| 1 | /* SPDX-License-Identifier: GPL-2.0 */ |
| 2 | #ifndef __LINUX_PREEMPT_H |
| 3 | #define __LINUX_PREEMPT_H |
| 4 | |
| 5 | /* |
| 6 | * include/linux/preempt.h - macros for accessing and manipulating |
| 7 | * preempt_count (used for kernel preemption, interrupt count, etc.) |
| 8 | */ |
| 9 | |
| 10 | #include <linux/linkage.h> |
| 11 | #include <linux/cleanup.h> |
| 12 | #include <linux/types.h> |
| 13 | |
| 14 | /* |
| 15 | * We put the hardirq and softirq counter into the preemption |
| 16 | * counter. The bitmask has the following meaning: |
| 17 | * |
| 18 | * - bits 0-7 are the preemption count (max preemption depth: 256) |
| 19 | * - bits 8-15 are the softirq count (max # of softirqs: 256) |
| 20 | * |
| 21 | * The hardirq count could in theory be the same as the number of |
| 22 | * interrupts in the system, but we run all interrupt handlers with |
| 23 | * interrupts disabled, so we cannot have nesting interrupts. Though |
| 24 | * there are a few palaeontologic drivers which reenable interrupts in |
| 25 | * the handler, so we need more than one bit here. |
| 26 | * |
| 27 | * PREEMPT_MASK: 0x000000ff |
| 28 | * SOFTIRQ_MASK: 0x0000ff00 |
| 29 | * HARDIRQ_MASK: 0x000f0000 |
| 30 | * NMI_MASK: 0x00f00000 |
| 31 | * PREEMPT_NEED_RESCHED: 0x80000000 |
| 32 | */ |
| 33 | #define PREEMPT_BITS 8 |
| 34 | #define SOFTIRQ_BITS 8 |
| 35 | #define HARDIRQ_BITS 4 |
| 36 | #define NMI_BITS 4 |
| 37 | |
| 38 | #define PREEMPT_SHIFT 0 |
| 39 | #define SOFTIRQ_SHIFT (PREEMPT_SHIFT + PREEMPT_BITS) |
| 40 | #define HARDIRQ_SHIFT (SOFTIRQ_SHIFT + SOFTIRQ_BITS) |
| 41 | #define NMI_SHIFT (HARDIRQ_SHIFT + HARDIRQ_BITS) |
| 42 | |
| 43 | #define __IRQ_MASK(x) ((1UL << (x))-1) |
| 44 | |
| 45 | #define PREEMPT_MASK (__IRQ_MASK(PREEMPT_BITS) << PREEMPT_SHIFT) |
| 46 | #define SOFTIRQ_MASK (__IRQ_MASK(SOFTIRQ_BITS) << SOFTIRQ_SHIFT) |
| 47 | #define HARDIRQ_MASK (__IRQ_MASK(HARDIRQ_BITS) << HARDIRQ_SHIFT) |
| 48 | #define NMI_MASK (__IRQ_MASK(NMI_BITS) << NMI_SHIFT) |
| 49 | |
| 50 | #define PREEMPT_OFFSET (1UL << PREEMPT_SHIFT) |
| 51 | #define SOFTIRQ_OFFSET (1UL << SOFTIRQ_SHIFT) |
| 52 | #define HARDIRQ_OFFSET (1UL << HARDIRQ_SHIFT) |
| 53 | #define NMI_OFFSET (1UL << NMI_SHIFT) |
| 54 | |
| 55 | #define SOFTIRQ_DISABLE_OFFSET (2 * SOFTIRQ_OFFSET) |
| 56 | |
| 57 | #define PREEMPT_DISABLED (PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED) |
| 58 | |
| 59 | /* |
| 60 | * Disable preemption until the scheduler is running -- use an unconditional |
| 61 | * value so that it also works on !PREEMPT_COUNT kernels. |
| 62 | * |
| 63 | * Reset by start_kernel()->sched_init()->init_idle()->init_idle_preempt_count(). |
| 64 | */ |
| 65 | #define INIT_PREEMPT_COUNT PREEMPT_OFFSET |
| 66 | |
| 67 | /* |
| 68 | * Initial preempt_count value; reflects the preempt_count schedule invariant |
| 69 | * which states that during context switches: |
| 70 | * |
| 71 | * preempt_count() == 2*PREEMPT_DISABLE_OFFSET |
| 72 | * |
| 73 | * Note: PREEMPT_DISABLE_OFFSET is 0 for !PREEMPT_COUNT kernels. |
| 74 | * Note: See finish_task_switch(). |
| 75 | */ |
| 76 | #define FORK_PREEMPT_COUNT (2*PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED) |
| 77 | |
| 78 | /* preempt_count() and related functions, depends on PREEMPT_NEED_RESCHED */ |
| 79 | #include <asm/preempt.h> |
| 80 | |
| 81 | /** |
| 82 | * interrupt_context_level - return interrupt context level |
| 83 | * |
| 84 | * Returns the current interrupt context level. |
| 85 | * 0 - normal context |
| 86 | * 1 - softirq context |
| 87 | * 2 - hardirq context |
| 88 | * 3 - NMI context |
| 89 | */ |
| 90 | static __always_inline unsigned char interrupt_context_level(void) |
| 91 | { |
| 92 | unsigned long pc = preempt_count(); |
| 93 | unsigned char level = 0; |
| 94 | |
| 95 | level += !!(pc & (NMI_MASK)); |
| 96 | level += !!(pc & (NMI_MASK | HARDIRQ_MASK)); |
| 97 | level += !!(pc & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET)); |
| 98 | |
| 99 | return level; |
| 100 | } |
| 101 | |
| 102 | /* |
| 103 | * These macro definitions avoid redundant invocations of preempt_count() |
| 104 | * because such invocations would result in redundant loads given that |
| 105 | * preempt_count() is commonly implemented with READ_ONCE(). |
| 106 | */ |
| 107 | |
| 108 | #define nmi_count() (preempt_count() & NMI_MASK) |
| 109 | #define hardirq_count() (preempt_count() & HARDIRQ_MASK) |
| 110 | #ifdef CONFIG_PREEMPT_RT |
| 111 | # define softirq_count() (current->softirq_disable_cnt & SOFTIRQ_MASK) |
| 112 | # define irq_count() ((preempt_count() & (NMI_MASK | HARDIRQ_MASK)) | softirq_count()) |
| 113 | #else |
| 114 | # define softirq_count() (preempt_count() & SOFTIRQ_MASK) |
| 115 | # define irq_count() (preempt_count() & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_MASK)) |
| 116 | #endif |
| 117 | |
| 118 | /* |
| 119 | * Macros to retrieve the current execution context: |
| 120 | * |
| 121 | * in_nmi() - We're in NMI context |
| 122 | * in_hardirq() - We're in hard IRQ context |
| 123 | * in_serving_softirq() - We're in softirq context |
| 124 | * in_task() - We're in task context |
| 125 | */ |
| 126 | #define in_nmi() (nmi_count()) |
| 127 | #define in_hardirq() (hardirq_count()) |
| 128 | #define in_serving_softirq() (softirq_count() & SOFTIRQ_OFFSET) |
| 129 | #ifdef CONFIG_PREEMPT_RT |
| 130 | # define in_task() (!((preempt_count() & (NMI_MASK | HARDIRQ_MASK)) | in_serving_softirq())) |
| 131 | #else |
| 132 | # define in_task() (!(preempt_count() & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET))) |
| 133 | #endif |
| 134 | |
| 135 | /* |
| 136 | * The following macros are deprecated and should not be used in new code: |
| 137 | * in_irq() - Obsolete version of in_hardirq() |
| 138 | * in_softirq() - We have BH disabled, or are processing softirqs |
| 139 | * in_interrupt() - We're in NMI,IRQ,SoftIRQ context or have BH disabled |
| 140 | */ |
| 141 | #define in_irq() (hardirq_count()) |
| 142 | #define in_softirq() (softirq_count()) |
| 143 | #define in_interrupt() (irq_count()) |
| 144 | |
| 145 | /* |
| 146 | * The preempt_count offset after preempt_disable(); |
| 147 | */ |
| 148 | #if defined(CONFIG_PREEMPT_COUNT) |
| 149 | # define PREEMPT_DISABLE_OFFSET PREEMPT_OFFSET |
| 150 | #else |
| 151 | # define PREEMPT_DISABLE_OFFSET 0 |
| 152 | #endif |
| 153 | |
| 154 | /* |
| 155 | * The preempt_count offset after spin_lock() |
| 156 | */ |
| 157 | #if !defined(CONFIG_PREEMPT_RT) |
| 158 | #define PREEMPT_LOCK_OFFSET PREEMPT_DISABLE_OFFSET |
| 159 | #else |
| 160 | /* Locks on RT do not disable preemption */ |
| 161 | #define PREEMPT_LOCK_OFFSET 0 |
| 162 | #endif |
| 163 | |
| 164 | /* |
| 165 | * The preempt_count offset needed for things like: |
| 166 | * |
| 167 | * spin_lock_bh() |
| 168 | * |
| 169 | * Which need to disable both preemption (CONFIG_PREEMPT_COUNT) and |
| 170 | * softirqs, such that unlock sequences of: |
| 171 | * |
| 172 | * spin_unlock(); |
| 173 | * local_bh_enable(); |
| 174 | * |
| 175 | * Work as expected. |
| 176 | */ |
| 177 | #define SOFTIRQ_LOCK_OFFSET (SOFTIRQ_DISABLE_OFFSET + PREEMPT_LOCK_OFFSET) |
| 178 | |
| 179 | /* |
| 180 | * Are we running in atomic context? WARNING: this macro cannot |
| 181 | * always detect atomic context; in particular, it cannot know about |
| 182 | * held spinlocks in non-preemptible kernels. Thus it should not be |
| 183 | * used in the general case to determine whether sleeping is possible. |
| 184 | * Do not use in_atomic() in driver code. |
| 185 | */ |
| 186 | #define in_atomic() (preempt_count() != 0) |
| 187 | |
| 188 | /* |
| 189 | * Check whether we were atomic before we did preempt_disable(): |
| 190 | * (used by the scheduler) |
| 191 | */ |
| 192 | #define in_atomic_preempt_off() (preempt_count() != PREEMPT_DISABLE_OFFSET) |
| 193 | |
| 194 | #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE) |
| 195 | extern void preempt_count_add(int val); |
| 196 | extern void preempt_count_sub(int val); |
| 197 | #define preempt_count_dec_and_test() \ |
| 198 | ({ preempt_count_sub(1); should_resched(0); }) |
| 199 | #else |
| 200 | #define preempt_count_add(val) __preempt_count_add(val) |
| 201 | #define preempt_count_sub(val) __preempt_count_sub(val) |
| 202 | #define preempt_count_dec_and_test() __preempt_count_dec_and_test() |
| 203 | #endif |
| 204 | |
| 205 | #define __preempt_count_inc() __preempt_count_add(1) |
| 206 | #define __preempt_count_dec() __preempt_count_sub(1) |
| 207 | |
| 208 | #define preempt_count_inc() preempt_count_add(1) |
| 209 | #define preempt_count_dec() preempt_count_sub(1) |
| 210 | |
| 211 | #ifdef CONFIG_PREEMPT_COUNT |
| 212 | |
| 213 | #define preempt_disable() \ |
| 214 | do { \ |
| 215 | preempt_count_inc(); \ |
| 216 | barrier(); \ |
| 217 | } while (0) |
| 218 | |
| 219 | #define sched_preempt_enable_no_resched() \ |
| 220 | do { \ |
| 221 | barrier(); \ |
| 222 | preempt_count_dec(); \ |
| 223 | } while (0) |
| 224 | |
| 225 | #define preempt_enable_no_resched() sched_preempt_enable_no_resched() |
| 226 | |
| 227 | #define preemptible() (preempt_count() == 0 && !irqs_disabled()) |
| 228 | |
| 229 | #ifdef CONFIG_PREEMPTION |
| 230 | #define preempt_enable() \ |
| 231 | do { \ |
| 232 | barrier(); \ |
| 233 | if (unlikely(preempt_count_dec_and_test())) \ |
| 234 | __preempt_schedule(); \ |
| 235 | } while (0) |
| 236 | |
| 237 | #define preempt_enable_notrace() \ |
| 238 | do { \ |
| 239 | barrier(); \ |
| 240 | if (unlikely(__preempt_count_dec_and_test())) \ |
| 241 | __preempt_schedule_notrace(); \ |
| 242 | } while (0) |
| 243 | |
| 244 | #define preempt_check_resched() \ |
| 245 | do { \ |
| 246 | if (should_resched(0)) \ |
| 247 | __preempt_schedule(); \ |
| 248 | } while (0) |
| 249 | |
| 250 | #else /* !CONFIG_PREEMPTION */ |
| 251 | #define preempt_enable() \ |
| 252 | do { \ |
| 253 | barrier(); \ |
| 254 | preempt_count_dec(); \ |
| 255 | } while (0) |
| 256 | |
| 257 | #define preempt_enable_notrace() \ |
| 258 | do { \ |
| 259 | barrier(); \ |
| 260 | __preempt_count_dec(); \ |
| 261 | } while (0) |
| 262 | |
| 263 | #define preempt_check_resched() do { } while (0) |
| 264 | #endif /* CONFIG_PREEMPTION */ |
| 265 | |
| 266 | #define preempt_disable_notrace() \ |
| 267 | do { \ |
| 268 | __preempt_count_inc(); \ |
| 269 | barrier(); \ |
| 270 | } while (0) |
| 271 | |
| 272 | #define preempt_enable_no_resched_notrace() \ |
| 273 | do { \ |
| 274 | barrier(); \ |
| 275 | __preempt_count_dec(); \ |
| 276 | } while (0) |
| 277 | |
| 278 | #else /* !CONFIG_PREEMPT_COUNT */ |
| 279 | |
| 280 | /* |
| 281 | * Even if we don't have any preemption, we need preempt disable/enable |
| 282 | * to be barriers, so that we don't have things like get_user/put_user |
| 283 | * that can cause faults and scheduling migrate into our preempt-protected |
| 284 | * region. |
| 285 | */ |
| 286 | #define preempt_disable() barrier() |
| 287 | #define sched_preempt_enable_no_resched() barrier() |
| 288 | #define preempt_enable_no_resched() barrier() |
| 289 | #define preempt_enable() barrier() |
| 290 | #define preempt_check_resched() do { } while (0) |
| 291 | |
| 292 | #define preempt_disable_notrace() barrier() |
| 293 | #define preempt_enable_no_resched_notrace() barrier() |
| 294 | #define preempt_enable_notrace() barrier() |
| 295 | #define preemptible() 0 |
| 296 | |
| 297 | #endif /* CONFIG_PREEMPT_COUNT */ |
| 298 | |
| 299 | #ifdef MODULE |
| 300 | /* |
| 301 | * Modules have no business playing preemption tricks. |
| 302 | */ |
| 303 | #undef sched_preempt_enable_no_resched |
| 304 | #undef preempt_enable_no_resched |
| 305 | #undef preempt_enable_no_resched_notrace |
| 306 | #undef preempt_check_resched |
| 307 | #endif |
| 308 | |
| 309 | #define preempt_set_need_resched() \ |
| 310 | do { \ |
| 311 | set_preempt_need_resched(); \ |
| 312 | } while (0) |
| 313 | #define preempt_fold_need_resched() \ |
| 314 | do { \ |
| 315 | if (tif_need_resched()) \ |
| 316 | set_preempt_need_resched(); \ |
| 317 | } while (0) |
| 318 | |
| 319 | #ifdef CONFIG_PREEMPT_NOTIFIERS |
| 320 | |
| 321 | struct preempt_notifier; |
| 322 | struct task_struct; |
| 323 | |
| 324 | /** |
| 325 | * preempt_ops - notifiers called when a task is preempted and rescheduled |
| 326 | * @sched_in: we're about to be rescheduled: |
| 327 | * notifier: struct preempt_notifier for the task being scheduled |
| 328 | * cpu: cpu we're scheduled on |
| 329 | * @sched_out: we've just been preempted |
| 330 | * notifier: struct preempt_notifier for the task being preempted |
| 331 | * next: the task that's kicking us out |
| 332 | * |
| 333 | * Please note that sched_in and out are called under different |
| 334 | * contexts. sched_out is called with rq lock held and irq disabled |
| 335 | * while sched_in is called without rq lock and irq enabled. This |
| 336 | * difference is intentional and depended upon by its users. |
| 337 | */ |
| 338 | struct preempt_ops { |
| 339 | void (*sched_in)(struct preempt_notifier *notifier, int cpu); |
| 340 | void (*sched_out)(struct preempt_notifier *notifier, |
| 341 | struct task_struct *next); |
| 342 | }; |
| 343 | |
| 344 | /** |
| 345 | * preempt_notifier - key for installing preemption notifiers |
| 346 | * @link: internal use |
| 347 | * @ops: defines the notifier functions to be called |
| 348 | * |
| 349 | * Usually used in conjunction with container_of(). |
| 350 | */ |
| 351 | struct preempt_notifier { |
| 352 | struct hlist_node link; |
| 353 | struct preempt_ops *ops; |
| 354 | }; |
| 355 | |
| 356 | void preempt_notifier_inc(void); |
| 357 | void preempt_notifier_dec(void); |
| 358 | void preempt_notifier_register(struct preempt_notifier *notifier); |
| 359 | void preempt_notifier_unregister(struct preempt_notifier *notifier); |
| 360 | |
| 361 | static inline void preempt_notifier_init(struct preempt_notifier *notifier, |
| 362 | struct preempt_ops *ops) |
| 363 | { |
| 364 | /* INIT_HLIST_NODE() open coded, to avoid dependency on list.h */ |
| 365 | notifier->link.next = NULL; |
| 366 | notifier->link.pprev = NULL; |
| 367 | notifier->ops = ops; |
| 368 | } |
| 369 | |
| 370 | #endif |
| 371 | |
| 372 | #ifdef CONFIG_SMP |
| 373 | |
| 374 | /* |
| 375 | * Migrate-Disable and why it is undesired. |
| 376 | * |
| 377 | * When a preempted task becomes elegible to run under the ideal model (IOW it |
| 378 | * becomes one of the M highest priority tasks), it might still have to wait |
| 379 | * for the preemptee's migrate_disable() section to complete. Thereby suffering |
| 380 | * a reduction in bandwidth in the exact duration of the migrate_disable() |
| 381 | * section. |
| 382 | * |
| 383 | * Per this argument, the change from preempt_disable() to migrate_disable() |
| 384 | * gets us: |
| 385 | * |
| 386 | * - a higher priority tasks gains reduced wake-up latency; with preempt_disable() |
| 387 | * it would have had to wait for the lower priority task. |
| 388 | * |
| 389 | * - a lower priority tasks; which under preempt_disable() could've instantly |
| 390 | * migrated away when another CPU becomes available, is now constrained |
| 391 | * by the ability to push the higher priority task away, which might itself be |
| 392 | * in a migrate_disable() section, reducing it's available bandwidth. |
| 393 | * |
| 394 | * IOW it trades latency / moves the interference term, but it stays in the |
| 395 | * system, and as long as it remains unbounded, the system is not fully |
| 396 | * deterministic. |
| 397 | * |
| 398 | * |
| 399 | * The reason we have it anyway. |
| 400 | * |
| 401 | * PREEMPT_RT breaks a number of assumptions traditionally held. By forcing a |
| 402 | * number of primitives into becoming preemptible, they would also allow |
| 403 | * migration. This turns out to break a bunch of per-cpu usage. To this end, |
| 404 | * all these primitives employ migirate_disable() to restore this implicit |
| 405 | * assumption. |
| 406 | * |
| 407 | * This is a 'temporary' work-around at best. The correct solution is getting |
| 408 | * rid of the above assumptions and reworking the code to employ explicit |
| 409 | * per-cpu locking or short preempt-disable regions. |
| 410 | * |
| 411 | * The end goal must be to get rid of migrate_disable(), alternatively we need |
| 412 | * a schedulability theory that does not depend on abritrary migration. |
| 413 | * |
| 414 | * |
| 415 | * Notes on the implementation. |
| 416 | * |
| 417 | * The implementation is particularly tricky since existing code patterns |
| 418 | * dictate neither migrate_disable() nor migrate_enable() is allowed to block. |
| 419 | * This means that it cannot use cpus_read_lock() to serialize against hotplug, |
| 420 | * nor can it easily migrate itself into a pending affinity mask change on |
| 421 | * migrate_enable(). |
| 422 | * |
| 423 | * |
| 424 | * Note: even non-work-conserving schedulers like semi-partitioned depends on |
| 425 | * migration, so migrate_disable() is not only a problem for |
| 426 | * work-conserving schedulers. |
| 427 | * |
| 428 | */ |
| 429 | extern void migrate_disable(void); |
| 430 | extern void migrate_enable(void); |
| 431 | |
| 432 | #else |
| 433 | |
| 434 | static inline void migrate_disable(void) { } |
| 435 | static inline void migrate_enable(void) { } |
| 436 | |
| 437 | #endif /* CONFIG_SMP */ |
| 438 | |
| 439 | /** |
| 440 | * preempt_disable_nested - Disable preemption inside a normally preempt disabled section |
| 441 | * |
| 442 | * Use for code which requires preemption protection inside a critical |
| 443 | * section which has preemption disabled implicitly on non-PREEMPT_RT |
| 444 | * enabled kernels, by e.g.: |
| 445 | * - holding a spinlock/rwlock |
| 446 | * - soft interrupt context |
| 447 | * - regular interrupt handlers |
| 448 | * |
| 449 | * On PREEMPT_RT enabled kernels spinlock/rwlock held sections, soft |
| 450 | * interrupt context and regular interrupt handlers are preemptible and |
| 451 | * only prevent migration. preempt_disable_nested() ensures that preemption |
| 452 | * is disabled for cases which require CPU local serialization even on |
| 453 | * PREEMPT_RT. For non-PREEMPT_RT kernels this is a NOP. |
| 454 | * |
| 455 | * The use cases are code sequences which are not serialized by a |
| 456 | * particular lock instance, e.g.: |
| 457 | * - seqcount write side critical sections where the seqcount is not |
| 458 | * associated to a particular lock and therefore the automatic |
| 459 | * protection mechanism does not work. This prevents a live lock |
| 460 | * against a preempting high priority reader. |
| 461 | * - RMW per CPU variable updates like vmstat. |
| 462 | */ |
| 463 | /* Macro to avoid header recursion hell vs. lockdep */ |
| 464 | #define preempt_disable_nested() \ |
| 465 | do { \ |
| 466 | if (IS_ENABLED(CONFIG_PREEMPT_RT)) \ |
| 467 | preempt_disable(); \ |
| 468 | else \ |
| 469 | lockdep_assert_preemption_disabled(); \ |
| 470 | } while (0) |
| 471 | |
| 472 | /** |
| 473 | * preempt_enable_nested - Undo the effect of preempt_disable_nested() |
| 474 | */ |
| 475 | static __always_inline void preempt_enable_nested(void) |
| 476 | { |
| 477 | if (IS_ENABLED(CONFIG_PREEMPT_RT)) |
| 478 | preempt_enable(); |
| 479 | } |
| 480 | |
| 481 | DEFINE_LOCK_GUARD_0(preempt, preempt_disable(), preempt_enable()) |
| 482 | DEFINE_LOCK_GUARD_0(preempt_notrace, preempt_disable_notrace(), preempt_enable_notrace()) |
| 483 | DEFINE_LOCK_GUARD_0(migrate, migrate_disable(), migrate_enable()) |
| 484 | |
| 485 | #ifdef CONFIG_PREEMPT_DYNAMIC |
| 486 | |
| 487 | extern bool preempt_model_none(void); |
| 488 | extern bool preempt_model_voluntary(void); |
| 489 | extern bool preempt_model_full(void); |
| 490 | extern bool preempt_model_lazy(void); |
| 491 | |
| 492 | #else |
| 493 | |
| 494 | static inline bool preempt_model_none(void) |
| 495 | { |
| 496 | return IS_ENABLED(CONFIG_PREEMPT_NONE); |
| 497 | } |
| 498 | static inline bool preempt_model_voluntary(void) |
| 499 | { |
| 500 | return IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY); |
| 501 | } |
| 502 | static inline bool preempt_model_full(void) |
| 503 | { |
| 504 | return IS_ENABLED(CONFIG_PREEMPT); |
| 505 | } |
| 506 | |
| 507 | static inline bool preempt_model_lazy(void) |
| 508 | { |
| 509 | return IS_ENABLED(CONFIG_PREEMPT_LAZY); |
| 510 | } |
| 511 | |
| 512 | #endif |
| 513 | |
| 514 | static inline bool preempt_model_rt(void) |
| 515 | { |
| 516 | return IS_ENABLED(CONFIG_PREEMPT_RT); |
| 517 | } |
| 518 | |
| 519 | extern const char *preempt_model_str(void); |
| 520 | |
| 521 | /* |
| 522 | * Does the preemption model allow non-cooperative preemption? |
| 523 | * |
| 524 | * For !CONFIG_PREEMPT_DYNAMIC kernels this is an exact match with |
| 525 | * CONFIG_PREEMPTION; for CONFIG_PREEMPT_DYNAMIC this doesn't work as the |
| 526 | * kernel is *built* with CONFIG_PREEMPTION=y but may run with e.g. the |
| 527 | * PREEMPT_NONE model. |
| 528 | */ |
| 529 | static inline bool preempt_model_preemptible(void) |
| 530 | { |
| 531 | return preempt_model_full() || preempt_model_lazy() || preempt_model_rt(); |
| 532 | } |
| 533 | |
| 534 | #endif /* __LINUX_PREEMPT_H */ |
| 535 | |