kvm_gpc_check() |
| 1428 | * to ensure that the cache is valid before accessing the target page. |
| 1429 | */ |
| 1430 | int kvm_gpc_activate(struct gfn_to_pfn_cache *gpc, gpa_t gpa, unsigned long len); |
| 1431 | |
| 1432 | /** |
| 1433 | * kvm_gpc_activate_hva - prepare a cached kernel mapping and HPA for a given HVA. |
| 1434 | * |
| 1435 | * @gpc: struct gfn_to_pfn_cache object. |
| 1436 | * @hva: userspace virtual address to map. |
| 1437 | * @len: sanity check; the range being access must fit a single page. |
| 1438 | * |
| 1439 | * @return: 0 for success. |
| 1440 | * -EINVAL for a mapping which would cross a page boundary. |
| 1441 | * -EFAULT for an untranslatable guest physical address. |
| 1442 | * |
| 1443 | * The semantics of this function are the same as those of kvm_gpc_activate(). It |
| 1444 | * merely bypasses a layer of address translation. |
| 1445 | */ |
| 1446 | int kvm_gpc_activate_hva(struct gfn_to_pfn_cache *gpc, unsigned long hva, unsigned long len); |
| 1447 | |
| 1448 | /** |
| 1449 | * kvm_gpc_check - check validity of a gfn_to_pfn_cache. |
| 1450 | * |
| 1451 | * @gpc: struct gfn_to_pfn_cache object. |
| 1452 | * @len: sanity check; the range being access must fit a single page. |
| 1453 | * |
| 1454 | * @return: %true if the cache is still valid and the address matches. |
| 1455 | * %false if the cache is not valid. |
| 1456 | * |
| 1457 | * Callers outside IN_GUEST_MODE context should hold a read lock on @gpc->lock |
| 1458 | * while calling this function, and then continue to hold the lock until the |
| 1459 | * access is complete. |
| 1460 | * |
| 1461 | * Callers in IN_GUEST_MODE may do so without locking, although they should |
| 1462 | * still hold a read lock on kvm->scru for the memslot checks. |
| 1463 | */ |
| 1464 | bool kvm_gpc_check(struct gfn_to_pfn_cache *gpc, unsigned long len); |
| 1465 | |
| 1466 | /** |
| 1467 | * kvm_gpc_refresh - update a previously initialized cache. |
| 1468 | * |
| 1469 | * @gpc: struct gfn_to_pfn_cache object. |
| 1470 | * @len: sanity check; the range being access must fit a single page. |
| 1471 | * |
| 1472 | * @return: 0 for success. |
| 1473 | * -EINVAL for a mapping which would cross a page boundary. |
| 1474 | * -EFAULT for an untranslatable guest physical address. |
| 1475 | * |
| 1476 | * This will attempt to refresh a gfn_to_pfn_cache. Note that a successful |
| 1477 | * return from this function does not mean the page can be immediately |
| 1478 | * accessed because it may have raced with an invalidation. Callers must |
| 1479 | * still lock and check the cache status, as this function does not return |
| 1480 | * with the lock still held to permit access. |
| 1481 | */ |
| 1482 | int kvm_gpc_refresh(struct gfn_to_pfn_cache *gpc, unsigned long len); |
| 1483 | |
| 1484 | /** |
| 1485 | * kvm_gpc_deactivate - deactivate and unlink a gfn_to_pfn_cache. |
| 1486 | * |
| 1487 | * @gpc: struct gfn_to_pfn_cache object. |
| 1488 | * |
| 1489 | * This removes a cache from the VM's list to be processed on MMU notifier |
| 1490 | * invocation. |
| 1491 | */ |
| 1492 | void kvm_gpc_deactivate(struct gfn_to_pfn_cache *gpc); |
| 1493 | |
| 1494 | static inline bool kvm_gpc_is_gpa_active(struct gfn_to_pfn_cache *gpc) |
| 1495 | { |
| 1496 | return gpc->active && !kvm_is_error_gpa(gpa: gpc->gpa); |
| 1497 | } |
| 1498 | |
| 1499 | static inline bool kvm_gpc_is_hva_active(struct gfn_to_pfn_cache *gpc) |
| 1500 | { |
| 1501 | return gpc->active && kvm_is_error_gpa(gpa: gpc->gpa); |
| 1502 | } |
| 1503 | |
| 1504 | void kvm_sigset_activate(struct kvm_vcpu *vcpu); |
| 1505 | void kvm_sigset_deactivate(struct kvm_vcpu *vcpu); |
| 1506 | |
| 1507 | void kvm_vcpu_halt(struct kvm_vcpu *vcpu); |
| 1508 | bool kvm_vcpu_block(struct kvm_vcpu *vcpu); |
| 1509 | void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu); |
| 1510 | void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu); |
| 1511 | bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu); |
| 1512 | |
| 1513 | #ifndef CONFIG_S390 |
| 1514 | void __kvm_vcpu_kick(struct kvm_vcpu *vcpu, bool wait); |
| 1515 | |
| 1516 | static inline void kvm_vcpu_kick(struct kvm_vcpu *vcpu) |
| 1517 | { |
| 1518 | __kvm_vcpu_kick(vcpu, wait: false); |
| 1519 | } |
| 1520 | #endif |
| 1521 | |
| 1522 | int kvm_vcpu_yield_to(struct kvm_vcpu *target); |
| 1523 | void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool yield_to_kernel_mode); |
| 1524 | |
| 1525 | void kvm_flush_remote_tlbs(struct kvm *kvm); |
| 1526 | void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages); |
| 1527 | void kvm_flush_remote_tlbs_memslot(struct kvm *kvm, |
| 1528 | const struct kvm_memory_slot *memslot); |
| 1529 | |
| 1530 | #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE |
| 1531 | int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min); |
| 1532 | int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min); |
| 1533 | int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc); |
| 1534 | void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc); |
| 1535 | void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc); |
| 1536 | #endif |
| 1537 | |
| 1538 | void kvm_mmu_invalidate_begin(struct kvm *kvm); |
| 1539 | void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end); |
| 1540 | void kvm_mmu_invalidate_end(struct kvm *kvm); |
| 1541 | bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range); |
| 1542 | |
| 1543 | long kvm_arch_dev_ioctl(struct file *filp, |
| 1544 | unsigned int ioctl, unsigned long arg); |
| 1545 | long kvm_arch_vcpu_ioctl(struct file *filp, |
| 1546 | unsigned int ioctl, unsigned long arg); |
| 1547 | vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf); |
| 1548 | |
| 1549 | int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext); |
| 1550 | |
| 1551 | void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, |
| 1552 | struct kvm_memory_slot *slot, |
| 1553 | gfn_t gfn_offset, |
| 1554 | unsigned long mask); |
| 1555 | void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot); |
| 1556 | |
| 1557 | #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT |
| 1558 | int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log); |
| 1559 | int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, |
| 1560 | int *is_dirty, struct kvm_memory_slot **memslot); |
| 1561 | #endif |
| 1562 | |
| 1563 | int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, |
| 1564 | bool line_status); |
| 1565 | int kvm_vm_ioctl_enable_cap(struct kvm *kvm, |
| 1566 | struct kvm_enable_cap *cap); |
| 1567 | int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg); |
| 1568 | long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, |
| 1569 | unsigned long arg); |
| 1570 | |
| 1571 | int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); |
| 1572 | int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); |
| 1573 | |
| 1574 | int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, |
| 1575 | struct kvm_translation *tr); |
| 1576 | |
| 1577 | int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); |
| 1578 | int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); |
| 1579 | int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, |
| 1580 | struct kvm_sregs *sregs); |
| 1581 | int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, |
| 1582 | struct kvm_sregs *sregs); |
| 1583 | int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, |
| 1584 | struct kvm_mp_state *mp_state); |
| 1585 | int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, |
| 1586 | struct kvm_mp_state *mp_state); |
| 1587 | int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, |
| 1588 | struct kvm_guest_debug *dbg); |
| 1589 | int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu); |
| 1590 | |
| 1591 | void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu); |
| 1592 | void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu); |
| 1593 | int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id); |
| 1594 | int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu); |
| 1595 | void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu); |
| 1596 | void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu); |
| 1597 | |
| 1598 | #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER |
| 1599 | int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state); |
| 1600 | #endif |
| 1601 | |
| 1602 | #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS |
| 1603 | void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry); |
| 1604 | #else |
| 1605 | static inline void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) {} |
| 1606 | #endif |
| 1607 | |
| 1608 | #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING |
| 1609 | /* |
| 1610 | * kvm_arch_{enable,disable}_virtualization() are called on one CPU, under |
| 1611 | * kvm_usage_lock, immediately after/before 0=>1 and 1=>0 transitions of |
| 1612 | * kvm_usage_count, i.e. at the beginning of the generic hardware enabling |
| 1613 | * sequence, and at the end of the generic hardware disabling sequence. |
| 1614 | */ |
| 1615 | void kvm_arch_enable_virtualization(void); |
| 1616 | void kvm_arch_disable_virtualization(void); |
| 1617 | /* |
| 1618 | * kvm_arch_{enable,disable}_virtualization_cpu() are called on "every" CPU to |
| 1619 | * do the actual twiddling of hardware bits. The hooks are called on all |
| 1620 | * online CPUs when KVM enables/disabled virtualization, and on a single CPU |
| 1621 | * when that CPU is onlined/offlined (including for Resume/Suspend). |
| 1622 | */ |
| 1623 | int kvm_arch_enable_virtualization_cpu(void); |
| 1624 | void kvm_arch_disable_virtualization_cpu(void); |
| 1625 | #endif |
| 1626 | bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu); |
| 1627 | int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu); |
| 1628 | bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu); |
| 1629 | int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu); |
| 1630 | bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu); |
| 1631 | bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu); |
| 1632 | bool kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu); |
| 1633 | void kvm_arch_pre_destroy_vm(struct kvm *kvm); |
| 1634 | void kvm_arch_create_vm_debugfs(struct kvm *kvm); |
| 1635 | |
| 1636 | #ifndef __KVM_HAVE_ARCH_VM_ALLOC |
| 1637 | /* |
| 1638 | * All architectures that want to use vzalloc currently also |
| 1639 | * need their own kvm_arch_alloc_vm implementation. |
| 1640 | */ |
| 1641 | static inline struct kvm *kvm_arch_alloc_vm(void) |
| 1642 | { |
| 1643 | return kzalloc(sizeof(struct kvm), GFP_KERNEL_ACCOUNT); |
| 1644 | } |
| 1645 | #endif |
| 1646 | |
| 1647 | static inline void __kvm_arch_free_vm(struct kvm *kvm) |
| 1648 | { |
| 1649 | kvfree(addr: kvm); |
| 1650 | } |
| 1651 | |
| 1652 | #ifndef __KVM_HAVE_ARCH_VM_FREE |
| 1653 | static inline void kvm_arch_free_vm(struct kvm *kvm) |
| 1654 | { |
| 1655 | __kvm_arch_free_vm(kvm); |
| 1656 | } |
| 1657 | #endif |
| 1658 | |
| 1659 | #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS |
| 1660 | static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm) |
| 1661 | { |
| 1662 | return -ENOTSUPP; |
| 1663 | } |
| 1664 | #else |
| 1665 | int kvm_arch_flush_remote_tlbs(struct kvm *kvm); |
| 1666 | #endif |
| 1667 | |
| 1668 | #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE |
| 1669 | static inline int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, |
| 1670 | gfn_t gfn, u64 nr_pages) |
| 1671 | { |
| 1672 | return -EOPNOTSUPP; |
| 1673 | } |
| 1674 | #else |
| 1675 | int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages); |
| 1676 | #endif |
| 1677 | |
| 1678 | #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA |
| 1679 | void kvm_arch_register_noncoherent_dma(struct kvm *kvm); |
| 1680 | void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm); |
| 1681 | bool kvm_arch_has_noncoherent_dma(struct kvm *kvm); |
| 1682 | #else |
| 1683 | static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm) |
| 1684 | { |
| 1685 | } |
| 1686 | |
| 1687 | static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) |
| 1688 | { |
| 1689 | } |
| 1690 | |
| 1691 | static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) |
| 1692 | { |
| 1693 | return false; |
| 1694 | } |
| 1695 | #endif |
| 1696 | #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE |
| 1697 | void kvm_arch_start_assignment(struct kvm *kvm); |
| 1698 | void kvm_arch_end_assignment(struct kvm *kvm); |
| 1699 | bool kvm_arch_has_assigned_device(struct kvm *kvm); |
| 1700 | #else |
| 1701 | static inline void kvm_arch_start_assignment(struct kvm *kvm) |
| 1702 | { |
| 1703 | } |
| 1704 | |
| 1705 | static inline void kvm_arch_end_assignment(struct kvm *kvm) |
| 1706 | { |
| 1707 | } |
| 1708 | |
| 1709 | static __always_inline bool kvm_arch_has_assigned_device(struct kvm *kvm) |
| 1710 | { |
| 1711 | return false; |
| 1712 | } |
| 1713 | #endif |
| 1714 | |
| 1715 | static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu) |
| 1716 | { |
| 1717 | #ifdef __KVM_HAVE_ARCH_WQP |
| 1718 | return vcpu->arch.waitp; |
| 1719 | #else |
| 1720 | return &vcpu->wait; |
| 1721 | #endif |
| 1722 | } |
| 1723 | |
| 1724 | /* |
| 1725 | * Wake a vCPU if necessary, but don't do any stats/metadata updates. Returns |
| 1726 | * true if the vCPU was blocking and was awakened, false otherwise. |
| 1727 | */ |
| 1728 | static inline bool __kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) |
| 1729 | { |
| 1730 | return !!rcuwait_wake_up(w: kvm_arch_vcpu_get_wait(vcpu)); |
| 1731 | } |
| 1732 | |
| 1733 | static inline bool kvm_vcpu_is_blocking(struct kvm_vcpu *vcpu) |
| 1734 | { |
| 1735 | return rcuwait_active(w: kvm_arch_vcpu_get_wait(vcpu)); |
| 1736 | } |
| 1737 | |
| 1738 | #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED |
| 1739 | /* |
| 1740 | * returns true if the virtual interrupt controller is initialized and |
| 1741 | * ready to accept virtual IRQ. On some architectures the virtual interrupt |
| 1742 | * controller is dynamically instantiated and this is not always true. |
| 1743 | */ |
| 1744 | bool kvm_arch_intc_initialized(struct kvm *kvm); |
| 1745 | #else |
| 1746 | static inline bool kvm_arch_intc_initialized(struct kvm *kvm) |
| 1747 | { |
| 1748 | return true; |
| 1749 | } |
| 1750 | #endif |
| 1751 | |
| 1752 | #ifdef CONFIG_GUEST_PERF_EVENTS |
| 1753 | unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu); |
| 1754 | |
| 1755 | void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void)); |
| 1756 | void kvm_unregister_perf_callbacks(void); |
| 1757 | #else |
| 1758 | static inline void kvm_register_perf_callbacks(void *ign) {} |
| 1759 | static inline void kvm_unregister_perf_callbacks(void) {} |
| 1760 | #endif /* CONFIG_GUEST_PERF_EVENTS */ |
| 1761 | |
| 1762 | int kvm_arch_init_vm(struct kvm *kvm, unsigned long type); |
| 1763 | void kvm_arch_destroy_vm(struct kvm *kvm); |
| 1764 | |
| 1765 | int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu); |
| 1766 | |
| 1767 | struct kvm_irq_ack_notifier { |
| 1768 | struct hlist_node link; |
| 1769 | unsigned gsi; |
| 1770 | void (*irq_acked)(struct kvm_irq_ack_notifier *kian); |
| 1771 | }; |
| 1772 | |
| 1773 | int kvm_irq_map_gsi(struct kvm *kvm, |
| 1774 | struct kvm_kernel_irq_routing_entry *entries, int gsi); |
| 1775 | int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin); |
| 1776 | |
| 1777 | int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level, |
| 1778 | bool line_status); |
| 1779 | int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm, |
| 1780 | int irq_source_id, int level, bool line_status); |
| 1781 | int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e, |
| 1782 | struct kvm *kvm, int irq_source_id, |
| 1783 | int level, bool line_status); |
| 1784 | bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin); |
| 1785 | void kvm_notify_acked_gsi(struct kvm *kvm, int gsi); |
| 1786 | void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin); |
| 1787 | void kvm_register_irq_ack_notifier(struct kvm *kvm, |
| 1788 | struct kvm_irq_ack_notifier *kian); |
| 1789 | void kvm_unregister_irq_ack_notifier(struct kvm *kvm, |
| 1790 | struct kvm_irq_ack_notifier *kian); |
| 1791 | int kvm_request_irq_source_id(struct kvm *kvm); |
| 1792 | void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id); |
| 1793 | bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args); |
| 1794 | |
| 1795 | /* |
| 1796 | * Returns a pointer to the memslot if it contains gfn. |
| 1797 | * Otherwise returns NULL. |
| 1798 | */ |
| 1799 | static inline struct kvm_memory_slot * |
| 1800 | try_get_memslot(struct kvm_memory_slot *slot, gfn_t gfn) |
| 1801 | { |
| 1802 | if (!slot) |
| 1803 | return NULL; |
| 1804 | |
| 1805 | if (gfn >= slot->base_gfn && gfn < slot->base_gfn + slot->npages) |
| 1806 | return slot; |
| 1807 | else |
| 1808 | return NULL; |
| 1809 | } |
| 1810 | |
| 1811 | /* |
| 1812 | * Returns a pointer to the memslot that contains gfn. Otherwise returns NULL. |
| 1813 | * |
| 1814 | * With "approx" set returns the memslot also when the address falls |
| 1815 | * in a hole. In that case one of the memslots bordering the hole is |
| 1816 | * returned. |
| 1817 | */ |
| 1818 | static inline struct kvm_memory_slot * |
| 1819 | search_memslots(struct kvm_memslots *slots, gfn_t gfn, bool approx) |
| 1820 | { |
| 1821 | struct kvm_memory_slot *slot; |
| 1822 | struct rb_node *node; |
| 1823 | int idx = slots->node_idx; |
| 1824 | |
| 1825 | slot = NULL; |
| 1826 | for (node = slots->gfn_tree.rb_node; node; ) { |
| 1827 | slot = container_of(node, struct kvm_memory_slot, gfn_node[idx]); |
| 1828 | if (gfn >= slot->base_gfn) { |
| 1829 | if (gfn < slot->base_gfn + slot->npages) |
| 1830 | return slot; |
| 1831 | node = node->rb_right; |
| 1832 | } else |
| 1833 | node = node->rb_left; |
| 1834 | } |
| 1835 | |
| 1836 | return approx ? slot : NULL; |
| 1837 | } |
| 1838 | |
| 1839 | static inline struct kvm_memory_slot * |
| 1840 | ____gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn, bool approx) |
| 1841 | { |
| 1842 | struct kvm_memory_slot *slot; |
| 1843 | |
| 1844 | slot = (struct kvm_memory_slot *)atomic_long_read(v: &slots->last_used_slot); |
| 1845 | slot = try_get_memslot(slot, gfn); |
| 1846 | if (slot) |
| 1847 | return slot; |
| 1848 | |
| 1849 | slot = search_memslots(slots, gfn, approx); |
| 1850 | if (slot) { |
| 1851 | atomic_long_set(v: &slots->last_used_slot, i: (unsigned long)slot); |
| 1852 | return slot; |
| 1853 | } |
| 1854 | |
| 1855 | return NULL; |
| 1856 | } |
| 1857 | |
| 1858 | /* |
| 1859 | * __gfn_to_memslot() and its descendants are here to allow arch code to inline |
| 1860 | * the lookups in hot paths. gfn_to_memslot() itself isn't here as an inline |
| 1861 | * because that would bloat other code too much. |
| 1862 | */ |
| 1863 | static inline struct kvm_memory_slot * |
| 1864 | __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn) |
| 1865 | { |
| 1866 | return ____gfn_to_memslot(slots, gfn, approx: false); |
| 1867 | } |
| 1868 | |
| 1869 | static inline unsigned long |
| 1870 | __gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn) |
| 1871 | { |
| 1872 | /* |
| 1873 | * The index was checked originally in search_memslots. To avoid |
| 1874 | * that a malicious guest builds a Spectre gadget out of e.g. page |
| 1875 | * table walks, do not let the processor speculate loads outside |
| 1876 | * the guest's registered memslots. |
| 1877 | */ |
| 1878 | unsigned long offset = gfn - slot->base_gfn; |
| 1879 | offset = array_index_nospec(offset, slot->npages); |
| 1880 | return slot->userspace_addr + offset * PAGE_SIZE; |
| 1881 | } |
| 1882 | |
| 1883 | static inline int memslot_id(struct kvm *kvm, gfn_t gfn) |
| 1884 | { |
| 1885 | return gfn_to_memslot(kvm, gfn)->id; |
| 1886 | } |
| 1887 | |
| 1888 | static inline gfn_t |
| 1889 | hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot) |
| 1890 | { |
| 1891 | gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT; |
| 1892 | |
| 1893 | return slot->base_gfn + gfn_offset; |
| 1894 | } |
| 1895 | |
| 1896 | static inline gpa_t gfn_to_gpa(gfn_t gfn) |
| 1897 | { |
| 1898 | return (gpa_t)gfn << PAGE_SHIFT; |
| 1899 | } |
| 1900 | |
| 1901 | static inline gfn_t gpa_to_gfn(gpa_t gpa) |
| 1902 | { |
| 1903 | return (gfn_t)(gpa >> PAGE_SHIFT); |
| 1904 | } |
| 1905 | |
| 1906 | static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn) |
| 1907 | { |
| 1908 | return (hpa_t)pfn << PAGE_SHIFT; |
| 1909 | } |
| 1910 | |
| 1911 | static inline bool kvm_is_gpa_in_memslot(struct kvm *kvm, gpa_t gpa) |
| 1912 | { |
| 1913 | unsigned long hva = gfn_to_hva(kvm, gfn: gpa_to_gfn(gpa)); |
| 1914 | |
| 1915 | return !kvm_is_error_hva(addr: hva); |
| 1916 | } |
| 1917 | |
| 1918 | static inline void kvm_gpc_mark_dirty_in_slot(struct gfn_to_pfn_cache *gpc) |
| 1919 | { |
| 1920 | lockdep_assert_held(&gpc->lock); |
| 1921 | |
| 1922 | if (!gpc->memslot) |
| 1923 | return; |
| 1924 | |
| 1925 | mark_page_dirty_in_slot(kvm: gpc->kvm, memslot: gpc->memslot, gfn: gpa_to_gfn(gpa: gpc->gpa)); |
| 1926 | } |
| 1927 | |
| 1928 | enum kvm_stat_kind { |
| 1929 | KVM_STAT_VM, |
| 1930 | KVM_STAT_VCPU, |
| 1931 | }; |
| 1932 | |
| 1933 | struct kvm_stat_data { |
| 1934 | struct kvm *kvm; |
| 1935 | const struct _kvm_stats_desc *desc; |
| 1936 | enum kvm_stat_kind kind; |
| 1937 | }; |
| 1938 | |
| 1939 | struct _kvm_stats_desc { |
| 1940 | struct kvm_stats_desc desc; |
| 1941 | char name[KVM_STATS_NAME_SIZE]; |
| 1942 | }; |
| 1943 | |
| 1944 | #define STATS_DESC_COMMON(type, unit, base, exp, sz, bsz) \ |
| 1945 | .flags = type | unit | base | \ |
| 1946 | BUILD_BUG_ON_ZERO(type & ~KVM_STATS_TYPE_MASK) | \ |
| 1947 | BUILD_BUG_ON_ZERO(unit & ~KVM_STATS_UNIT_MASK) | \ |
| 1948 | BUILD_BUG_ON_ZERO(base & ~KVM_STATS_BASE_MASK), \ |
| 1949 | .exponent = exp, \ |
| 1950 | .size = sz, \ |
| 1951 | .bucket_size = bsz |
| 1952 | |
| 1953 | #define VM_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ |
| 1954 | { \ |
| 1955 | { \ |
| 1956 | STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ |
| 1957 | .offset = offsetof(struct kvm_vm_stat, generic.stat) \ |
| 1958 | }, \ |
| 1959 | .name = #stat, \ |
| 1960 | } |
| 1961 | #define VCPU_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ |
| 1962 | { \ |
| 1963 | { \ |
| 1964 | STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ |
| 1965 | .offset = offsetof(struct kvm_vcpu_stat, generic.stat) \ |
| 1966 | }, \ |
| 1967 | .name = #stat, \ |
| 1968 | } |
| 1969 | #define VM_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ |
| 1970 | { \ |
| 1971 | { \ |
| 1972 | STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ |
| 1973 | .offset = offsetof(struct kvm_vm_stat, stat) \ |
| 1974 | }, \ |
| 1975 | .name = #stat, \ |
| 1976 | } |
| 1977 | #define VCPU_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ |
| 1978 | { \ |
| 1979 | { \ |
| 1980 | STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ |
| 1981 | .offset = offsetof(struct kvm_vcpu_stat, stat) \ |
| 1982 | }, \ |
| 1983 | .name = #stat, \ |
| 1984 | } |
| 1985 | /* SCOPE: VM, VM_GENERIC, VCPU, VCPU_GENERIC */ |
| 1986 | #define STATS_DESC(SCOPE, stat, type, unit, base, exp, sz, bsz) \ |
| 1987 | SCOPE##_STATS_DESC(stat, type, unit, base, exp, sz, bsz) |
| 1988 | |
| 1989 | #define STATS_DESC_CUMULATIVE(SCOPE, name, unit, base, exponent) \ |
| 1990 | STATS_DESC(SCOPE, name, KVM_STATS_TYPE_CUMULATIVE, \ |
| 1991 | unit, base, exponent, 1, 0) |
| 1992 | #define STATS_DESC_INSTANT(SCOPE, name, unit, base, exponent) \ |
| 1993 | STATS_DESC(SCOPE, name, KVM_STATS_TYPE_INSTANT, \ |
| 1994 | unit, base, exponent, 1, 0) |
| 1995 | #define STATS_DESC_PEAK(SCOPE, name, unit, base, exponent) \ |
| 1996 | STATS_DESC(SCOPE, name, KVM_STATS_TYPE_PEAK, \ |
| 1997 | unit, base, exponent, 1, 0) |
| 1998 | #define STATS_DESC_LINEAR_HIST(SCOPE, name, unit, base, exponent, sz, bsz) \ |
| 1999 | STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LINEAR_HIST, \ |
| 2000 | unit, base, exponent, sz, bsz) |
| 2001 | #define STATS_DESC_LOG_HIST(SCOPE, name, unit, base, exponent, sz) \ |
| 2002 | STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LOG_HIST, \ |
| 2003 | unit, base, exponent, sz, 0) |
| 2004 | |
| 2005 | /* Cumulative counter, read/write */ |
| 2006 | #define STATS_DESC_COUNTER(SCOPE, name) \ |
| 2007 | STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_NONE, \ |
| 2008 | KVM_STATS_BASE_POW10, 0) |
| 2009 | /* Instantaneous counter, read only */ |
| 2010 | #define STATS_DESC_ICOUNTER(SCOPE, name) \ |
| 2011 | STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_NONE, \ |
| 2012 | KVM_STATS_BASE_POW10, 0) |
| 2013 | /* Peak counter, read/write */ |
| 2014 | #define STATS_DESC_PCOUNTER(SCOPE, name) \ |
| 2015 | STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_NONE, \ |
| 2016 | KVM_STATS_BASE_POW10, 0) |
| 2017 | |
| 2018 | /* Instantaneous boolean value, read only */ |
| 2019 | #define STATS_DESC_IBOOLEAN(SCOPE, name) \ |
| 2020 | STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_BOOLEAN, \ |
| 2021 | KVM_STATS_BASE_POW10, 0) |
| 2022 | /* Peak (sticky) boolean value, read/write */ |
| 2023 | #define STATS_DESC_PBOOLEAN(SCOPE, name) \ |
| 2024 | STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_BOOLEAN, \ |
| 2025 | KVM_STATS_BASE_POW10, 0) |
| 2026 | |
| 2027 | /* Cumulative time in nanosecond */ |
| 2028 | #define STATS_DESC_TIME_NSEC(SCOPE, name) \ |
| 2029 | STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ |
| 2030 | KVM_STATS_BASE_POW10, -9) |
| 2031 | /* Linear histogram for time in nanosecond */ |
| 2032 | #define STATS_DESC_LINHIST_TIME_NSEC(SCOPE, name, sz, bsz) \ |
| 2033 | STATS_DESC_LINEAR_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ |
| 2034 | KVM_STATS_BASE_POW10, -9, sz, bsz) |
| 2035 | /* Logarithmic histogram for time in nanosecond */ |
| 2036 | #define STATS_DESC_LOGHIST_TIME_NSEC(SCOPE, name, sz) \ |
| 2037 | STATS_DESC_LOG_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ |
| 2038 | KVM_STATS_BASE_POW10, -9, sz) |
| 2039 | |
| 2040 | #define KVM_GENERIC_VM_STATS() \ |
| 2041 | STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush), \ |
| 2042 | STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush_requests) |
| 2043 | |
| 2044 | #define KVM_GENERIC_VCPU_STATS() \ |
| 2045 | STATS_DESC_COUNTER(VCPU_GENERIC, halt_successful_poll), \ |
| 2046 | STATS_DESC_COUNTER(VCPU_GENERIC, halt_attempted_poll), \ |
| 2047 | STATS_DESC_COUNTER(VCPU_GENERIC, halt_poll_invalid), \ |
| 2048 | STATS_DESC_COUNTER(VCPU_GENERIC, halt_wakeup), \ |
| 2049 | STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_success_ns), \ |
| 2050 | STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_ns), \ |
| 2051 | STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_wait_ns), \ |
| 2052 | STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_success_hist, \ |
| 2053 | HALT_POLL_HIST_COUNT), \ |
| 2054 | STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_hist, \ |
| 2055 | HALT_POLL_HIST_COUNT), \ |
| 2056 | STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_wait_hist, \ |
| 2057 | HALT_POLL_HIST_COUNT), \ |
| 2058 | STATS_DESC_IBOOLEAN(VCPU_GENERIC, blocking) |
| 2059 | |
| 2060 | ssize_t kvm_stats_read(char *id, const struct kvm_stats_header *, |
| 2061 | const struct _kvm_stats_desc *desc, |
| 2062 | void *stats, size_t size_stats, |
| 2063 | char __user *user_buffer, size_t size, loff_t *offset); |
| 2064 | |
| 2065 | /** |
| 2066 | * kvm_stats_linear_hist_update() - Update bucket value for linear histogram |
| 2067 | * statistics data. |
| 2068 | * |
| 2069 | * @data: start address of the stats data |
| 2070 | * @size: the number of bucket of the stats data |
| 2071 | * @value: the new value used to update the linear histogram's bucket |
| 2072 | * @bucket_size: the size (width) of a bucket |
| 2073 | */ |
| 2074 | static inline void kvm_stats_linear_hist_update(u64 *data, size_t size, |
| 2075 | u64 value, size_t bucket_size) |
| 2076 | { |
| 2077 | size_t index = div64_u64(dividend: value, divisor: bucket_size); |
| 2078 | |
| 2079 | index = min(index, size - 1); |
| 2080 | ++data[index]; |
| 2081 | } |
| 2082 | |
| 2083 | /** |
| 2084 | * kvm_stats_log_hist_update() - Update bucket value for logarithmic histogram |
| 2085 | * statistics data. |
| 2086 | * |
| 2087 | * @data: start address of the stats data |
| 2088 | * @size: the number of bucket of the stats data |
| 2089 | * @value: the new value used to update the logarithmic histogram's bucket |
| 2090 | */ |
| 2091 | static inline void kvm_stats_log_hist_update(u64 *data, size_t size, u64 value) |
| 2092 | { |
| 2093 | size_t index = fls64(x: value); |
| 2094 | |
| 2095 | index = min(index, size - 1); |
| 2096 | ++data[index]; |
| 2097 | } |
| 2098 | |
| 2099 | #define KVM_STATS_LINEAR_HIST_UPDATE(array, value, bsize) \ |
| 2100 | kvm_stats_linear_hist_update(array, ARRAY_SIZE(array), value, bsize) |
| 2101 | #define KVM_STATS_LOG_HIST_UPDATE(array, value) \ |
| 2102 | kvm_stats_log_hist_update(array, ARRAY_SIZE(array), value) |
| 2103 | |
| 2104 | |
| 2105 | extern const struct kvm_stats_header ; |
| 2106 | extern const struct _kvm_stats_desc kvm_vm_stats_desc[]; |
| 2107 | extern const struct kvm_stats_header ; |
| 2108 | extern const struct _kvm_stats_desc kvm_vcpu_stats_desc[]; |
| 2109 | |
| 2110 | #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER |
| 2111 | static inline int mmu_invalidate_retry(struct kvm *kvm, unsigned long mmu_seq) |
| 2112 | { |
| 2113 | if (unlikely(kvm->mmu_invalidate_in_progress)) |
| 2114 | return 1; |
| 2115 | /* |
| 2116 | * Ensure the read of mmu_invalidate_in_progress happens before |
| 2117 | * the read of mmu_invalidate_seq. This interacts with the |
| 2118 | * smp_wmb() in mmu_notifier_invalidate_range_end to make sure |
| 2119 | * that the caller either sees the old (non-zero) value of |
| 2120 | * mmu_invalidate_in_progress or the new (incremented) value of |
| 2121 | * mmu_invalidate_seq. |
| 2122 | * |
| 2123 | * PowerPC Book3s HV KVM calls this under a per-page lock rather |
| 2124 | * than under kvm->mmu_lock, for scalability, so can't rely on |
| 2125 | * kvm->mmu_lock to keep things ordered. |
| 2126 | */ |
| 2127 | smp_rmb(); |
| 2128 | if (kvm->mmu_invalidate_seq != mmu_seq) |
| 2129 | return 1; |
| 2130 | return 0; |
| 2131 | } |
| 2132 | |
| 2133 | static inline int mmu_invalidate_retry_gfn(struct kvm *kvm, |
| 2134 | unsigned long mmu_seq, |
| 2135 | gfn_t gfn) |
| 2136 | { |
| 2137 | lockdep_assert_held(&kvm->mmu_lock); |
| 2138 | /* |
| 2139 | * If mmu_invalidate_in_progress is non-zero, then the range maintained |
| 2140 | * by kvm_mmu_notifier_invalidate_range_start contains all addresses |
| 2141 | * that might be being invalidated. Note that it may include some false |
| 2142 | * positives, due to shortcuts when handing concurrent invalidations. |
| 2143 | */ |
| 2144 | if (unlikely(kvm->mmu_invalidate_in_progress)) { |
| 2145 | /* |
| 2146 | * Dropping mmu_lock after bumping mmu_invalidate_in_progress |
| 2147 | * but before updating the range is a KVM bug. |
| 2148 | */ |
| 2149 | if (WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA || |
| 2150 | kvm->mmu_invalidate_range_end == INVALID_GPA)) |
| 2151 | return 1; |
| 2152 | |
| 2153 | if (gfn >= kvm->mmu_invalidate_range_start && |
| 2154 | gfn < kvm->mmu_invalidate_range_end) |
| 2155 | return 1; |
| 2156 | } |
| 2157 | |
| 2158 | if (kvm->mmu_invalidate_seq != mmu_seq) |
| 2159 | return 1; |
| 2160 | return 0; |
| 2161 | } |
| 2162 | |
| 2163 | /* |
| 2164 | * This lockless version of the range-based retry check *must* be paired with a |
| 2165 | * call to the locked version after acquiring mmu_lock, i.e. this is safe to |
| 2166 | * use only as a pre-check to avoid contending mmu_lock. This version *will* |
| 2167 | * get false negatives and false positives. |
| 2168 | */ |
| 2169 | static inline bool mmu_invalidate_retry_gfn_unsafe(struct kvm *kvm, |
| 2170 | unsigned long mmu_seq, |
| 2171 | gfn_t gfn) |
| 2172 | { |
| 2173 | /* |
| 2174 | * Use READ_ONCE() to ensure the in-progress flag and sequence counter |
| 2175 | * are always read from memory, e.g. so that checking for retry in a |
| 2176 | * loop won't result in an infinite retry loop. Don't force loads for |
| 2177 | * start+end, as the key to avoiding infinite retry loops is observing |
| 2178 | * the 1=>0 transition of in-progress, i.e. getting false negatives |
| 2179 | * due to stale start+end values is acceptable. |
| 2180 | */ |
| 2181 | if (unlikely(READ_ONCE(kvm->mmu_invalidate_in_progress)) && |
| 2182 | gfn >= kvm->mmu_invalidate_range_start && |
| 2183 | gfn < kvm->mmu_invalidate_range_end) |
| 2184 | return true; |
| 2185 | |
| 2186 | return READ_ONCE(kvm->mmu_invalidate_seq) != mmu_seq; |
| 2187 | } |
| 2188 | #endif |
| 2189 | |
| 2190 | #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING |
| 2191 | |
| 2192 | #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */ |
| 2193 | |
| 2194 | bool kvm_arch_can_set_irq_routing(struct kvm *kvm); |
| 2195 | int kvm_set_irq_routing(struct kvm *kvm, |
| 2196 | const struct kvm_irq_routing_entry *entries, |
| 2197 | unsigned nr, |
| 2198 | unsigned flags); |
| 2199 | int kvm_init_irq_routing(struct kvm *kvm); |
| 2200 | int kvm_set_routing_entry(struct kvm *kvm, |
| 2201 | struct kvm_kernel_irq_routing_entry *e, |
| 2202 | const struct kvm_irq_routing_entry *ue); |
| 2203 | void kvm_free_irq_routing(struct kvm *kvm); |
| 2204 | |
| 2205 | #else |
| 2206 | |
| 2207 | static inline void kvm_free_irq_routing(struct kvm *kvm) {} |
| 2208 | |
| 2209 | static inline int kvm_init_irq_routing(struct kvm *kvm) |
| 2210 | { |
| 2211 | return 0; |
| 2212 | } |
| 2213 | |
| 2214 | #endif |
| 2215 | |
| 2216 | int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi); |
| 2217 | |
| 2218 | void kvm_eventfd_init(struct kvm *kvm); |
| 2219 | int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args); |
| 2220 | |
| 2221 | #ifdef CONFIG_HAVE_KVM_IRQCHIP |
| 2222 | int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args); |
| 2223 | void kvm_irqfd_release(struct kvm *kvm); |
| 2224 | bool kvm_notify_irqfd_resampler(struct kvm *kvm, |
| 2225 | unsigned int irqchip, |
| 2226 | unsigned int pin); |
| 2227 | void kvm_irq_routing_update(struct kvm *); |
| 2228 | #else |
| 2229 | static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) |
| 2230 | { |
| 2231 | return -EINVAL; |
| 2232 | } |
| 2233 | |
| 2234 | static inline void kvm_irqfd_release(struct kvm *kvm) {} |
| 2235 | |
| 2236 | static inline bool kvm_notify_irqfd_resampler(struct kvm *kvm, |
| 2237 | unsigned int irqchip, |
| 2238 | unsigned int pin) |
| 2239 | { |
| 2240 | return false; |
| 2241 | } |
| 2242 | #endif /* CONFIG_HAVE_KVM_IRQCHIP */ |
| 2243 | |
| 2244 | void kvm_arch_irq_routing_update(struct kvm *kvm); |
| 2245 | |
| 2246 | static inline void __kvm_make_request(int req, struct kvm_vcpu *vcpu) |
| 2247 | { |
| 2248 | /* |
| 2249 | * Ensure the rest of the request is published to kvm_check_request's |
| 2250 | * caller. Paired with the smp_mb__after_atomic in kvm_check_request. |
| 2251 | */ |
| 2252 | smp_wmb(); |
| 2253 | set_bit(nr: req & KVM_REQUEST_MASK, addr: (void *)&vcpu->requests); |
| 2254 | } |
| 2255 | |
| 2256 | static __always_inline void kvm_make_request(int req, struct kvm_vcpu *vcpu) |
| 2257 | { |
| 2258 | /* |
| 2259 | * Request that don't require vCPU action should never be logged in |
| 2260 | * vcpu->requests. The vCPU won't clear the request, so it will stay |
| 2261 | * logged indefinitely and prevent the vCPU from entering the guest. |
| 2262 | */ |
| 2263 | BUILD_BUG_ON(!__builtin_constant_p(req) || |
| 2264 | (req & KVM_REQUEST_NO_ACTION)); |
| 2265 | |
| 2266 | __kvm_make_request(req, vcpu); |
| 2267 | } |
| 2268 | |
| 2269 | #ifndef CONFIG_S390 |
| 2270 | static inline void kvm_make_request_and_kick(int req, struct kvm_vcpu *vcpu) |
| 2271 | { |
| 2272 | kvm_make_request(req, vcpu); |
| 2273 | __kvm_vcpu_kick(vcpu, wait: req & KVM_REQUEST_WAIT); |
| 2274 | } |
| 2275 | #endif |
| 2276 | |
| 2277 | static inline bool kvm_request_pending(struct kvm_vcpu *vcpu) |
| 2278 | { |
| 2279 | return READ_ONCE(vcpu->requests); |
| 2280 | } |
| 2281 | |
| 2282 | static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu) |
| 2283 | { |
| 2284 | return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); |
| 2285 | } |
| 2286 | |
| 2287 | static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu) |
| 2288 | { |
| 2289 | clear_bit(nr: req & KVM_REQUEST_MASK, addr: (void *)&vcpu->requests); |
| 2290 | } |
| 2291 | |
| 2292 | static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu) |
| 2293 | { |
| 2294 | if (kvm_test_request(req, vcpu)) { |
| 2295 | kvm_clear_request(req, vcpu); |
| 2296 | |
| 2297 | /* |
| 2298 | * Ensure the rest of the request is visible to kvm_check_request's |
| 2299 | * caller. Paired with the smp_wmb in kvm_make_request. |
| 2300 | */ |
| 2301 | smp_mb__after_atomic(); |
| 2302 | return true; |
| 2303 | } else { |
| 2304 | return false; |
| 2305 | } |
| 2306 | } |
| 2307 | |
| 2308 | #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING |
| 2309 | extern bool enable_virt_at_load; |
| 2310 | extern bool kvm_rebooting; |
| 2311 | #endif |
| 2312 | |
| 2313 | extern unsigned int halt_poll_ns; |
| 2314 | extern unsigned int halt_poll_ns_grow; |
| 2315 | extern unsigned int halt_poll_ns_grow_start; |
| 2316 | extern unsigned int halt_poll_ns_shrink; |
| 2317 | |
| 2318 | struct kvm_device { |
| 2319 | const struct kvm_device_ops *ops; |
| 2320 | struct kvm *kvm; |
| 2321 | void *private; |
| 2322 | struct list_head vm_node; |
| 2323 | }; |
| 2324 | |
| 2325 | /* create, destroy, and name are mandatory */ |
| 2326 | struct kvm_device_ops { |
| 2327 | const char *name; |
| 2328 | |
| 2329 | /* |
| 2330 | * create is called holding kvm->lock and any operations not suitable |
| 2331 | * to do while holding the lock should be deferred to init (see |
| 2332 | * below). |
| 2333 | */ |
| 2334 | int (*create)(struct kvm_device *dev, u32 type); |
| 2335 | |
| 2336 | /* |
| 2337 | * init is called after create if create is successful and is called |
| 2338 | * outside of holding kvm->lock. |
| 2339 | */ |
| 2340 | void (*init)(struct kvm_device *dev); |
| 2341 | |
| 2342 | /* |
| 2343 | * Destroy is responsible for freeing dev. |
| 2344 | * |
| 2345 | * Destroy may be called before or after destructors are called |
| 2346 | * on emulated I/O regions, depending on whether a reference is |
| 2347 | * held by a vcpu or other kvm component that gets destroyed |
| 2348 | * after the emulated I/O. |
| 2349 | */ |
| 2350 | void (*destroy)(struct kvm_device *dev); |
| 2351 | |
| 2352 | /* |
| 2353 | * Release is an alternative method to free the device. It is |
| 2354 | * called when the device file descriptor is closed. Once |
| 2355 | * release is called, the destroy method will not be called |
| 2356 | * anymore as the device is removed from the device list of |
| 2357 | * the VM. kvm->lock is held. |
| 2358 | */ |
| 2359 | void (*release)(struct kvm_device *dev); |
| 2360 | |
| 2361 | int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); |
| 2362 | int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); |
| 2363 | int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); |
| 2364 | long (*ioctl)(struct kvm_device *dev, unsigned int ioctl, |
| 2365 | unsigned long arg); |
| 2366 | int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma); |
| 2367 | }; |
| 2368 | |
| 2369 | struct kvm_device *kvm_device_from_filp(struct file *filp); |
| 2370 | int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type); |
| 2371 | void kvm_unregister_device_ops(u32 type); |
| 2372 | |
| 2373 | extern struct kvm_device_ops kvm_mpic_ops; |
| 2374 | extern struct kvm_device_ops kvm_arm_vgic_v2_ops; |
| 2375 | extern struct kvm_device_ops kvm_arm_vgic_v3_ops; |
| 2376 | |
| 2377 | #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT |
| 2378 | |
| 2379 | static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) |
| 2380 | { |
| 2381 | vcpu->spin_loop.in_spin_loop = val; |
| 2382 | } |
| 2383 | static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) |
| 2384 | { |
| 2385 | vcpu->spin_loop.dy_eligible = val; |
| 2386 | } |
| 2387 | |
| 2388 | #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ |
| 2389 | |
| 2390 | static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) |
| 2391 | { |
| 2392 | } |
| 2393 | |
| 2394 | static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) |
| 2395 | { |
| 2396 | } |
| 2397 | #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ |
| 2398 | |
| 2399 | static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot) |
| 2400 | { |
| 2401 | return (memslot && memslot->id < KVM_USER_MEM_SLOTS && |
| 2402 | !(memslot->flags & KVM_MEMSLOT_INVALID)); |
| 2403 | } |
| 2404 | |
| 2405 | struct kvm_vcpu *kvm_get_running_vcpu(void); |
| 2406 | struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void); |
| 2407 | |
| 2408 | #if IS_ENABLED(CONFIG_HAVE_KVM_IRQ_BYPASS) |
| 2409 | bool kvm_arch_has_irq_bypass(void); |
| 2410 | int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *, |
| 2411 | struct irq_bypass_producer *); |
| 2412 | void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *, |
| 2413 | struct irq_bypass_producer *); |
| 2414 | void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *); |
| 2415 | void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *); |
| 2416 | int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, |
| 2417 | uint32_t guest_irq, bool set); |
| 2418 | bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *, |
| 2419 | struct kvm_kernel_irq_routing_entry *); |
| 2420 | #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */ |
| 2421 | |
| 2422 | #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS |
| 2423 | /* If we wakeup during the poll time, was it a sucessful poll? */ |
| 2424 | static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) |
| 2425 | { |
| 2426 | return vcpu->valid_wakeup; |
| 2427 | } |
| 2428 | |
| 2429 | #else |
| 2430 | static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) |
| 2431 | { |
| 2432 | return true; |
| 2433 | } |
| 2434 | #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */ |
| 2435 | |
| 2436 | #ifdef CONFIG_HAVE_KVM_NO_POLL |
| 2437 | /* Callback that tells if we must not poll */ |
| 2438 | bool kvm_arch_no_poll(struct kvm_vcpu *vcpu); |
| 2439 | #else |
| 2440 | static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) |
| 2441 | { |
| 2442 | return false; |
| 2443 | } |
| 2444 | #endif /* CONFIG_HAVE_KVM_NO_POLL */ |
| 2445 | |
| 2446 | #ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL |
| 2447 | long kvm_arch_vcpu_async_ioctl(struct file *filp, |
| 2448 | unsigned int ioctl, unsigned long arg); |
| 2449 | #else |
| 2450 | static inline long kvm_arch_vcpu_async_ioctl(struct file *filp, |
| 2451 | unsigned int ioctl, |
| 2452 | unsigned long arg) |
| 2453 | { |
| 2454 | return -ENOIOCTLCMD; |
| 2455 | } |
| 2456 | #endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */ |
| 2457 | |
| 2458 | void kvm_arch_guest_memory_reclaimed(struct kvm *kvm); |
| 2459 | |
| 2460 | #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE |
| 2461 | int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu); |
| 2462 | #else |
| 2463 | static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu) |
| 2464 | { |
| 2465 | return 0; |
| 2466 | } |
| 2467 | #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */ |
| 2468 | |
| 2469 | #ifdef CONFIG_KVM_XFER_TO_GUEST_WORK |
| 2470 | static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu) |
| 2471 | { |
| 2472 | vcpu->run->exit_reason = KVM_EXIT_INTR; |
| 2473 | vcpu->stat.signal_exits++; |
| 2474 | } |
| 2475 | #endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */ |
| 2476 | |
| 2477 | /* |
| 2478 | * If more than one page is being (un)accounted, @virt must be the address of |
| 2479 | * the first page of a block of pages what were allocated together (i.e |
| 2480 | * accounted together). |
| 2481 | * |
| 2482 | * kvm_account_pgtable_pages() is thread-safe because mod_lruvec_page_state() |
| 2483 | * is thread-safe. |
| 2484 | */ |
| 2485 | static inline void kvm_account_pgtable_pages(void *virt, int nr) |
| 2486 | { |
| 2487 | mod_lruvec_page_state(virt_to_page(virt), idx: NR_SECONDARY_PAGETABLE, val: nr); |
| 2488 | } |
| 2489 | |
| 2490 | /* |
| 2491 | * This defines how many reserved entries we want to keep before we |
| 2492 | * kick the vcpu to the userspace to avoid dirty ring full. This |
| 2493 | * value can be tuned to higher if e.g. PML is enabled on the host. |
| 2494 | */ |
| 2495 | #define KVM_DIRTY_RING_RSVD_ENTRIES 64 |
| 2496 | |
| 2497 | /* Max number of entries allowed for each kvm dirty ring */ |
| 2498 | #define KVM_DIRTY_RING_MAX_ENTRIES 65536 |
| 2499 | |
| 2500 | static inline void kvm_prepare_memory_fault_exit(struct kvm_vcpu *vcpu, |
| 2501 | gpa_t gpa, gpa_t size, |
| 2502 | bool is_write, bool is_exec, |
| 2503 | bool is_private) |
| 2504 | { |
| 2505 | vcpu->run->exit_reason = KVM_EXIT_MEMORY_FAULT; |
| 2506 | vcpu->run->memory_fault.gpa = gpa; |
| 2507 | vcpu->run->memory_fault.size = size; |
| 2508 | |
| 2509 | /* RWX flags are not (yet) defined or communicated to userspace. */ |
| 2510 | vcpu->run->memory_fault.flags = 0; |
| 2511 | if (is_private) |
| 2512 | vcpu->run->memory_fault.flags |= KVM_MEMORY_EXIT_FLAG_PRIVATE; |
| 2513 | } |
| 2514 | |
| 2515 | #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES |
| 2516 | static inline unsigned long kvm_get_memory_attributes(struct kvm *kvm, gfn_t gfn) |
| 2517 | { |
| 2518 | return xa_to_value(entry: xa_load(&kvm->mem_attr_array, index: gfn)); |
| 2519 | } |
| 2520 | |
| 2521 | bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end, |
| 2522 | unsigned long mask, unsigned long attrs); |
| 2523 | bool kvm_arch_pre_set_memory_attributes(struct kvm *kvm, |
| 2524 | struct kvm_gfn_range *range); |
| 2525 | bool kvm_arch_post_set_memory_attributes(struct kvm *kvm, |
| 2526 | struct kvm_gfn_range *range); |
| 2527 | |
| 2528 | static inline bool kvm_mem_is_private(struct kvm *kvm, gfn_t gfn) |
| 2529 | { |
| 2530 | return IS_ENABLED(CONFIG_KVM_PRIVATE_MEM) && |
| 2531 | kvm_get_memory_attributes(kvm, gfn) & KVM_MEMORY_ATTRIBUTE_PRIVATE; |
| 2532 | } |
| 2533 | #else |
| 2534 | static inline bool kvm_mem_is_private(struct kvm *kvm, gfn_t gfn) |
| 2535 | { |
| 2536 | return false; |
| 2537 | } |
| 2538 | #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */ |
| 2539 | |
| 2540 | #ifdef CONFIG_KVM_PRIVATE_MEM |
| 2541 | int kvm_gmem_get_pfn(struct kvm *kvm, struct kvm_memory_slot *slot, |
| 2542 | gfn_t gfn, kvm_pfn_t *pfn, struct page **page, |
| 2543 | int *max_order); |
| 2544 | #else |
| 2545 | static inline int kvm_gmem_get_pfn(struct kvm *kvm, |
| 2546 | struct kvm_memory_slot *slot, gfn_t gfn, |
| 2547 | kvm_pfn_t *pfn, struct page **page, |
| 2548 | int *max_order) |
| 2549 | { |
| 2550 | KVM_BUG_ON(1, kvm); |
| 2551 | return -EIO; |
| 2552 | } |
| 2553 | #endif /* CONFIG_KVM_PRIVATE_MEM */ |
| 2554 | |
| 2555 | #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_PREPARE |
| 2556 | int kvm_arch_gmem_prepare(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, int max_order); |
| 2557 | #endif |
| 2558 | |
| 2559 | #ifdef CONFIG_KVM_GENERIC_PRIVATE_MEM |
| 2560 | /** |
| 2561 | * kvm_gmem_populate() - Populate/prepare a GPA range with guest data |
| 2562 | * |
| 2563 | * @kvm: KVM instance |
| 2564 | * @gfn: starting GFN to be populated |
| 2565 | * @src: userspace-provided buffer containing data to copy into GFN range |
| 2566 | * (passed to @post_populate, and incremented on each iteration |
| 2567 | * if not NULL) |
| 2568 | * @npages: number of pages to copy from userspace-buffer |
| 2569 | * @post_populate: callback to issue for each gmem page that backs the GPA |
| 2570 | * range |
| 2571 | * @opaque: opaque data to pass to @post_populate callback |
| 2572 | * |
| 2573 | * This is primarily intended for cases where a gmem-backed GPA range needs |
| 2574 | * to be initialized with userspace-provided data prior to being mapped into |
| 2575 | * the guest as a private page. This should be called with the slots->lock |
| 2576 | * held so that caller-enforced invariants regarding the expected memory |
| 2577 | * attributes of the GPA range do not race with KVM_SET_MEMORY_ATTRIBUTES. |
| 2578 | * |
| 2579 | * Returns the number of pages that were populated. |
| 2580 | */ |
| 2581 | typedef int (*kvm_gmem_populate_cb)(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, |
| 2582 | void __user *src, int order, void *opaque); |
| 2583 | |
| 2584 | long kvm_gmem_populate(struct kvm *kvm, gfn_t gfn, void __user *src, long npages, |
| 2585 | kvm_gmem_populate_cb post_populate, void *opaque); |
| 2586 | #endif |
| 2587 | |
| 2588 | #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_INVALIDATE |
| 2589 | void kvm_arch_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end); |
| 2590 | #endif |
| 2591 | |
| 2592 | #ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY |
| 2593 | long kvm_arch_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu, |
| 2594 | struct kvm_pre_fault_memory *range); |
| 2595 | #endif |
| 2596 | |
| 2597 | #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING |
| 2598 | int kvm_enable_virtualization(void); |
| 2599 | void kvm_disable_virtualization(void); |
| 2600 | #else |
| 2601 | static inline int kvm_enable_virtualization(void) { return 0; } |
| 2602 | static inline void kvm_disable_virtualization(void) { } |
| 2603 | #endif |
| 2604 | |
| 2605 | #endif |
| 2606 | |