| 1 | /* SPDX-License-Identifier: GPL-2.0 */ |
| 2 | #ifndef __LINUX_COMPILER_H |
| 3 | #define __LINUX_COMPILER_H |
| 4 | |
| 5 | #include <linux/compiler_types.h> |
| 6 | |
| 7 | #ifndef __ASSEMBLY__ |
| 8 | |
| 9 | #ifdef __KERNEL__ |
| 10 | |
| 11 | /* |
| 12 | * Note: DISABLE_BRANCH_PROFILING can be used by special lowlevel code |
| 13 | * to disable branch tracing on a per file basis. |
| 14 | */ |
| 15 | void ftrace_likely_update(struct ftrace_likely_data *f, int val, |
| 16 | int expect, int is_constant); |
| 17 | #if defined(CONFIG_TRACE_BRANCH_PROFILING) \ |
| 18 | && !defined(DISABLE_BRANCH_PROFILING) && !defined(__CHECKER__) |
| 19 | #define likely_notrace(x) __builtin_expect(!!(x), 1) |
| 20 | #define unlikely_notrace(x) __builtin_expect(!!(x), 0) |
| 21 | |
| 22 | #define __branch_check__(x, expect, is_constant) ({ \ |
| 23 | long ______r; \ |
| 24 | static struct ftrace_likely_data \ |
| 25 | __aligned(4) \ |
| 26 | __section("_ftrace_annotated_branch") \ |
| 27 | ______f = { \ |
| 28 | .data.func = __func__, \ |
| 29 | .data.file = __FILE__, \ |
| 30 | .data.line = __LINE__, \ |
| 31 | }; \ |
| 32 | ______r = __builtin_expect(!!(x), expect); \ |
| 33 | ftrace_likely_update(&______f, ______r, \ |
| 34 | expect, is_constant); \ |
| 35 | ______r; \ |
| 36 | }) |
| 37 | |
| 38 | /* |
| 39 | * Using __builtin_constant_p(x) to ignore cases where the return |
| 40 | * value is always the same. This idea is taken from a similar patch |
| 41 | * written by Daniel Walker. |
| 42 | */ |
| 43 | # ifndef likely |
| 44 | # define likely(x) (__branch_check__(x, 1, __builtin_constant_p(x))) |
| 45 | # endif |
| 46 | # ifndef unlikely |
| 47 | # define unlikely(x) (__branch_check__(x, 0, __builtin_constant_p(x))) |
| 48 | # endif |
| 49 | |
| 50 | #ifdef CONFIG_PROFILE_ALL_BRANCHES |
| 51 | /* |
| 52 | * "Define 'is'", Bill Clinton |
| 53 | * "Define 'if'", Steven Rostedt |
| 54 | */ |
| 55 | #define if(cond, ...) if ( __trace_if_var( !!(cond , ## __VA_ARGS__) ) ) |
| 56 | |
| 57 | #define __trace_if_var(cond) (__builtin_constant_p(cond) ? (cond) : __trace_if_value(cond)) |
| 58 | |
| 59 | #define __trace_if_value(cond) ({ \ |
| 60 | static struct ftrace_branch_data \ |
| 61 | __aligned(4) \ |
| 62 | __section("_ftrace_branch") \ |
| 63 | __if_trace = { \ |
| 64 | .func = __func__, \ |
| 65 | .file = __FILE__, \ |
| 66 | .line = __LINE__, \ |
| 67 | }; \ |
| 68 | (cond) ? \ |
| 69 | (__if_trace.miss_hit[1]++,1) : \ |
| 70 | (__if_trace.miss_hit[0]++,0); \ |
| 71 | }) |
| 72 | |
| 73 | #endif /* CONFIG_PROFILE_ALL_BRANCHES */ |
| 74 | |
| 75 | #else |
| 76 | # define likely(x) __builtin_expect(!!(x), 1) |
| 77 | # define unlikely(x) __builtin_expect(!!(x), 0) |
| 78 | # define likely_notrace(x) likely(x) |
| 79 | # define unlikely_notrace(x) unlikely(x) |
| 80 | #endif |
| 81 | |
| 82 | /* Optimization barrier */ |
| 83 | #ifndef barrier |
| 84 | /* The "volatile" is due to gcc bugs */ |
| 85 | # define barrier() __asm__ __volatile__("": : :"memory") |
| 86 | #endif |
| 87 | |
| 88 | #ifndef barrier_data |
| 89 | /* |
| 90 | * This version is i.e. to prevent dead stores elimination on @ptr |
| 91 | * where gcc and llvm may behave differently when otherwise using |
| 92 | * normal barrier(): while gcc behavior gets along with a normal |
| 93 | * barrier(), llvm needs an explicit input variable to be assumed |
| 94 | * clobbered. The issue is as follows: while the inline asm might |
| 95 | * access any memory it wants, the compiler could have fit all of |
| 96 | * @ptr into memory registers instead, and since @ptr never escaped |
| 97 | * from that, it proved that the inline asm wasn't touching any of |
| 98 | * it. This version works well with both compilers, i.e. we're telling |
| 99 | * the compiler that the inline asm absolutely may see the contents |
| 100 | * of @ptr. See also: https://llvm.org/bugs/show_bug.cgi?id=15495 |
| 101 | */ |
| 102 | # define barrier_data(ptr) __asm__ __volatile__("": :"r"(ptr) :"memory") |
| 103 | #endif |
| 104 | |
| 105 | /* workaround for GCC PR82365 if needed */ |
| 106 | #ifndef barrier_before_unreachable |
| 107 | # define barrier_before_unreachable() do { } while (0) |
| 108 | #endif |
| 109 | |
| 110 | /* Unreachable code */ |
| 111 | #ifdef CONFIG_OBJTOOL |
| 112 | /* Annotate a C jump table to allow objtool to follow the code flow */ |
| 113 | #define __annotate_jump_table __section(".data.rel.ro.c_jump_table") |
| 114 | #else /* !CONFIG_OBJTOOL */ |
| 115 | #define __annotate_jump_table |
| 116 | #endif /* CONFIG_OBJTOOL */ |
| 117 | |
| 118 | /* |
| 119 | * Mark a position in code as unreachable. This can be used to |
| 120 | * suppress control flow warnings after asm blocks that transfer |
| 121 | * control elsewhere. |
| 122 | */ |
| 123 | #define unreachable() do { \ |
| 124 | barrier_before_unreachable(); \ |
| 125 | __builtin_unreachable(); \ |
| 126 | } while (0) |
| 127 | |
| 128 | /* |
| 129 | * KENTRY - kernel entry point |
| 130 | * This can be used to annotate symbols (functions or data) that are used |
| 131 | * without their linker symbol being referenced explicitly. For example, |
| 132 | * interrupt vector handlers, or functions in the kernel image that are found |
| 133 | * programatically. |
| 134 | * |
| 135 | * Not required for symbols exported with EXPORT_SYMBOL, or initcalls. Those |
| 136 | * are handled in their own way (with KEEP() in linker scripts). |
| 137 | * |
| 138 | * KENTRY can be avoided if the symbols in question are marked as KEEP() in the |
| 139 | * linker script. For example an architecture could KEEP() its entire |
| 140 | * boot/exception vector code rather than annotate each function and data. |
| 141 | */ |
| 142 | #ifndef KENTRY |
| 143 | # define KENTRY(sym) \ |
| 144 | extern typeof(sym) sym; \ |
| 145 | static const unsigned long __kentry_##sym \ |
| 146 | __used \ |
| 147 | __attribute__((__section__("___kentry+" #sym))) \ |
| 148 | = (unsigned long)&sym; |
| 149 | #endif |
| 150 | |
| 151 | #ifndef RELOC_HIDE |
| 152 | # define RELOC_HIDE(ptr, off) \ |
| 153 | ({ unsigned long __ptr; \ |
| 154 | __ptr = (unsigned long) (ptr); \ |
| 155 | (typeof(ptr)) (__ptr + (off)); }) |
| 156 | #endif |
| 157 | |
| 158 | #define absolute_pointer(val) RELOC_HIDE((void *)(val), 0) |
| 159 | |
| 160 | #ifndef OPTIMIZER_HIDE_VAR |
| 161 | /* Make the optimizer believe the variable can be manipulated arbitrarily. */ |
| 162 | #define OPTIMIZER_HIDE_VAR(var) \ |
| 163 | __asm__ ("" : "=r" (var) : "0" (var)) |
| 164 | #endif |
| 165 | |
| 166 | #define __UNIQUE_ID(prefix) __PASTE(__PASTE(__UNIQUE_ID_, prefix), __COUNTER__) |
| 167 | |
| 168 | /** |
| 169 | * data_race - mark an expression as containing intentional data races |
| 170 | * |
| 171 | * This data_race() macro is useful for situations in which data races |
| 172 | * should be forgiven. One example is diagnostic code that accesses |
| 173 | * shared variables but is not a part of the core synchronization design. |
| 174 | * For example, if accesses to a given variable are protected by a lock, |
| 175 | * except for diagnostic code, then the accesses under the lock should |
| 176 | * be plain C-language accesses and those in the diagnostic code should |
| 177 | * use data_race(). This way, KCSAN will complain if buggy lockless |
| 178 | * accesses to that variable are introduced, even if the buggy accesses |
| 179 | * are protected by READ_ONCE() or WRITE_ONCE(). |
| 180 | * |
| 181 | * This macro *does not* affect normal code generation, but is a hint |
| 182 | * to tooling that data races here are to be ignored. If the access must |
| 183 | * be atomic *and* KCSAN should ignore the access, use both data_race() |
| 184 | * and READ_ONCE(), for example, data_race(READ_ONCE(x)). |
| 185 | */ |
| 186 | #define data_race(expr) \ |
| 187 | ({ \ |
| 188 | __kcsan_disable_current(); \ |
| 189 | __auto_type __v = (expr); \ |
| 190 | __kcsan_enable_current(); \ |
| 191 | __v; \ |
| 192 | }) |
| 193 | |
| 194 | #ifdef __CHECKER__ |
| 195 | #define __BUILD_BUG_ON_ZERO_MSG(e, msg, ...) (0) |
| 196 | #else /* __CHECKER__ */ |
| 197 | #define __BUILD_BUG_ON_ZERO_MSG(e, msg, ...) ((int)sizeof(struct {_Static_assert(!(e), msg);})) |
| 198 | #endif /* __CHECKER__ */ |
| 199 | |
| 200 | /* &a[0] degrades to a pointer: a different type from an array */ |
| 201 | #define __is_array(a) (!__same_type((a), &(a)[0])) |
| 202 | #define __must_be_array(a) __BUILD_BUG_ON_ZERO_MSG(!__is_array(a), \ |
| 203 | "must be array") |
| 204 | |
| 205 | #define __is_byte_array(a) (__is_array(a) && sizeof((a)[0]) == 1) |
| 206 | #define __must_be_byte_array(a) __BUILD_BUG_ON_ZERO_MSG(!__is_byte_array(a), \ |
| 207 | "must be byte array") |
| 208 | |
| 209 | /* |
| 210 | * If the "nonstring" attribute isn't available, we have to return true |
| 211 | * so the __must_*() checks pass when "nonstring" isn't supported. |
| 212 | */ |
| 213 | #if __has_attribute(__nonstring__) && defined(__annotated) |
| 214 | #define __is_cstr(a) (!__annotated(a, nonstring)) |
| 215 | #define __is_noncstr(a) (__annotated(a, nonstring)) |
| 216 | #else |
| 217 | #define __is_cstr(a) (true) |
| 218 | #define __is_noncstr(a) (true) |
| 219 | #endif |
| 220 | |
| 221 | /* Require C Strings (i.e. NUL-terminated) lack the "nonstring" attribute. */ |
| 222 | #define __must_be_cstr(p) \ |
| 223 | __BUILD_BUG_ON_ZERO_MSG(!__is_cstr(p), \ |
| 224 | "must be C-string (NUL-terminated)") |
| 225 | #define __must_be_noncstr(p) \ |
| 226 | __BUILD_BUG_ON_ZERO_MSG(!__is_noncstr(p), \ |
| 227 | "must be non-C-string (not NUL-terminated)") |
| 228 | |
| 229 | /* |
| 230 | * Use __typeof_unqual__() when available. |
| 231 | * |
| 232 | * XXX: Remove test for __CHECKER__ once |
| 233 | * sparse learns about __typeof_unqual__(). |
| 234 | */ |
| 235 | #if CC_HAS_TYPEOF_UNQUAL && !defined(__CHECKER__) |
| 236 | # define USE_TYPEOF_UNQUAL 1 |
| 237 | #endif |
| 238 | |
| 239 | /* |
| 240 | * Define TYPEOF_UNQUAL() to use __typeof_unqual__() as typeof |
| 241 | * operator when available, to return an unqualified type of the exp. |
| 242 | */ |
| 243 | #if defined(USE_TYPEOF_UNQUAL) |
| 244 | # define TYPEOF_UNQUAL(exp) __typeof_unqual__(exp) |
| 245 | #else |
| 246 | # define TYPEOF_UNQUAL(exp) __typeof__(exp) |
| 247 | #endif |
| 248 | |
| 249 | #endif /* __KERNEL__ */ |
| 250 | |
| 251 | #if defined(CONFIG_CFI_CLANG) && !defined(__DISABLE_EXPORTS) && !defined(BUILD_VDSO) |
| 252 | /* |
| 253 | * Force a reference to the external symbol so the compiler generates |
| 254 | * __kcfi_typid. |
| 255 | */ |
| 256 | #define KCFI_REFERENCE(sym) __ADDRESSABLE(sym) |
| 257 | #else |
| 258 | #define KCFI_REFERENCE(sym) |
| 259 | #endif |
| 260 | |
| 261 | /** |
| 262 | * offset_to_ptr - convert a relative memory offset to an absolute pointer |
| 263 | * @off: the address of the 32-bit offset value |
| 264 | */ |
| 265 | static inline void *offset_to_ptr(const int *off) |
| 266 | { |
| 267 | return (void *)((unsigned long)off + *off); |
| 268 | } |
| 269 | |
| 270 | #endif /* __ASSEMBLY__ */ |
| 271 | |
| 272 | #ifdef CONFIG_64BIT |
| 273 | #define ARCH_SEL(a,b) a |
| 274 | #else |
| 275 | #define ARCH_SEL(a,b) b |
| 276 | #endif |
| 277 | |
| 278 | /* |
| 279 | * Force the compiler to emit 'sym' as a symbol, so that we can reference |
| 280 | * it from inline assembler. Necessary in case 'sym' could be inlined |
| 281 | * otherwise, or eliminated entirely due to lack of references that are |
| 282 | * visible to the compiler. |
| 283 | */ |
| 284 | #define ___ADDRESSABLE(sym, __attrs) \ |
| 285 | static void * __used __attrs \ |
| 286 | __UNIQUE_ID(__PASTE(__addressable_,sym)) = (void *)(uintptr_t)&sym; |
| 287 | |
| 288 | #define __ADDRESSABLE(sym) \ |
| 289 | ___ADDRESSABLE(sym, __section(".discard.addressable")) |
| 290 | |
| 291 | #define __ADDRESSABLE_ASM(sym) \ |
| 292 | .pushsection .discard.addressable,"aw"; \ |
| 293 | .align ARCH_SEL(8,4); \ |
| 294 | ARCH_SEL(.quad, .long) __stringify(sym); \ |
| 295 | .popsection; |
| 296 | |
| 297 | #define __ADDRESSABLE_ASM_STR(sym) __stringify(__ADDRESSABLE_ASM(sym)) |
| 298 | |
| 299 | /* |
| 300 | * This returns a constant expression while determining if an argument is |
| 301 | * a constant expression, most importantly without evaluating the argument. |
| 302 | * Glory to Martin Uecker <Martin.Uecker@med.uni-goettingen.de> |
| 303 | * |
| 304 | * Details: |
| 305 | * - sizeof() return an integer constant expression, and does not evaluate |
| 306 | * the value of its operand; it only examines the type of its operand. |
| 307 | * - The results of comparing two integer constant expressions is also |
| 308 | * an integer constant expression. |
| 309 | * - The first literal "8" isn't important. It could be any literal value. |
| 310 | * - The second literal "8" is to avoid warnings about unaligned pointers; |
| 311 | * this could otherwise just be "1". |
| 312 | * - (long)(x) is used to avoid warnings about 64-bit types on 32-bit |
| 313 | * architectures. |
| 314 | * - The C Standard defines "null pointer constant", "(void *)0", as |
| 315 | * distinct from other void pointers. |
| 316 | * - If (x) is an integer constant expression, then the "* 0l" resolves |
| 317 | * it into an integer constant expression of value 0. Since it is cast to |
| 318 | * "void *", this makes the second operand a null pointer constant. |
| 319 | * - If (x) is not an integer constant expression, then the second operand |
| 320 | * resolves to a void pointer (but not a null pointer constant: the value |
| 321 | * is not an integer constant 0). |
| 322 | * - The conditional operator's third operand, "(int *)8", is an object |
| 323 | * pointer (to type "int"). |
| 324 | * - The behavior (including the return type) of the conditional operator |
| 325 | * ("operand1 ? operand2 : operand3") depends on the kind of expressions |
| 326 | * given for the second and third operands. This is the central mechanism |
| 327 | * of the macro: |
| 328 | * - When one operand is a null pointer constant (i.e. when x is an integer |
| 329 | * constant expression) and the other is an object pointer (i.e. our |
| 330 | * third operand), the conditional operator returns the type of the |
| 331 | * object pointer operand (i.e. "int *"). Here, within the sizeof(), we |
| 332 | * would then get: |
| 333 | * sizeof(*((int *)(...)) == sizeof(int) == 4 |
| 334 | * - When one operand is a void pointer (i.e. when x is not an integer |
| 335 | * constant expression) and the other is an object pointer (i.e. our |
| 336 | * third operand), the conditional operator returns a "void *" type. |
| 337 | * Here, within the sizeof(), we would then get: |
| 338 | * sizeof(*((void *)(...)) == sizeof(void) == 1 |
| 339 | * - The equality comparison to "sizeof(int)" therefore depends on (x): |
| 340 | * sizeof(int) == sizeof(int) (x) was a constant expression |
| 341 | * sizeof(int) != sizeof(void) (x) was not a constant expression |
| 342 | */ |
| 343 | #define __is_constexpr(x) \ |
| 344 | (sizeof(int) == sizeof(*(8 ? ((void *)((long)(x) * 0l)) : (int *)8))) |
| 345 | |
| 346 | /* |
| 347 | * Whether 'type' is a signed type or an unsigned type. Supports scalar types, |
| 348 | * bool and also pointer types. |
| 349 | */ |
| 350 | #define is_signed_type(type) (((type)(-1)) < (__force type)1) |
| 351 | #define is_unsigned_type(type) (!is_signed_type(type)) |
| 352 | |
| 353 | /* |
| 354 | * Useful shorthand for "is this condition known at compile-time?" |
| 355 | * |
| 356 | * Note that the condition may involve non-constant values, |
| 357 | * but the compiler may know enough about the details of the |
| 358 | * values to determine that the condition is statically true. |
| 359 | */ |
| 360 | #define statically_true(x) (__builtin_constant_p(x) && (x)) |
| 361 | |
| 362 | /* |
| 363 | * Similar to statically_true() but produces a constant expression |
| 364 | * |
| 365 | * To be used in conjunction with macros, such as BUILD_BUG_ON_ZERO(), |
| 366 | * which require their input to be a constant expression and for which |
| 367 | * statically_true() would otherwise fail. |
| 368 | * |
| 369 | * This is a trade-off: const_true() requires all its operands to be |
| 370 | * compile time constants. Else, it would always returns false even on |
| 371 | * the most trivial cases like: |
| 372 | * |
| 373 | * true || non_const_var |
| 374 | * |
| 375 | * On the opposite, statically_true() is able to fold more complex |
| 376 | * tautologies and will return true on expressions such as: |
| 377 | * |
| 378 | * !(non_const_var * 8 % 4) |
| 379 | * |
| 380 | * For the general case, statically_true() is better. |
| 381 | */ |
| 382 | #define const_true(x) __builtin_choose_expr(__is_constexpr(x), x, false) |
| 383 | |
| 384 | /* |
| 385 | * This is needed in functions which generate the stack canary, see |
| 386 | * arch/x86/kernel/smpboot.c::start_secondary() for an example. |
| 387 | */ |
| 388 | #define prevent_tail_call_optimization() mb() |
| 389 | |
| 390 | #include <asm/rwonce.h> |
| 391 | |
| 392 | #endif /* __LINUX_COMPILER_H */ |
| 393 | |