| 1 | // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause) |
| 2 | /* |
| 3 | * Copyright (C) 2017-2024 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved. |
| 4 | * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005 |
| 5 | * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All rights reserved. |
| 6 | * |
| 7 | * This driver produces cryptographically secure pseudorandom data. It is divided |
| 8 | * into roughly six sections, each with a section header: |
| 9 | * |
| 10 | * - Initialization and readiness waiting. |
| 11 | * - Fast key erasure RNG, the "crng". |
| 12 | * - Entropy accumulation and extraction routines. |
| 13 | * - Entropy collection routines. |
| 14 | * - Userspace reader/writer interfaces. |
| 15 | * - Sysctl interface. |
| 16 | * |
| 17 | * The high level overview is that there is one input pool, into which |
| 18 | * various pieces of data are hashed. Prior to initialization, some of that |
| 19 | * data is then "credited" as having a certain number of bits of entropy. |
| 20 | * When enough bits of entropy are available, the hash is finalized and |
| 21 | * handed as a key to a stream cipher that expands it indefinitely for |
| 22 | * various consumers. This key is periodically refreshed as the various |
| 23 | * entropy collectors, described below, add data to the input pool. |
| 24 | */ |
| 25 | |
| 26 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| 27 | |
| 28 | #include <linux/utsname.h> |
| 29 | #include <linux/module.h> |
| 30 | #include <linux/kernel.h> |
| 31 | #include <linux/major.h> |
| 32 | #include <linux/string.h> |
| 33 | #include <linux/fcntl.h> |
| 34 | #include <linux/slab.h> |
| 35 | #include <linux/random.h> |
| 36 | #include <linux/poll.h> |
| 37 | #include <linux/init.h> |
| 38 | #include <linux/fs.h> |
| 39 | #include <linux/blkdev.h> |
| 40 | #include <linux/interrupt.h> |
| 41 | #include <linux/mm.h> |
| 42 | #include <linux/nodemask.h> |
| 43 | #include <linux/spinlock.h> |
| 44 | #include <linux/kthread.h> |
| 45 | #include <linux/percpu.h> |
| 46 | #include <linux/ptrace.h> |
| 47 | #include <linux/workqueue.h> |
| 48 | #include <linux/irq.h> |
| 49 | #include <linux/ratelimit.h> |
| 50 | #include <linux/syscalls.h> |
| 51 | #include <linux/completion.h> |
| 52 | #include <linux/uuid.h> |
| 53 | #include <linux/uaccess.h> |
| 54 | #include <linux/suspend.h> |
| 55 | #include <linux/siphash.h> |
| 56 | #include <linux/sched/isolation.h> |
| 57 | #include <crypto/chacha.h> |
| 58 | #include <crypto/blake2s.h> |
| 59 | #ifdef CONFIG_VDSO_GETRANDOM |
| 60 | #include <vdso/getrandom.h> |
| 61 | #include <vdso/datapage.h> |
| 62 | #include <vdso/vsyscall.h> |
| 63 | #endif |
| 64 | #include <asm/archrandom.h> |
| 65 | #include <asm/processor.h> |
| 66 | #include <asm/irq.h> |
| 67 | #include <asm/irq_regs.h> |
| 68 | #include <asm/io.h> |
| 69 | |
| 70 | /********************************************************************* |
| 71 | * |
| 72 | * Initialization and readiness waiting. |
| 73 | * |
| 74 | * Much of the RNG infrastructure is devoted to various dependencies |
| 75 | * being able to wait until the RNG has collected enough entropy and |
| 76 | * is ready for safe consumption. |
| 77 | * |
| 78 | *********************************************************************/ |
| 79 | |
| 80 | /* |
| 81 | * crng_init is protected by base_crng->lock, and only increases |
| 82 | * its value (from empty->early->ready). |
| 83 | */ |
| 84 | static enum { |
| 85 | CRNG_EMPTY = 0, /* Little to no entropy collected */ |
| 86 | CRNG_EARLY = 1, /* At least POOL_EARLY_BITS collected */ |
| 87 | CRNG_READY = 2 /* Fully initialized with POOL_READY_BITS collected */ |
| 88 | } crng_init __read_mostly = CRNG_EMPTY; |
| 89 | static DEFINE_STATIC_KEY_FALSE(crng_is_ready); |
| 90 | #define crng_ready() (static_branch_likely(&crng_is_ready) || crng_init >= CRNG_READY) |
| 91 | /* Various types of waiters for crng_init->CRNG_READY transition. */ |
| 92 | static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait); |
| 93 | static struct fasync_struct *fasync; |
| 94 | static ATOMIC_NOTIFIER_HEAD(random_ready_notifier); |
| 95 | |
| 96 | /* Control how we warn userspace. */ |
| 97 | static struct ratelimit_state urandom_warning = |
| 98 | RATELIMIT_STATE_INIT_FLAGS("urandom_warning" , HZ, 3, RATELIMIT_MSG_ON_RELEASE); |
| 99 | static int ratelimit_disable __read_mostly = |
| 100 | IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM); |
| 101 | module_param_named(ratelimit_disable, ratelimit_disable, int, 0644); |
| 102 | MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression" ); |
| 103 | |
| 104 | /* |
| 105 | * Returns whether or not the input pool has been seeded and thus guaranteed |
| 106 | * to supply cryptographically secure random numbers. This applies to: the |
| 107 | * /dev/urandom device, the get_random_bytes function, and the get_random_{u8, |
| 108 | * u16,u32,u64,long} family of functions. |
| 109 | * |
| 110 | * Returns: true if the input pool has been seeded. |
| 111 | * false if the input pool has not been seeded. |
| 112 | */ |
| 113 | bool rng_is_initialized(void) |
| 114 | { |
| 115 | return crng_ready(); |
| 116 | } |
| 117 | EXPORT_SYMBOL(rng_is_initialized); |
| 118 | |
| 119 | static void __cold crng_set_ready(struct work_struct *work) |
| 120 | { |
| 121 | static_branch_enable(&crng_is_ready); |
| 122 | } |
| 123 | |
| 124 | /* Used by wait_for_random_bytes(), and considered an entropy collector, below. */ |
| 125 | static void try_to_generate_entropy(void); |
| 126 | |
| 127 | /* |
| 128 | * Wait for the input pool to be seeded and thus guaranteed to supply |
| 129 | * cryptographically secure random numbers. This applies to: the /dev/urandom |
| 130 | * device, the get_random_bytes function, and the get_random_{u8,u16,u32,u64, |
| 131 | * long} family of functions. Using any of these functions without first |
| 132 | * calling this function forfeits the guarantee of security. |
| 133 | * |
| 134 | * Returns: 0 if the input pool has been seeded. |
| 135 | * -ERESTARTSYS if the function was interrupted by a signal. |
| 136 | */ |
| 137 | int wait_for_random_bytes(void) |
| 138 | { |
| 139 | while (!crng_ready()) { |
| 140 | int ret; |
| 141 | |
| 142 | try_to_generate_entropy(); |
| 143 | ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ); |
| 144 | if (ret) |
| 145 | return ret > 0 ? 0 : ret; |
| 146 | } |
| 147 | return 0; |
| 148 | } |
| 149 | EXPORT_SYMBOL(wait_for_random_bytes); |
| 150 | |
| 151 | /* |
| 152 | * Add a callback function that will be invoked when the crng is initialised, |
| 153 | * or immediately if it already has been. Only use this is you are absolutely |
| 154 | * sure it is required. Most users should instead be able to test |
| 155 | * `rng_is_initialized()` on demand, or make use of `get_random_bytes_wait()`. |
| 156 | */ |
| 157 | int __cold execute_with_initialized_rng(struct notifier_block *nb) |
| 158 | { |
| 159 | unsigned long flags; |
| 160 | int ret = 0; |
| 161 | |
| 162 | spin_lock_irqsave(&random_ready_notifier.lock, flags); |
| 163 | if (crng_ready()) |
| 164 | nb->notifier_call(nb, 0, NULL); |
| 165 | else |
| 166 | ret = raw_notifier_chain_register(nh: (struct raw_notifier_head *)&random_ready_notifier.head, nb); |
| 167 | spin_unlock_irqrestore(lock: &random_ready_notifier.lock, flags); |
| 168 | return ret; |
| 169 | } |
| 170 | |
| 171 | #define warn_unseeded_randomness() \ |
| 172 | if (IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM) && !crng_ready()) \ |
| 173 | printk_deferred(KERN_NOTICE "random: %s called from %pS with crng_init=%d\n", \ |
| 174 | __func__, (void *)_RET_IP_, crng_init) |
| 175 | |
| 176 | |
| 177 | /********************************************************************* |
| 178 | * |
| 179 | * Fast key erasure RNG, the "crng". |
| 180 | * |
| 181 | * These functions expand entropy from the entropy extractor into |
| 182 | * long streams for external consumption using the "fast key erasure" |
| 183 | * RNG described at <https://blog.cr.yp.to/20170723-random.html>. |
| 184 | * |
| 185 | * There are a few exported interfaces for use by other drivers: |
| 186 | * |
| 187 | * void get_random_bytes(void *buf, size_t len) |
| 188 | * u8 get_random_u8() |
| 189 | * u16 get_random_u16() |
| 190 | * u32 get_random_u32() |
| 191 | * u32 get_random_u32_below(u32 ceil) |
| 192 | * u32 get_random_u32_above(u32 floor) |
| 193 | * u32 get_random_u32_inclusive(u32 floor, u32 ceil) |
| 194 | * u64 get_random_u64() |
| 195 | * unsigned long get_random_long() |
| 196 | * |
| 197 | * These interfaces will return the requested number of random bytes |
| 198 | * into the given buffer or as a return value. This is equivalent to |
| 199 | * a read from /dev/urandom. The u8, u16, u32, u64, long family of |
| 200 | * functions may be higher performance for one-off random integers, |
| 201 | * because they do a bit of buffering and do not invoke reseeding |
| 202 | * until the buffer is emptied. |
| 203 | * |
| 204 | *********************************************************************/ |
| 205 | |
| 206 | enum { |
| 207 | CRNG_RESEED_START_INTERVAL = HZ, |
| 208 | CRNG_RESEED_INTERVAL = 60 * HZ |
| 209 | }; |
| 210 | |
| 211 | static struct { |
| 212 | u8 key[CHACHA_KEY_SIZE] __aligned(__alignof__(long)); |
| 213 | unsigned long generation; |
| 214 | spinlock_t lock; |
| 215 | } base_crng = { |
| 216 | .lock = __SPIN_LOCK_UNLOCKED(base_crng.lock) |
| 217 | }; |
| 218 | |
| 219 | struct crng { |
| 220 | u8 key[CHACHA_KEY_SIZE]; |
| 221 | unsigned long generation; |
| 222 | local_lock_t lock; |
| 223 | }; |
| 224 | |
| 225 | static DEFINE_PER_CPU(struct crng, crngs) = { |
| 226 | .generation = ULONG_MAX, |
| 227 | .lock = INIT_LOCAL_LOCK(crngs.lock), |
| 228 | }; |
| 229 | |
| 230 | /* |
| 231 | * Return the interval until the next reseeding, which is normally |
| 232 | * CRNG_RESEED_INTERVAL, but during early boot, it is at an interval |
| 233 | * proportional to the uptime. |
| 234 | */ |
| 235 | static unsigned int crng_reseed_interval(void) |
| 236 | { |
| 237 | static bool early_boot = true; |
| 238 | |
| 239 | if (unlikely(READ_ONCE(early_boot))) { |
| 240 | time64_t uptime = ktime_get_seconds(); |
| 241 | if (uptime >= CRNG_RESEED_INTERVAL / HZ * 2) |
| 242 | WRITE_ONCE(early_boot, false); |
| 243 | else |
| 244 | return max_t(unsigned int, CRNG_RESEED_START_INTERVAL, |
| 245 | (unsigned int)uptime / 2 * HZ); |
| 246 | } |
| 247 | return CRNG_RESEED_INTERVAL; |
| 248 | } |
| 249 | |
| 250 | /* Used by crng_reseed() and crng_make_state() to extract a new seed from the input pool. */ |
| 251 | static void extract_entropy(void *buf, size_t len); |
| 252 | |
| 253 | /* This extracts a new crng key from the input pool. */ |
| 254 | static void crng_reseed(struct work_struct *work) |
| 255 | { |
| 256 | static DECLARE_DELAYED_WORK(next_reseed, crng_reseed); |
| 257 | unsigned long flags; |
| 258 | unsigned long next_gen; |
| 259 | u8 key[CHACHA_KEY_SIZE]; |
| 260 | |
| 261 | /* Immediately schedule the next reseeding, so that it fires sooner rather than later. */ |
| 262 | if (likely(system_unbound_wq)) |
| 263 | queue_delayed_work(wq: system_unbound_wq, dwork: &next_reseed, delay: crng_reseed_interval()); |
| 264 | |
| 265 | extract_entropy(buf: key, len: sizeof(key)); |
| 266 | |
| 267 | /* |
| 268 | * We copy the new key into the base_crng, overwriting the old one, |
| 269 | * and update the generation counter. We avoid hitting ULONG_MAX, |
| 270 | * because the per-cpu crngs are initialized to ULONG_MAX, so this |
| 271 | * forces new CPUs that come online to always initialize. |
| 272 | */ |
| 273 | spin_lock_irqsave(&base_crng.lock, flags); |
| 274 | memcpy(base_crng.key, key, sizeof(base_crng.key)); |
| 275 | next_gen = base_crng.generation + 1; |
| 276 | if (next_gen == ULONG_MAX) |
| 277 | ++next_gen; |
| 278 | WRITE_ONCE(base_crng.generation, next_gen); |
| 279 | #ifdef CONFIG_VDSO_GETRANDOM |
| 280 | /* base_crng.generation's invalid value is ULONG_MAX, while |
| 281 | * vdso_k_rng_data->generation's invalid value is 0, so add one to the |
| 282 | * former to arrive at the latter. Use smp_store_release so that this |
| 283 | * is ordered with the write above to base_crng.generation. Pairs with |
| 284 | * the smp_rmb() before the syscall in the vDSO code. |
| 285 | * |
| 286 | * Cast to unsigned long for 32-bit architectures, since atomic 64-bit |
| 287 | * operations are not supported on those architectures. This is safe |
| 288 | * because base_crng.generation is a 32-bit value. On big-endian |
| 289 | * architectures it will be stored in the upper 32 bits, but that's okay |
| 290 | * because the vDSO side only checks whether the value changed, without |
| 291 | * actually using or interpreting the value. |
| 292 | */ |
| 293 | smp_store_release((unsigned long *)&vdso_k_rng_data->generation, next_gen + 1); |
| 294 | #endif |
| 295 | if (!static_branch_likely(&crng_is_ready)) |
| 296 | crng_init = CRNG_READY; |
| 297 | spin_unlock_irqrestore(lock: &base_crng.lock, flags); |
| 298 | memzero_explicit(s: key, count: sizeof(key)); |
| 299 | } |
| 300 | |
| 301 | /* |
| 302 | * This generates a ChaCha block using the provided key, and then |
| 303 | * immediately overwrites that key with half the block. It returns |
| 304 | * the resultant ChaCha state to the user, along with the second |
| 305 | * half of the block containing 32 bytes of random data that may |
| 306 | * be used; random_data_len may not be greater than 32. |
| 307 | * |
| 308 | * The returned ChaCha state contains within it a copy of the old |
| 309 | * key value, at index 4, so the state should always be zeroed out |
| 310 | * immediately after using in order to maintain forward secrecy. |
| 311 | * If the state cannot be erased in a timely manner, then it is |
| 312 | * safer to set the random_data parameter to &chacha_state->x[4] |
| 313 | * so that this function overwrites it before returning. |
| 314 | */ |
| 315 | static void crng_fast_key_erasure(u8 key[CHACHA_KEY_SIZE], |
| 316 | struct chacha_state *chacha_state, |
| 317 | u8 *random_data, size_t random_data_len) |
| 318 | { |
| 319 | u8 first_block[CHACHA_BLOCK_SIZE]; |
| 320 | |
| 321 | BUG_ON(random_data_len > 32); |
| 322 | |
| 323 | chacha_init_consts(state: chacha_state); |
| 324 | memcpy(&chacha_state->x[4], key, CHACHA_KEY_SIZE); |
| 325 | memset(&chacha_state->x[12], 0, sizeof(u32) * 4); |
| 326 | chacha20_block(state: chacha_state, out: first_block); |
| 327 | |
| 328 | memcpy(key, first_block, CHACHA_KEY_SIZE); |
| 329 | memcpy(random_data, first_block + CHACHA_KEY_SIZE, random_data_len); |
| 330 | memzero_explicit(s: first_block, count: sizeof(first_block)); |
| 331 | } |
| 332 | |
| 333 | /* |
| 334 | * This function returns a ChaCha state that you may use for generating |
| 335 | * random data. It also returns up to 32 bytes on its own of random data |
| 336 | * that may be used; random_data_len may not be greater than 32. |
| 337 | */ |
| 338 | static void crng_make_state(struct chacha_state *chacha_state, |
| 339 | u8 *random_data, size_t random_data_len) |
| 340 | { |
| 341 | unsigned long flags; |
| 342 | struct crng *crng; |
| 343 | |
| 344 | BUG_ON(random_data_len > 32); |
| 345 | |
| 346 | /* |
| 347 | * For the fast path, we check whether we're ready, unlocked first, and |
| 348 | * then re-check once locked later. In the case where we're really not |
| 349 | * ready, we do fast key erasure with the base_crng directly, extracting |
| 350 | * when crng_init is CRNG_EMPTY. |
| 351 | */ |
| 352 | if (!crng_ready()) { |
| 353 | bool ready; |
| 354 | |
| 355 | spin_lock_irqsave(&base_crng.lock, flags); |
| 356 | ready = crng_ready(); |
| 357 | if (!ready) { |
| 358 | if (crng_init == CRNG_EMPTY) |
| 359 | extract_entropy(buf: base_crng.key, len: sizeof(base_crng.key)); |
| 360 | crng_fast_key_erasure(key: base_crng.key, chacha_state, |
| 361 | random_data, random_data_len); |
| 362 | } |
| 363 | spin_unlock_irqrestore(lock: &base_crng.lock, flags); |
| 364 | if (!ready) |
| 365 | return; |
| 366 | } |
| 367 | |
| 368 | local_lock_irqsave(&crngs.lock, flags); |
| 369 | crng = raw_cpu_ptr(&crngs); |
| 370 | |
| 371 | /* |
| 372 | * If our per-cpu crng is older than the base_crng, then it means |
| 373 | * somebody reseeded the base_crng. In that case, we do fast key |
| 374 | * erasure on the base_crng, and use its output as the new key |
| 375 | * for our per-cpu crng. This brings us up to date with base_crng. |
| 376 | */ |
| 377 | if (unlikely(crng->generation != READ_ONCE(base_crng.generation))) { |
| 378 | spin_lock(lock: &base_crng.lock); |
| 379 | crng_fast_key_erasure(key: base_crng.key, chacha_state, |
| 380 | random_data: crng->key, random_data_len: sizeof(crng->key)); |
| 381 | crng->generation = base_crng.generation; |
| 382 | spin_unlock(lock: &base_crng.lock); |
| 383 | } |
| 384 | |
| 385 | /* |
| 386 | * Finally, when we've made it this far, our per-cpu crng has an up |
| 387 | * to date key, and we can do fast key erasure with it to produce |
| 388 | * some random data and a ChaCha state for the caller. All other |
| 389 | * branches of this function are "unlikely", so most of the time we |
| 390 | * should wind up here immediately. |
| 391 | */ |
| 392 | crng_fast_key_erasure(key: crng->key, chacha_state, random_data, random_data_len); |
| 393 | local_unlock_irqrestore(&crngs.lock, flags); |
| 394 | } |
| 395 | |
| 396 | static void _get_random_bytes(void *buf, size_t len) |
| 397 | { |
| 398 | struct chacha_state chacha_state; |
| 399 | u8 tmp[CHACHA_BLOCK_SIZE]; |
| 400 | size_t first_block_len; |
| 401 | |
| 402 | if (!len) |
| 403 | return; |
| 404 | |
| 405 | first_block_len = min_t(size_t, 32, len); |
| 406 | crng_make_state(chacha_state: &chacha_state, random_data: buf, random_data_len: first_block_len); |
| 407 | len -= first_block_len; |
| 408 | buf += first_block_len; |
| 409 | |
| 410 | while (len) { |
| 411 | if (len < CHACHA_BLOCK_SIZE) { |
| 412 | chacha20_block(state: &chacha_state, out: tmp); |
| 413 | memcpy(buf, tmp, len); |
| 414 | memzero_explicit(s: tmp, count: sizeof(tmp)); |
| 415 | break; |
| 416 | } |
| 417 | |
| 418 | chacha20_block(state: &chacha_state, out: buf); |
| 419 | if (unlikely(chacha_state.x[12] == 0)) |
| 420 | ++chacha_state.x[13]; |
| 421 | len -= CHACHA_BLOCK_SIZE; |
| 422 | buf += CHACHA_BLOCK_SIZE; |
| 423 | } |
| 424 | |
| 425 | chacha_zeroize_state(state: &chacha_state); |
| 426 | } |
| 427 | |
| 428 | /* |
| 429 | * This returns random bytes in arbitrary quantities. The quality of the |
| 430 | * random bytes is good as /dev/urandom. In order to ensure that the |
| 431 | * randomness provided by this function is okay, the function |
| 432 | * wait_for_random_bytes() should be called and return 0 at least once |
| 433 | * at any point prior. |
| 434 | */ |
| 435 | void get_random_bytes(void *buf, size_t len) |
| 436 | { |
| 437 | warn_unseeded_randomness(); |
| 438 | _get_random_bytes(buf, len); |
| 439 | } |
| 440 | EXPORT_SYMBOL(get_random_bytes); |
| 441 | |
| 442 | static ssize_t get_random_bytes_user(struct iov_iter *iter) |
| 443 | { |
| 444 | struct chacha_state chacha_state; |
| 445 | u8 block[CHACHA_BLOCK_SIZE]; |
| 446 | size_t ret = 0, copied; |
| 447 | |
| 448 | if (unlikely(!iov_iter_count(iter))) |
| 449 | return 0; |
| 450 | |
| 451 | /* |
| 452 | * Immediately overwrite the ChaCha key at index 4 with random |
| 453 | * bytes, in case userspace causes copy_to_iter() below to sleep |
| 454 | * forever, so that we still retain forward secrecy in that case. |
| 455 | */ |
| 456 | crng_make_state(chacha_state: &chacha_state, random_data: (u8 *)&chacha_state.x[4], |
| 457 | CHACHA_KEY_SIZE); |
| 458 | /* |
| 459 | * However, if we're doing a read of len <= 32, we don't need to |
| 460 | * use chacha_state after, so we can simply return those bytes to |
| 461 | * the user directly. |
| 462 | */ |
| 463 | if (iov_iter_count(i: iter) <= CHACHA_KEY_SIZE) { |
| 464 | ret = copy_to_iter(addr: &chacha_state.x[4], CHACHA_KEY_SIZE, i: iter); |
| 465 | goto out_zero_chacha; |
| 466 | } |
| 467 | |
| 468 | for (;;) { |
| 469 | chacha20_block(state: &chacha_state, out: block); |
| 470 | if (unlikely(chacha_state.x[12] == 0)) |
| 471 | ++chacha_state.x[13]; |
| 472 | |
| 473 | copied = copy_to_iter(addr: block, bytes: sizeof(block), i: iter); |
| 474 | ret += copied; |
| 475 | if (!iov_iter_count(i: iter) || copied != sizeof(block)) |
| 476 | break; |
| 477 | |
| 478 | BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0); |
| 479 | if (ret % PAGE_SIZE == 0) { |
| 480 | if (signal_pending(current)) |
| 481 | break; |
| 482 | cond_resched(); |
| 483 | } |
| 484 | } |
| 485 | |
| 486 | memzero_explicit(s: block, count: sizeof(block)); |
| 487 | out_zero_chacha: |
| 488 | chacha_zeroize_state(state: &chacha_state); |
| 489 | return ret ? ret : -EFAULT; |
| 490 | } |
| 491 | |
| 492 | /* |
| 493 | * Batched entropy returns random integers. The quality of the random |
| 494 | * number is good as /dev/urandom. In order to ensure that the randomness |
| 495 | * provided by this function is okay, the function wait_for_random_bytes() |
| 496 | * should be called and return 0 at least once at any point prior. |
| 497 | */ |
| 498 | |
| 499 | #define DEFINE_BATCHED_ENTROPY(type) \ |
| 500 | struct batch_ ##type { \ |
| 501 | /* \ |
| 502 | * We make this 1.5x a ChaCha block, so that we get the \ |
| 503 | * remaining 32 bytes from fast key erasure, plus one full \ |
| 504 | * block from the detached ChaCha state. We can increase \ |
| 505 | * the size of this later if needed so long as we keep the \ |
| 506 | * formula of (integer_blocks + 0.5) * CHACHA_BLOCK_SIZE. \ |
| 507 | */ \ |
| 508 | type entropy[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(type))]; \ |
| 509 | local_lock_t lock; \ |
| 510 | unsigned long generation; \ |
| 511 | unsigned int position; \ |
| 512 | }; \ |
| 513 | \ |
| 514 | static DEFINE_PER_CPU(struct batch_ ##type, batched_entropy_ ##type) = { \ |
| 515 | .lock = INIT_LOCAL_LOCK(batched_entropy_ ##type.lock), \ |
| 516 | .position = UINT_MAX \ |
| 517 | }; \ |
| 518 | \ |
| 519 | type get_random_ ##type(void) \ |
| 520 | { \ |
| 521 | type ret; \ |
| 522 | unsigned long flags; \ |
| 523 | struct batch_ ##type *batch; \ |
| 524 | unsigned long next_gen; \ |
| 525 | \ |
| 526 | warn_unseeded_randomness(); \ |
| 527 | \ |
| 528 | if (!crng_ready()) { \ |
| 529 | _get_random_bytes(&ret, sizeof(ret)); \ |
| 530 | return ret; \ |
| 531 | } \ |
| 532 | \ |
| 533 | local_lock_irqsave(&batched_entropy_ ##type.lock, flags); \ |
| 534 | batch = raw_cpu_ptr(&batched_entropy_##type); \ |
| 535 | \ |
| 536 | next_gen = READ_ONCE(base_crng.generation); \ |
| 537 | if (batch->position >= ARRAY_SIZE(batch->entropy) || \ |
| 538 | next_gen != batch->generation) { \ |
| 539 | _get_random_bytes(batch->entropy, sizeof(batch->entropy)); \ |
| 540 | batch->position = 0; \ |
| 541 | batch->generation = next_gen; \ |
| 542 | } \ |
| 543 | \ |
| 544 | ret = batch->entropy[batch->position]; \ |
| 545 | batch->entropy[batch->position] = 0; \ |
| 546 | ++batch->position; \ |
| 547 | local_unlock_irqrestore(&batched_entropy_ ##type.lock, flags); \ |
| 548 | return ret; \ |
| 549 | } \ |
| 550 | EXPORT_SYMBOL(get_random_ ##type); |
| 551 | |
| 552 | DEFINE_BATCHED_ENTROPY(u8) |
| 553 | DEFINE_BATCHED_ENTROPY(u16) |
| 554 | DEFINE_BATCHED_ENTROPY(u32) |
| 555 | DEFINE_BATCHED_ENTROPY(u64) |
| 556 | |
| 557 | u32 __get_random_u32_below(u32 ceil) |
| 558 | { |
| 559 | /* |
| 560 | * This is the slow path for variable ceil. It is still fast, most of |
| 561 | * the time, by doing traditional reciprocal multiplication and |
| 562 | * opportunistically comparing the lower half to ceil itself, before |
| 563 | * falling back to computing a larger bound, and then rejecting samples |
| 564 | * whose lower half would indicate a range indivisible by ceil. The use |
| 565 | * of `-ceil % ceil` is analogous to `2^32 % ceil`, but is computable |
| 566 | * in 32-bits. |
| 567 | */ |
| 568 | u32 rand = get_random_u32(); |
| 569 | u64 mult; |
| 570 | |
| 571 | /* |
| 572 | * This function is technically undefined for ceil == 0, and in fact |
| 573 | * for the non-underscored constant version in the header, we build bug |
| 574 | * on that. But for the non-constant case, it's convenient to have that |
| 575 | * evaluate to being a straight call to get_random_u32(), so that |
| 576 | * get_random_u32_inclusive() can work over its whole range without |
| 577 | * undefined behavior. |
| 578 | */ |
| 579 | if (unlikely(!ceil)) |
| 580 | return rand; |
| 581 | |
| 582 | mult = (u64)ceil * rand; |
| 583 | if (unlikely((u32)mult < ceil)) { |
| 584 | u32 bound = -ceil % ceil; |
| 585 | while (unlikely((u32)mult < bound)) |
| 586 | mult = (u64)ceil * get_random_u32(); |
| 587 | } |
| 588 | return mult >> 32; |
| 589 | } |
| 590 | EXPORT_SYMBOL(__get_random_u32_below); |
| 591 | |
| 592 | #ifdef CONFIG_SMP |
| 593 | /* |
| 594 | * This function is called when the CPU is coming up, with entry |
| 595 | * CPUHP_RANDOM_PREPARE, which comes before CPUHP_WORKQUEUE_PREP. |
| 596 | */ |
| 597 | int __cold random_prepare_cpu(unsigned int cpu) |
| 598 | { |
| 599 | /* |
| 600 | * When the cpu comes back online, immediately invalidate both |
| 601 | * the per-cpu crng and all batches, so that we serve fresh |
| 602 | * randomness. |
| 603 | */ |
| 604 | per_cpu_ptr(&crngs, cpu)->generation = ULONG_MAX; |
| 605 | per_cpu_ptr(&batched_entropy_u8, cpu)->position = UINT_MAX; |
| 606 | per_cpu_ptr(&batched_entropy_u16, cpu)->position = UINT_MAX; |
| 607 | per_cpu_ptr(&batched_entropy_u32, cpu)->position = UINT_MAX; |
| 608 | per_cpu_ptr(&batched_entropy_u64, cpu)->position = UINT_MAX; |
| 609 | return 0; |
| 610 | } |
| 611 | #endif |
| 612 | |
| 613 | |
| 614 | /********************************************************************** |
| 615 | * |
| 616 | * Entropy accumulation and extraction routines. |
| 617 | * |
| 618 | * Callers may add entropy via: |
| 619 | * |
| 620 | * static void mix_pool_bytes(const void *buf, size_t len) |
| 621 | * |
| 622 | * After which, if added entropy should be credited: |
| 623 | * |
| 624 | * static void credit_init_bits(size_t bits) |
| 625 | * |
| 626 | * Finally, extract entropy via: |
| 627 | * |
| 628 | * static void extract_entropy(void *buf, size_t len) |
| 629 | * |
| 630 | **********************************************************************/ |
| 631 | |
| 632 | enum { |
| 633 | POOL_BITS = BLAKE2S_HASH_SIZE * 8, |
| 634 | POOL_READY_BITS = POOL_BITS, /* When crng_init->CRNG_READY */ |
| 635 | POOL_EARLY_BITS = POOL_READY_BITS / 2 /* When crng_init->CRNG_EARLY */ |
| 636 | }; |
| 637 | |
| 638 | static struct { |
| 639 | struct blake2s_state hash; |
| 640 | spinlock_t lock; |
| 641 | unsigned int init_bits; |
| 642 | } input_pool = { |
| 643 | .hash.h = { BLAKE2S_IV0 ^ (0x01010000 | BLAKE2S_HASH_SIZE), |
| 644 | BLAKE2S_IV1, BLAKE2S_IV2, BLAKE2S_IV3, BLAKE2S_IV4, |
| 645 | BLAKE2S_IV5, BLAKE2S_IV6, BLAKE2S_IV7 }, |
| 646 | .hash.outlen = BLAKE2S_HASH_SIZE, |
| 647 | .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock), |
| 648 | }; |
| 649 | |
| 650 | static void _mix_pool_bytes(const void *buf, size_t len) |
| 651 | { |
| 652 | blake2s_update(state: &input_pool.hash, in: buf, inlen: len); |
| 653 | } |
| 654 | |
| 655 | /* |
| 656 | * This function adds bytes into the input pool. It does not |
| 657 | * update the initialization bit counter; the caller should call |
| 658 | * credit_init_bits if this is appropriate. |
| 659 | */ |
| 660 | static void mix_pool_bytes(const void *buf, size_t len) |
| 661 | { |
| 662 | unsigned long flags; |
| 663 | |
| 664 | spin_lock_irqsave(&input_pool.lock, flags); |
| 665 | _mix_pool_bytes(buf, len); |
| 666 | spin_unlock_irqrestore(lock: &input_pool.lock, flags); |
| 667 | } |
| 668 | |
| 669 | /* |
| 670 | * This is an HKDF-like construction for using the hashed collected entropy |
| 671 | * as a PRF key, that's then expanded block-by-block. |
| 672 | */ |
| 673 | static void (void *buf, size_t len) |
| 674 | { |
| 675 | unsigned long flags; |
| 676 | u8 seed[BLAKE2S_HASH_SIZE], next_key[BLAKE2S_HASH_SIZE]; |
| 677 | struct { |
| 678 | unsigned long rdseed[32 / sizeof(long)]; |
| 679 | size_t counter; |
| 680 | } block; |
| 681 | size_t i, longs; |
| 682 | |
| 683 | for (i = 0; i < ARRAY_SIZE(block.rdseed);) { |
| 684 | longs = arch_get_random_seed_longs(v: &block.rdseed[i], ARRAY_SIZE(block.rdseed) - i); |
| 685 | if (longs) { |
| 686 | i += longs; |
| 687 | continue; |
| 688 | } |
| 689 | longs = arch_get_random_longs(v: &block.rdseed[i], ARRAY_SIZE(block.rdseed) - i); |
| 690 | if (longs) { |
| 691 | i += longs; |
| 692 | continue; |
| 693 | } |
| 694 | block.rdseed[i++] = random_get_entropy(); |
| 695 | } |
| 696 | |
| 697 | spin_lock_irqsave(&input_pool.lock, flags); |
| 698 | |
| 699 | /* seed = HASHPRF(last_key, entropy_input) */ |
| 700 | blake2s_final(state: &input_pool.hash, out: seed); |
| 701 | |
| 702 | /* next_key = HASHPRF(seed, RDSEED || 0) */ |
| 703 | block.counter = 0; |
| 704 | blake2s(out: next_key, in: (u8 *)&block, key: seed, outlen: sizeof(next_key), inlen: sizeof(block), keylen: sizeof(seed)); |
| 705 | blake2s_init_key(state: &input_pool.hash, outlen: BLAKE2S_HASH_SIZE, key: next_key, keylen: sizeof(next_key)); |
| 706 | |
| 707 | spin_unlock_irqrestore(lock: &input_pool.lock, flags); |
| 708 | memzero_explicit(s: next_key, count: sizeof(next_key)); |
| 709 | |
| 710 | while (len) { |
| 711 | i = min_t(size_t, len, BLAKE2S_HASH_SIZE); |
| 712 | /* output = HASHPRF(seed, RDSEED || ++counter) */ |
| 713 | ++block.counter; |
| 714 | blake2s(out: buf, in: (u8 *)&block, key: seed, outlen: i, inlen: sizeof(block), keylen: sizeof(seed)); |
| 715 | len -= i; |
| 716 | buf += i; |
| 717 | } |
| 718 | |
| 719 | memzero_explicit(s: seed, count: sizeof(seed)); |
| 720 | memzero_explicit(s: &block, count: sizeof(block)); |
| 721 | } |
| 722 | |
| 723 | #define credit_init_bits(bits) if (!crng_ready()) _credit_init_bits(bits) |
| 724 | |
| 725 | static void __cold _credit_init_bits(size_t bits) |
| 726 | { |
| 727 | static DECLARE_WORK(set_ready, crng_set_ready); |
| 728 | unsigned int new, orig, add; |
| 729 | unsigned long flags; |
| 730 | int m; |
| 731 | |
| 732 | if (!bits) |
| 733 | return; |
| 734 | |
| 735 | add = min_t(size_t, bits, POOL_BITS); |
| 736 | |
| 737 | orig = READ_ONCE(input_pool.init_bits); |
| 738 | do { |
| 739 | new = min_t(unsigned int, POOL_BITS, orig + add); |
| 740 | } while (!try_cmpxchg(&input_pool.init_bits, &orig, new)); |
| 741 | |
| 742 | if (orig < POOL_READY_BITS && new >= POOL_READY_BITS) { |
| 743 | crng_reseed(NULL); /* Sets crng_init to CRNG_READY under base_crng.lock. */ |
| 744 | if (static_key_initialized && system_unbound_wq) |
| 745 | queue_work(wq: system_unbound_wq, work: &set_ready); |
| 746 | atomic_notifier_call_chain(nh: &random_ready_notifier, val: 0, NULL); |
| 747 | #ifdef CONFIG_VDSO_GETRANDOM |
| 748 | WRITE_ONCE(vdso_k_rng_data->is_ready, true); |
| 749 | #endif |
| 750 | wake_up_interruptible(&crng_init_wait); |
| 751 | kill_fasync(&fasync, SIGIO, POLL_IN); |
| 752 | pr_notice("crng init done\n" ); |
| 753 | m = ratelimit_state_get_miss(rs: &urandom_warning); |
| 754 | if (m) |
| 755 | pr_notice("%d urandom warning(s) missed due to ratelimiting\n" , m); |
| 756 | } else if (orig < POOL_EARLY_BITS && new >= POOL_EARLY_BITS) { |
| 757 | spin_lock_irqsave(&base_crng.lock, flags); |
| 758 | /* Check if crng_init is CRNG_EMPTY, to avoid race with crng_reseed(). */ |
| 759 | if (crng_init == CRNG_EMPTY) { |
| 760 | extract_entropy(buf: base_crng.key, len: sizeof(base_crng.key)); |
| 761 | crng_init = CRNG_EARLY; |
| 762 | } |
| 763 | spin_unlock_irqrestore(lock: &base_crng.lock, flags); |
| 764 | } |
| 765 | } |
| 766 | |
| 767 | |
| 768 | /********************************************************************** |
| 769 | * |
| 770 | * Entropy collection routines. |
| 771 | * |
| 772 | * The following exported functions are used for pushing entropy into |
| 773 | * the above entropy accumulation routines: |
| 774 | * |
| 775 | * void add_device_randomness(const void *buf, size_t len); |
| 776 | * void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy, bool sleep_after); |
| 777 | * void add_bootloader_randomness(const void *buf, size_t len); |
| 778 | * void add_vmfork_randomness(const void *unique_vm_id, size_t len); |
| 779 | * void add_interrupt_randomness(int irq); |
| 780 | * void add_input_randomness(unsigned int type, unsigned int code, unsigned int value); |
| 781 | * void add_disk_randomness(struct gendisk *disk); |
| 782 | * |
| 783 | * add_device_randomness() adds data to the input pool that |
| 784 | * is likely to differ between two devices (or possibly even per boot). |
| 785 | * This would be things like MAC addresses or serial numbers, or the |
| 786 | * read-out of the RTC. This does *not* credit any actual entropy to |
| 787 | * the pool, but it initializes the pool to different values for devices |
| 788 | * that might otherwise be identical and have very little entropy |
| 789 | * available to them (particularly common in the embedded world). |
| 790 | * |
| 791 | * add_hwgenerator_randomness() is for true hardware RNGs, and will credit |
| 792 | * entropy as specified by the caller. If the entropy pool is full it will |
| 793 | * block until more entropy is needed. |
| 794 | * |
| 795 | * add_bootloader_randomness() is called by bootloader drivers, such as EFI |
| 796 | * and device tree, and credits its input depending on whether or not the |
| 797 | * command line option 'random.trust_bootloader'. |
| 798 | * |
| 799 | * add_vmfork_randomness() adds a unique (but not necessarily secret) ID |
| 800 | * representing the current instance of a VM to the pool, without crediting, |
| 801 | * and then force-reseeds the crng so that it takes effect immediately. |
| 802 | * |
| 803 | * add_interrupt_randomness() uses the interrupt timing as random |
| 804 | * inputs to the entropy pool. Using the cycle counters and the irq source |
| 805 | * as inputs, it feeds the input pool roughly once a second or after 64 |
| 806 | * interrupts, crediting 1 bit of entropy for whichever comes first. |
| 807 | * |
| 808 | * add_input_randomness() uses the input layer interrupt timing, as well |
| 809 | * as the event type information from the hardware. |
| 810 | * |
| 811 | * add_disk_randomness() uses what amounts to the seek time of block |
| 812 | * layer request events, on a per-disk_devt basis, as input to the |
| 813 | * entropy pool. Note that high-speed solid state drives with very low |
| 814 | * seek times do not make for good sources of entropy, as their seek |
| 815 | * times are usually fairly consistent. |
| 816 | * |
| 817 | * The last two routines try to estimate how many bits of entropy |
| 818 | * to credit. They do this by keeping track of the first and second |
| 819 | * order deltas of the event timings. |
| 820 | * |
| 821 | **********************************************************************/ |
| 822 | |
| 823 | static bool trust_cpu __initdata = true; |
| 824 | static bool trust_bootloader __initdata = true; |
| 825 | static int __init parse_trust_cpu(char *arg) |
| 826 | { |
| 827 | return kstrtobool(s: arg, res: &trust_cpu); |
| 828 | } |
| 829 | static int __init parse_trust_bootloader(char *arg) |
| 830 | { |
| 831 | return kstrtobool(s: arg, res: &trust_bootloader); |
| 832 | } |
| 833 | early_param("random.trust_cpu" , parse_trust_cpu); |
| 834 | early_param("random.trust_bootloader" , parse_trust_bootloader); |
| 835 | |
| 836 | static int random_pm_notification(struct notifier_block *nb, unsigned long action, void *data) |
| 837 | { |
| 838 | unsigned long flags, entropy = random_get_entropy(); |
| 839 | |
| 840 | /* |
| 841 | * Encode a representation of how long the system has been suspended, |
| 842 | * in a way that is distinct from prior system suspends. |
| 843 | */ |
| 844 | ktime_t stamps[] = { ktime_get(), ktime_get_boottime(), ktime_get_real() }; |
| 845 | |
| 846 | spin_lock_irqsave(&input_pool.lock, flags); |
| 847 | _mix_pool_bytes(buf: &action, len: sizeof(action)); |
| 848 | _mix_pool_bytes(buf: stamps, len: sizeof(stamps)); |
| 849 | _mix_pool_bytes(buf: &entropy, len: sizeof(entropy)); |
| 850 | spin_unlock_irqrestore(lock: &input_pool.lock, flags); |
| 851 | |
| 852 | if (crng_ready() && (action == PM_RESTORE_PREPARE || |
| 853 | (action == PM_POST_SUSPEND && !IS_ENABLED(CONFIG_PM_AUTOSLEEP) && |
| 854 | !IS_ENABLED(CONFIG_PM_USERSPACE_AUTOSLEEP)))) { |
| 855 | crng_reseed(NULL); |
| 856 | pr_notice("crng reseeded on system resumption\n" ); |
| 857 | } |
| 858 | return 0; |
| 859 | } |
| 860 | |
| 861 | static struct notifier_block pm_notifier = { .notifier_call = random_pm_notification }; |
| 862 | |
| 863 | /* |
| 864 | * This is called extremely early, before time keeping functionality is |
| 865 | * available, but arch randomness is. Interrupts are not yet enabled. |
| 866 | */ |
| 867 | void __init random_init_early(const char *command_line) |
| 868 | { |
| 869 | unsigned long entropy[BLAKE2S_BLOCK_SIZE / sizeof(long)]; |
| 870 | size_t i, longs, arch_bits; |
| 871 | |
| 872 | #if defined(LATENT_ENTROPY_PLUGIN) |
| 873 | static const u8 compiletime_seed[BLAKE2S_BLOCK_SIZE] __initconst __latent_entropy; |
| 874 | _mix_pool_bytes(compiletime_seed, sizeof(compiletime_seed)); |
| 875 | #endif |
| 876 | |
| 877 | for (i = 0, arch_bits = sizeof(entropy) * 8; i < ARRAY_SIZE(entropy);) { |
| 878 | longs = arch_get_random_seed_longs(v: entropy, ARRAY_SIZE(entropy) - i); |
| 879 | if (longs) { |
| 880 | _mix_pool_bytes(buf: entropy, len: sizeof(*entropy) * longs); |
| 881 | i += longs; |
| 882 | continue; |
| 883 | } |
| 884 | longs = arch_get_random_longs(v: entropy, ARRAY_SIZE(entropy) - i); |
| 885 | if (longs) { |
| 886 | _mix_pool_bytes(buf: entropy, len: sizeof(*entropy) * longs); |
| 887 | i += longs; |
| 888 | continue; |
| 889 | } |
| 890 | arch_bits -= sizeof(*entropy) * 8; |
| 891 | ++i; |
| 892 | } |
| 893 | |
| 894 | _mix_pool_bytes(buf: init_utsname(), len: sizeof(*(init_utsname()))); |
| 895 | _mix_pool_bytes(buf: command_line, strlen(command_line)); |
| 896 | |
| 897 | /* Reseed if already seeded by earlier phases. */ |
| 898 | if (crng_ready()) |
| 899 | crng_reseed(NULL); |
| 900 | else if (trust_cpu) |
| 901 | _credit_init_bits(bits: arch_bits); |
| 902 | } |
| 903 | |
| 904 | /* |
| 905 | * This is called a little bit after the prior function, and now there is |
| 906 | * access to timestamps counters. Interrupts are not yet enabled. |
| 907 | */ |
| 908 | void __init random_init(void) |
| 909 | { |
| 910 | unsigned long entropy = random_get_entropy(); |
| 911 | ktime_t now = ktime_get_real(); |
| 912 | |
| 913 | _mix_pool_bytes(buf: &now, len: sizeof(now)); |
| 914 | _mix_pool_bytes(buf: &entropy, len: sizeof(entropy)); |
| 915 | add_latent_entropy(); |
| 916 | |
| 917 | /* |
| 918 | * If we were initialized by the cpu or bootloader before jump labels |
| 919 | * or workqueues are initialized, then we should enable the static |
| 920 | * branch here, where it's guaranteed that these have been initialized. |
| 921 | */ |
| 922 | if (!static_branch_likely(&crng_is_ready) && crng_init >= CRNG_READY) |
| 923 | crng_set_ready(NULL); |
| 924 | |
| 925 | /* Reseed if already seeded by earlier phases. */ |
| 926 | if (crng_ready()) |
| 927 | crng_reseed(NULL); |
| 928 | |
| 929 | WARN_ON(register_pm_notifier(&pm_notifier)); |
| 930 | |
| 931 | WARN(!entropy, "Missing cycle counter and fallback timer; RNG " |
| 932 | "entropy collection will consequently suffer." ); |
| 933 | } |
| 934 | |
| 935 | /* |
| 936 | * Add device- or boot-specific data to the input pool to help |
| 937 | * initialize it. |
| 938 | * |
| 939 | * None of this adds any entropy; it is meant to avoid the problem of |
| 940 | * the entropy pool having similar initial state across largely |
| 941 | * identical devices. |
| 942 | */ |
| 943 | void add_device_randomness(const void *buf, size_t len) |
| 944 | { |
| 945 | unsigned long entropy = random_get_entropy(); |
| 946 | unsigned long flags; |
| 947 | |
| 948 | spin_lock_irqsave(&input_pool.lock, flags); |
| 949 | _mix_pool_bytes(buf: &entropy, len: sizeof(entropy)); |
| 950 | _mix_pool_bytes(buf, len); |
| 951 | spin_unlock_irqrestore(lock: &input_pool.lock, flags); |
| 952 | } |
| 953 | EXPORT_SYMBOL(add_device_randomness); |
| 954 | |
| 955 | /* |
| 956 | * Interface for in-kernel drivers of true hardware RNGs. Those devices |
| 957 | * may produce endless random bits, so this function will sleep for |
| 958 | * some amount of time after, if the sleep_after parameter is true. |
| 959 | */ |
| 960 | void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy, bool sleep_after) |
| 961 | { |
| 962 | mix_pool_bytes(buf, len); |
| 963 | credit_init_bits(entropy); |
| 964 | |
| 965 | /* |
| 966 | * Throttle writing to once every reseed interval, unless we're not yet |
| 967 | * initialized or no entropy is credited. |
| 968 | */ |
| 969 | if (sleep_after && !kthread_should_stop() && (crng_ready() || !entropy)) |
| 970 | schedule_timeout_interruptible(timeout: crng_reseed_interval()); |
| 971 | } |
| 972 | EXPORT_SYMBOL_GPL(add_hwgenerator_randomness); |
| 973 | |
| 974 | /* |
| 975 | * Handle random seed passed by bootloader, and credit it depending |
| 976 | * on the command line option 'random.trust_bootloader'. |
| 977 | */ |
| 978 | void __init add_bootloader_randomness(const void *buf, size_t len) |
| 979 | { |
| 980 | mix_pool_bytes(buf, len); |
| 981 | if (trust_bootloader) |
| 982 | credit_init_bits(len * 8); |
| 983 | } |
| 984 | |
| 985 | #if IS_ENABLED(CONFIG_VMGENID) |
| 986 | static BLOCKING_NOTIFIER_HEAD(vmfork_chain); |
| 987 | |
| 988 | /* |
| 989 | * Handle a new unique VM ID, which is unique, not secret, so we |
| 990 | * don't credit it, but we do immediately force a reseed after so |
| 991 | * that it's used by the crng posthaste. |
| 992 | */ |
| 993 | void __cold add_vmfork_randomness(const void *unique_vm_id, size_t len) |
| 994 | { |
| 995 | add_device_randomness(unique_vm_id, len); |
| 996 | if (crng_ready()) { |
| 997 | crng_reseed(NULL); |
| 998 | pr_notice("crng reseeded due to virtual machine fork\n" ); |
| 999 | } |
| 1000 | blocking_notifier_call_chain(nh: &vmfork_chain, val: 0, NULL); |
| 1001 | } |
| 1002 | #if IS_MODULE(CONFIG_VMGENID) |
| 1003 | EXPORT_SYMBOL_GPL(add_vmfork_randomness); |
| 1004 | #endif |
| 1005 | |
| 1006 | int __cold register_random_vmfork_notifier(struct notifier_block *nb) |
| 1007 | { |
| 1008 | return blocking_notifier_chain_register(nh: &vmfork_chain, nb); |
| 1009 | } |
| 1010 | EXPORT_SYMBOL_GPL(register_random_vmfork_notifier); |
| 1011 | |
| 1012 | int __cold unregister_random_vmfork_notifier(struct notifier_block *nb) |
| 1013 | { |
| 1014 | return blocking_notifier_chain_unregister(nh: &vmfork_chain, nb); |
| 1015 | } |
| 1016 | EXPORT_SYMBOL_GPL(unregister_random_vmfork_notifier); |
| 1017 | #endif |
| 1018 | |
| 1019 | struct fast_pool { |
| 1020 | unsigned long pool[4]; |
| 1021 | unsigned long last; |
| 1022 | unsigned int count; |
| 1023 | struct timer_list mix; |
| 1024 | }; |
| 1025 | |
| 1026 | static void mix_interrupt_randomness(struct timer_list *work); |
| 1027 | |
| 1028 | static DEFINE_PER_CPU(struct fast_pool, irq_randomness) = { |
| 1029 | #ifdef CONFIG_64BIT |
| 1030 | #define FASTMIX_PERM SIPHASH_PERMUTATION |
| 1031 | .pool = { SIPHASH_CONST_0, SIPHASH_CONST_1, SIPHASH_CONST_2, SIPHASH_CONST_3 }, |
| 1032 | #else |
| 1033 | #define FASTMIX_PERM HSIPHASH_PERMUTATION |
| 1034 | .pool = { HSIPHASH_CONST_0, HSIPHASH_CONST_1, HSIPHASH_CONST_2, HSIPHASH_CONST_3 }, |
| 1035 | #endif |
| 1036 | .mix = __TIMER_INITIALIZER(mix_interrupt_randomness, 0) |
| 1037 | }; |
| 1038 | |
| 1039 | /* |
| 1040 | * This is [Half]SipHash-1-x, starting from an empty key. Because |
| 1041 | * the key is fixed, it assumes that its inputs are non-malicious, |
| 1042 | * and therefore this has no security on its own. s represents the |
| 1043 | * four-word SipHash state, while v represents a two-word input. |
| 1044 | */ |
| 1045 | static void fast_mix(unsigned long s[4], unsigned long v1, unsigned long v2) |
| 1046 | { |
| 1047 | s[3] ^= v1; |
| 1048 | FASTMIX_PERM(s[0], s[1], s[2], s[3]); |
| 1049 | s[0] ^= v1; |
| 1050 | s[3] ^= v2; |
| 1051 | FASTMIX_PERM(s[0], s[1], s[2], s[3]); |
| 1052 | s[0] ^= v2; |
| 1053 | } |
| 1054 | |
| 1055 | #ifdef CONFIG_SMP |
| 1056 | /* |
| 1057 | * This function is called when the CPU has just come online, with |
| 1058 | * entry CPUHP_AP_RANDOM_ONLINE, just after CPUHP_AP_WORKQUEUE_ONLINE. |
| 1059 | */ |
| 1060 | int __cold random_online_cpu(unsigned int cpu) |
| 1061 | { |
| 1062 | /* |
| 1063 | * During CPU shutdown and before CPU onlining, add_interrupt_ |
| 1064 | * randomness() may schedule mix_interrupt_randomness(), and |
| 1065 | * set the MIX_INFLIGHT flag. However, because the worker can |
| 1066 | * be scheduled on a different CPU during this period, that |
| 1067 | * flag will never be cleared. For that reason, we zero out |
| 1068 | * the flag here, which runs just after workqueues are onlined |
| 1069 | * for the CPU again. This also has the effect of setting the |
| 1070 | * irq randomness count to zero so that new accumulated irqs |
| 1071 | * are fresh. |
| 1072 | */ |
| 1073 | per_cpu_ptr(&irq_randomness, cpu)->count = 0; |
| 1074 | return 0; |
| 1075 | } |
| 1076 | #endif |
| 1077 | |
| 1078 | static void mix_interrupt_randomness(struct timer_list *work) |
| 1079 | { |
| 1080 | struct fast_pool *fast_pool = container_of(work, struct fast_pool, mix); |
| 1081 | /* |
| 1082 | * The size of the copied stack pool is explicitly 2 longs so that we |
| 1083 | * only ever ingest half of the siphash output each time, retaining |
| 1084 | * the other half as the next "key" that carries over. The entropy is |
| 1085 | * supposed to be sufficiently dispersed between bits so on average |
| 1086 | * we don't wind up "losing" some. |
| 1087 | */ |
| 1088 | unsigned long pool[2]; |
| 1089 | unsigned int count; |
| 1090 | |
| 1091 | /* Check to see if we're running on the wrong CPU due to hotplug. */ |
| 1092 | local_irq_disable(); |
| 1093 | if (fast_pool != this_cpu_ptr(&irq_randomness)) { |
| 1094 | local_irq_enable(); |
| 1095 | return; |
| 1096 | } |
| 1097 | |
| 1098 | /* |
| 1099 | * Copy the pool to the stack so that the mixer always has a |
| 1100 | * consistent view, before we reenable irqs again. |
| 1101 | */ |
| 1102 | memcpy(pool, fast_pool->pool, sizeof(pool)); |
| 1103 | count = fast_pool->count; |
| 1104 | fast_pool->count = 0; |
| 1105 | fast_pool->last = jiffies; |
| 1106 | local_irq_enable(); |
| 1107 | |
| 1108 | mix_pool_bytes(buf: pool, len: sizeof(pool)); |
| 1109 | credit_init_bits(clamp_t(unsigned int, (count & U16_MAX) / 64, 1, sizeof(pool) * 8)); |
| 1110 | |
| 1111 | memzero_explicit(s: pool, count: sizeof(pool)); |
| 1112 | } |
| 1113 | |
| 1114 | void add_interrupt_randomness(int irq) |
| 1115 | { |
| 1116 | enum { MIX_INFLIGHT = 1U << 31 }; |
| 1117 | unsigned long entropy = random_get_entropy(); |
| 1118 | struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness); |
| 1119 | struct pt_regs *regs = get_irq_regs(); |
| 1120 | unsigned int new_count; |
| 1121 | |
| 1122 | fast_mix(s: fast_pool->pool, v1: entropy, |
| 1123 | v2: (regs ? instruction_pointer(regs) : _RET_IP_) ^ swab(y: irq)); |
| 1124 | new_count = ++fast_pool->count; |
| 1125 | |
| 1126 | if (new_count & MIX_INFLIGHT) |
| 1127 | return; |
| 1128 | |
| 1129 | if (new_count < 1024 && !time_is_before_jiffies(fast_pool->last + HZ)) |
| 1130 | return; |
| 1131 | |
| 1132 | fast_pool->count |= MIX_INFLIGHT; |
| 1133 | if (!timer_pending(timer: &fast_pool->mix)) { |
| 1134 | fast_pool->mix.expires = jiffies; |
| 1135 | add_timer_on(timer: &fast_pool->mix, raw_smp_processor_id()); |
| 1136 | } |
| 1137 | } |
| 1138 | EXPORT_SYMBOL_GPL(add_interrupt_randomness); |
| 1139 | |
| 1140 | /* There is one of these per entropy source */ |
| 1141 | struct timer_rand_state { |
| 1142 | unsigned long last_time; |
| 1143 | long last_delta, last_delta2; |
| 1144 | }; |
| 1145 | |
| 1146 | /* |
| 1147 | * This function adds entropy to the entropy "pool" by using timing |
| 1148 | * delays. It uses the timer_rand_state structure to make an estimate |
| 1149 | * of how many bits of entropy this call has added to the pool. The |
| 1150 | * value "num" is also added to the pool; it should somehow describe |
| 1151 | * the type of event that just happened. |
| 1152 | */ |
| 1153 | static void add_timer_randomness(struct timer_rand_state *state, unsigned int num) |
| 1154 | { |
| 1155 | unsigned long entropy = random_get_entropy(), now = jiffies, flags; |
| 1156 | long delta, delta2, delta3; |
| 1157 | unsigned int bits; |
| 1158 | |
| 1159 | /* |
| 1160 | * If we're in a hard IRQ, add_interrupt_randomness() will be called |
| 1161 | * sometime after, so mix into the fast pool. |
| 1162 | */ |
| 1163 | if (in_hardirq()) { |
| 1164 | fast_mix(this_cpu_ptr(&irq_randomness)->pool, v1: entropy, v2: num); |
| 1165 | } else { |
| 1166 | spin_lock_irqsave(&input_pool.lock, flags); |
| 1167 | _mix_pool_bytes(buf: &entropy, len: sizeof(entropy)); |
| 1168 | _mix_pool_bytes(buf: &num, len: sizeof(num)); |
| 1169 | spin_unlock_irqrestore(lock: &input_pool.lock, flags); |
| 1170 | } |
| 1171 | |
| 1172 | if (crng_ready()) |
| 1173 | return; |
| 1174 | |
| 1175 | /* |
| 1176 | * Calculate number of bits of randomness we probably added. |
| 1177 | * We take into account the first, second and third-order deltas |
| 1178 | * in order to make our estimate. |
| 1179 | */ |
| 1180 | delta = now - READ_ONCE(state->last_time); |
| 1181 | WRITE_ONCE(state->last_time, now); |
| 1182 | |
| 1183 | delta2 = delta - READ_ONCE(state->last_delta); |
| 1184 | WRITE_ONCE(state->last_delta, delta); |
| 1185 | |
| 1186 | delta3 = delta2 - READ_ONCE(state->last_delta2); |
| 1187 | WRITE_ONCE(state->last_delta2, delta2); |
| 1188 | |
| 1189 | if (delta < 0) |
| 1190 | delta = -delta; |
| 1191 | if (delta2 < 0) |
| 1192 | delta2 = -delta2; |
| 1193 | if (delta3 < 0) |
| 1194 | delta3 = -delta3; |
| 1195 | if (delta > delta2) |
| 1196 | delta = delta2; |
| 1197 | if (delta > delta3) |
| 1198 | delta = delta3; |
| 1199 | |
| 1200 | /* |
| 1201 | * delta is now minimum absolute delta. Round down by 1 bit |
| 1202 | * on general principles, and limit entropy estimate to 11 bits. |
| 1203 | */ |
| 1204 | bits = min(fls(delta >> 1), 11); |
| 1205 | |
| 1206 | /* |
| 1207 | * As mentioned above, if we're in a hard IRQ, add_interrupt_randomness() |
| 1208 | * will run after this, which uses a different crediting scheme of 1 bit |
| 1209 | * per every 64 interrupts. In order to let that function do accounting |
| 1210 | * close to the one in this function, we credit a full 64/64 bit per bit, |
| 1211 | * and then subtract one to account for the extra one added. |
| 1212 | */ |
| 1213 | if (in_hardirq()) |
| 1214 | this_cpu_ptr(&irq_randomness)->count += max(1u, bits * 64) - 1; |
| 1215 | else |
| 1216 | _credit_init_bits(bits); |
| 1217 | } |
| 1218 | |
| 1219 | void add_input_randomness(unsigned int type, unsigned int code, unsigned int value) |
| 1220 | { |
| 1221 | static unsigned char last_value; |
| 1222 | static struct timer_rand_state input_timer_state = { INITIAL_JIFFIES }; |
| 1223 | |
| 1224 | /* Ignore autorepeat and the like. */ |
| 1225 | if (value == last_value) |
| 1226 | return; |
| 1227 | |
| 1228 | last_value = value; |
| 1229 | add_timer_randomness(state: &input_timer_state, |
| 1230 | num: (type << 4) ^ code ^ (code >> 4) ^ value); |
| 1231 | } |
| 1232 | EXPORT_SYMBOL_GPL(add_input_randomness); |
| 1233 | |
| 1234 | #ifdef CONFIG_BLOCK |
| 1235 | void add_disk_randomness(struct gendisk *disk) |
| 1236 | { |
| 1237 | if (!disk || !disk->random) |
| 1238 | return; |
| 1239 | /* First major is 1, so we get >= 0x200 here. */ |
| 1240 | add_timer_randomness(state: disk->random, num: 0x100 + disk_devt(disk)); |
| 1241 | } |
| 1242 | EXPORT_SYMBOL_GPL(add_disk_randomness); |
| 1243 | |
| 1244 | void __cold rand_initialize_disk(struct gendisk *disk) |
| 1245 | { |
| 1246 | struct timer_rand_state *state; |
| 1247 | |
| 1248 | /* |
| 1249 | * If kzalloc returns null, we just won't use that entropy |
| 1250 | * source. |
| 1251 | */ |
| 1252 | state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL); |
| 1253 | if (state) { |
| 1254 | state->last_time = INITIAL_JIFFIES; |
| 1255 | disk->random = state; |
| 1256 | } |
| 1257 | } |
| 1258 | #endif |
| 1259 | |
| 1260 | struct entropy_timer_state { |
| 1261 | unsigned long entropy; |
| 1262 | struct timer_list timer; |
| 1263 | atomic_t samples; |
| 1264 | unsigned int samples_per_bit; |
| 1265 | }; |
| 1266 | |
| 1267 | /* |
| 1268 | * Each time the timer fires, we expect that we got an unpredictable jump in |
| 1269 | * the cycle counter. Even if the timer is running on another CPU, the timer |
| 1270 | * activity will be touching the stack of the CPU that is generating entropy. |
| 1271 | * |
| 1272 | * Note that we don't re-arm the timer in the timer itself - we are happy to be |
| 1273 | * scheduled away, since that just makes the load more complex, but we do not |
| 1274 | * want the timer to keep ticking unless the entropy loop is running. |
| 1275 | * |
| 1276 | * So the re-arming always happens in the entropy loop itself. |
| 1277 | */ |
| 1278 | static void __cold entropy_timer(struct timer_list *timer) |
| 1279 | { |
| 1280 | struct entropy_timer_state *state = container_of(timer, struct entropy_timer_state, timer); |
| 1281 | unsigned long entropy = random_get_entropy(); |
| 1282 | |
| 1283 | mix_pool_bytes(buf: &entropy, len: sizeof(entropy)); |
| 1284 | if (atomic_inc_return(v: &state->samples) % state->samples_per_bit == 0) |
| 1285 | credit_init_bits(1); |
| 1286 | } |
| 1287 | |
| 1288 | /* |
| 1289 | * If we have an actual cycle counter, see if we can generate enough entropy |
| 1290 | * with timing noise. |
| 1291 | */ |
| 1292 | static void __cold try_to_generate_entropy(void) |
| 1293 | { |
| 1294 | enum { NUM_TRIAL_SAMPLES = 8192, MAX_SAMPLES_PER_BIT = HZ / 15 }; |
| 1295 | u8 stack_bytes[sizeof(struct entropy_timer_state) + SMP_CACHE_BYTES - 1]; |
| 1296 | struct entropy_timer_state *stack = PTR_ALIGN((void *)stack_bytes, SMP_CACHE_BYTES); |
| 1297 | unsigned int i, num_different = 0; |
| 1298 | unsigned long last = random_get_entropy(); |
| 1299 | int cpu = -1; |
| 1300 | |
| 1301 | for (i = 0; i < NUM_TRIAL_SAMPLES - 1; ++i) { |
| 1302 | stack->entropy = random_get_entropy(); |
| 1303 | if (stack->entropy != last) |
| 1304 | ++num_different; |
| 1305 | last = stack->entropy; |
| 1306 | } |
| 1307 | stack->samples_per_bit = DIV_ROUND_UP(NUM_TRIAL_SAMPLES, num_different + 1); |
| 1308 | if (stack->samples_per_bit > MAX_SAMPLES_PER_BIT) |
| 1309 | return; |
| 1310 | |
| 1311 | atomic_set(v: &stack->samples, i: 0); |
| 1312 | timer_setup_on_stack(&stack->timer, entropy_timer, 0); |
| 1313 | while (!crng_ready() && !signal_pending(current)) { |
| 1314 | /* |
| 1315 | * Check !timer_pending() and then ensure that any previous callback has finished |
| 1316 | * executing by checking timer_delete_sync_try(), before queueing the next one. |
| 1317 | */ |
| 1318 | if (!timer_pending(timer: &stack->timer) && timer_delete_sync_try(timer: &stack->timer) >= 0) { |
| 1319 | struct cpumask timer_cpus; |
| 1320 | unsigned int num_cpus; |
| 1321 | |
| 1322 | /* |
| 1323 | * Preemption must be disabled here, both to read the current CPU number |
| 1324 | * and to avoid scheduling a timer on a dead CPU. |
| 1325 | */ |
| 1326 | preempt_disable(); |
| 1327 | |
| 1328 | /* Only schedule callbacks on timer CPUs that are online. */ |
| 1329 | cpumask_and(dstp: &timer_cpus, src1p: housekeeping_cpumask(type: HK_TYPE_TIMER), cpu_online_mask); |
| 1330 | num_cpus = cpumask_weight(srcp: &timer_cpus); |
| 1331 | /* In very bizarre case of misconfiguration, fallback to all online. */ |
| 1332 | if (unlikely(num_cpus == 0)) { |
| 1333 | timer_cpus = *cpu_online_mask; |
| 1334 | num_cpus = cpumask_weight(srcp: &timer_cpus); |
| 1335 | } |
| 1336 | |
| 1337 | /* Basic CPU round-robin, which avoids the current CPU. */ |
| 1338 | do { |
| 1339 | cpu = cpumask_next(n: cpu, srcp: &timer_cpus); |
| 1340 | if (cpu >= nr_cpu_ids) |
| 1341 | cpu = cpumask_first(srcp: &timer_cpus); |
| 1342 | } while (cpu == smp_processor_id() && num_cpus > 1); |
| 1343 | |
| 1344 | /* Expiring the timer at `jiffies` means it's the next tick. */ |
| 1345 | stack->timer.expires = jiffies; |
| 1346 | |
| 1347 | add_timer_on(timer: &stack->timer, cpu); |
| 1348 | |
| 1349 | preempt_enable(); |
| 1350 | } |
| 1351 | mix_pool_bytes(buf: &stack->entropy, len: sizeof(stack->entropy)); |
| 1352 | schedule(); |
| 1353 | stack->entropy = random_get_entropy(); |
| 1354 | } |
| 1355 | mix_pool_bytes(buf: &stack->entropy, len: sizeof(stack->entropy)); |
| 1356 | |
| 1357 | timer_delete_sync(timer: &stack->timer); |
| 1358 | timer_destroy_on_stack(timer: &stack->timer); |
| 1359 | } |
| 1360 | |
| 1361 | |
| 1362 | /********************************************************************** |
| 1363 | * |
| 1364 | * Userspace reader/writer interfaces. |
| 1365 | * |
| 1366 | * getrandom(2) is the primary modern interface into the RNG and should |
| 1367 | * be used in preference to anything else. |
| 1368 | * |
| 1369 | * Reading from /dev/random has the same functionality as calling |
| 1370 | * getrandom(2) with flags=0. In earlier versions, however, it had |
| 1371 | * vastly different semantics and should therefore be avoided, to |
| 1372 | * prevent backwards compatibility issues. |
| 1373 | * |
| 1374 | * Reading from /dev/urandom has the same functionality as calling |
| 1375 | * getrandom(2) with flags=GRND_INSECURE. Because it does not block |
| 1376 | * waiting for the RNG to be ready, it should not be used. |
| 1377 | * |
| 1378 | * Writing to either /dev/random or /dev/urandom adds entropy to |
| 1379 | * the input pool but does not credit it. |
| 1380 | * |
| 1381 | * Polling on /dev/random indicates when the RNG is initialized, on |
| 1382 | * the read side, and when it wants new entropy, on the write side. |
| 1383 | * |
| 1384 | * Both /dev/random and /dev/urandom have the same set of ioctls for |
| 1385 | * adding entropy, getting the entropy count, zeroing the count, and |
| 1386 | * reseeding the crng. |
| 1387 | * |
| 1388 | **********************************************************************/ |
| 1389 | |
| 1390 | SYSCALL_DEFINE3(getrandom, char __user *, ubuf, size_t, len, unsigned int, flags) |
| 1391 | { |
| 1392 | struct iov_iter iter; |
| 1393 | int ret; |
| 1394 | |
| 1395 | if (flags & ~(GRND_NONBLOCK | GRND_RANDOM | GRND_INSECURE)) |
| 1396 | return -EINVAL; |
| 1397 | |
| 1398 | /* |
| 1399 | * Requesting insecure and blocking randomness at the same time makes |
| 1400 | * no sense. |
| 1401 | */ |
| 1402 | if ((flags & (GRND_INSECURE | GRND_RANDOM)) == (GRND_INSECURE | GRND_RANDOM)) |
| 1403 | return -EINVAL; |
| 1404 | |
| 1405 | if (!crng_ready() && !(flags & GRND_INSECURE)) { |
| 1406 | if (flags & GRND_NONBLOCK) |
| 1407 | return -EAGAIN; |
| 1408 | ret = wait_for_random_bytes(); |
| 1409 | if (unlikely(ret)) |
| 1410 | return ret; |
| 1411 | } |
| 1412 | |
| 1413 | ret = import_ubuf(ITER_DEST, buf: ubuf, len, i: &iter); |
| 1414 | if (unlikely(ret)) |
| 1415 | return ret; |
| 1416 | return get_random_bytes_user(iter: &iter); |
| 1417 | } |
| 1418 | |
| 1419 | static __poll_t random_poll(struct file *file, poll_table *wait) |
| 1420 | { |
| 1421 | poll_wait(filp: file, wait_address: &crng_init_wait, p: wait); |
| 1422 | return crng_ready() ? EPOLLIN | EPOLLRDNORM : EPOLLOUT | EPOLLWRNORM; |
| 1423 | } |
| 1424 | |
| 1425 | static ssize_t write_pool_user(struct iov_iter *iter) |
| 1426 | { |
| 1427 | u8 block[BLAKE2S_BLOCK_SIZE]; |
| 1428 | ssize_t ret = 0; |
| 1429 | size_t copied; |
| 1430 | |
| 1431 | if (unlikely(!iov_iter_count(iter))) |
| 1432 | return 0; |
| 1433 | |
| 1434 | for (;;) { |
| 1435 | copied = copy_from_iter(addr: block, bytes: sizeof(block), i: iter); |
| 1436 | ret += copied; |
| 1437 | mix_pool_bytes(buf: block, len: copied); |
| 1438 | if (!iov_iter_count(i: iter) || copied != sizeof(block)) |
| 1439 | break; |
| 1440 | |
| 1441 | BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0); |
| 1442 | if (ret % PAGE_SIZE == 0) { |
| 1443 | if (signal_pending(current)) |
| 1444 | break; |
| 1445 | cond_resched(); |
| 1446 | } |
| 1447 | } |
| 1448 | |
| 1449 | memzero_explicit(s: block, count: sizeof(block)); |
| 1450 | return ret ? ret : -EFAULT; |
| 1451 | } |
| 1452 | |
| 1453 | static ssize_t random_write_iter(struct kiocb *kiocb, struct iov_iter *iter) |
| 1454 | { |
| 1455 | return write_pool_user(iter); |
| 1456 | } |
| 1457 | |
| 1458 | static ssize_t urandom_read_iter(struct kiocb *kiocb, struct iov_iter *iter) |
| 1459 | { |
| 1460 | static int maxwarn = 10; |
| 1461 | |
| 1462 | /* |
| 1463 | * Opportunistically attempt to initialize the RNG on platforms that |
| 1464 | * have fast cycle counters, but don't (for now) require it to succeed. |
| 1465 | */ |
| 1466 | if (!crng_ready()) |
| 1467 | try_to_generate_entropy(); |
| 1468 | |
| 1469 | if (!crng_ready()) { |
| 1470 | if (!ratelimit_disable && maxwarn <= 0) |
| 1471 | ratelimit_state_inc_miss(rs: &urandom_warning); |
| 1472 | else if (ratelimit_disable || __ratelimit(&urandom_warning)) { |
| 1473 | --maxwarn; |
| 1474 | pr_notice("%s: uninitialized urandom read (%zu bytes read)\n" , |
| 1475 | current->comm, iov_iter_count(iter)); |
| 1476 | } |
| 1477 | } |
| 1478 | |
| 1479 | return get_random_bytes_user(iter); |
| 1480 | } |
| 1481 | |
| 1482 | static ssize_t random_read_iter(struct kiocb *kiocb, struct iov_iter *iter) |
| 1483 | { |
| 1484 | int ret; |
| 1485 | |
| 1486 | if (!crng_ready() && |
| 1487 | ((kiocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO)) || |
| 1488 | (kiocb->ki_filp->f_flags & O_NONBLOCK))) |
| 1489 | return -EAGAIN; |
| 1490 | |
| 1491 | ret = wait_for_random_bytes(); |
| 1492 | if (ret != 0) |
| 1493 | return ret; |
| 1494 | return get_random_bytes_user(iter); |
| 1495 | } |
| 1496 | |
| 1497 | static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg) |
| 1498 | { |
| 1499 | int __user *p = (int __user *)arg; |
| 1500 | int ent_count; |
| 1501 | |
| 1502 | switch (cmd) { |
| 1503 | case RNDGETENTCNT: |
| 1504 | /* Inherently racy, no point locking. */ |
| 1505 | if (put_user(input_pool.init_bits, p)) |
| 1506 | return -EFAULT; |
| 1507 | return 0; |
| 1508 | case RNDADDTOENTCNT: |
| 1509 | if (!capable(CAP_SYS_ADMIN)) |
| 1510 | return -EPERM; |
| 1511 | if (get_user(ent_count, p)) |
| 1512 | return -EFAULT; |
| 1513 | if (ent_count < 0) |
| 1514 | return -EINVAL; |
| 1515 | credit_init_bits(ent_count); |
| 1516 | return 0; |
| 1517 | case RNDADDENTROPY: { |
| 1518 | struct iov_iter iter; |
| 1519 | ssize_t ret; |
| 1520 | int len; |
| 1521 | |
| 1522 | if (!capable(CAP_SYS_ADMIN)) |
| 1523 | return -EPERM; |
| 1524 | if (get_user(ent_count, p++)) |
| 1525 | return -EFAULT; |
| 1526 | if (ent_count < 0) |
| 1527 | return -EINVAL; |
| 1528 | if (get_user(len, p++)) |
| 1529 | return -EFAULT; |
| 1530 | ret = import_ubuf(ITER_SOURCE, buf: p, len, i: &iter); |
| 1531 | if (unlikely(ret)) |
| 1532 | return ret; |
| 1533 | ret = write_pool_user(iter: &iter); |
| 1534 | if (unlikely(ret < 0)) |
| 1535 | return ret; |
| 1536 | /* Since we're crediting, enforce that it was all written into the pool. */ |
| 1537 | if (unlikely(ret != len)) |
| 1538 | return -EFAULT; |
| 1539 | credit_init_bits(ent_count); |
| 1540 | return 0; |
| 1541 | } |
| 1542 | case RNDZAPENTCNT: |
| 1543 | case RNDCLEARPOOL: |
| 1544 | /* No longer has any effect. */ |
| 1545 | if (!capable(CAP_SYS_ADMIN)) |
| 1546 | return -EPERM; |
| 1547 | return 0; |
| 1548 | case RNDRESEEDCRNG: |
| 1549 | if (!capable(CAP_SYS_ADMIN)) |
| 1550 | return -EPERM; |
| 1551 | if (!crng_ready()) |
| 1552 | return -ENODATA; |
| 1553 | crng_reseed(NULL); |
| 1554 | return 0; |
| 1555 | default: |
| 1556 | return -EINVAL; |
| 1557 | } |
| 1558 | } |
| 1559 | |
| 1560 | static int random_fasync(int fd, struct file *filp, int on) |
| 1561 | { |
| 1562 | return fasync_helper(fd, filp, on, &fasync); |
| 1563 | } |
| 1564 | |
| 1565 | const struct file_operations random_fops = { |
| 1566 | .read_iter = random_read_iter, |
| 1567 | .write_iter = random_write_iter, |
| 1568 | .poll = random_poll, |
| 1569 | .unlocked_ioctl = random_ioctl, |
| 1570 | .compat_ioctl = compat_ptr_ioctl, |
| 1571 | .fasync = random_fasync, |
| 1572 | .llseek = noop_llseek, |
| 1573 | .splice_read = copy_splice_read, |
| 1574 | .splice_write = iter_file_splice_write, |
| 1575 | }; |
| 1576 | |
| 1577 | const struct file_operations urandom_fops = { |
| 1578 | .read_iter = urandom_read_iter, |
| 1579 | .write_iter = random_write_iter, |
| 1580 | .unlocked_ioctl = random_ioctl, |
| 1581 | .compat_ioctl = compat_ptr_ioctl, |
| 1582 | .fasync = random_fasync, |
| 1583 | .llseek = noop_llseek, |
| 1584 | .splice_read = copy_splice_read, |
| 1585 | .splice_write = iter_file_splice_write, |
| 1586 | }; |
| 1587 | |
| 1588 | |
| 1589 | /******************************************************************** |
| 1590 | * |
| 1591 | * Sysctl interface. |
| 1592 | * |
| 1593 | * These are partly unused legacy knobs with dummy values to not break |
| 1594 | * userspace and partly still useful things. They are usually accessible |
| 1595 | * in /proc/sys/kernel/random/ and are as follows: |
| 1596 | * |
| 1597 | * - boot_id - a UUID representing the current boot. |
| 1598 | * |
| 1599 | * - uuid - a random UUID, different each time the file is read. |
| 1600 | * |
| 1601 | * - poolsize - the number of bits of entropy that the input pool can |
| 1602 | * hold, tied to the POOL_BITS constant. |
| 1603 | * |
| 1604 | * - entropy_avail - the number of bits of entropy currently in the |
| 1605 | * input pool. Always <= poolsize. |
| 1606 | * |
| 1607 | * - write_wakeup_threshold - the amount of entropy in the input pool |
| 1608 | * below which write polls to /dev/random will unblock, requesting |
| 1609 | * more entropy, tied to the POOL_READY_BITS constant. It is writable |
| 1610 | * to avoid breaking old userspaces, but writing to it does not |
| 1611 | * change any behavior of the RNG. |
| 1612 | * |
| 1613 | * - urandom_min_reseed_secs - fixed to the value CRNG_RESEED_INTERVAL. |
| 1614 | * It is writable to avoid breaking old userspaces, but writing |
| 1615 | * to it does not change any behavior of the RNG. |
| 1616 | * |
| 1617 | ********************************************************************/ |
| 1618 | |
| 1619 | #ifdef CONFIG_SYSCTL |
| 1620 | |
| 1621 | #include <linux/sysctl.h> |
| 1622 | |
| 1623 | static int sysctl_random_min_urandom_seed = CRNG_RESEED_INTERVAL / HZ; |
| 1624 | static int sysctl_random_write_wakeup_bits = POOL_READY_BITS; |
| 1625 | static int sysctl_poolsize = POOL_BITS; |
| 1626 | static u8 sysctl_bootid[UUID_SIZE]; |
| 1627 | |
| 1628 | /* |
| 1629 | * This function is used to return both the bootid UUID, and random |
| 1630 | * UUID. The difference is in whether table->data is NULL; if it is, |
| 1631 | * then a new UUID is generated and returned to the user. |
| 1632 | */ |
| 1633 | static int proc_do_uuid(const struct ctl_table *table, int write, void *buf, |
| 1634 | size_t *lenp, loff_t *ppos) |
| 1635 | { |
| 1636 | u8 tmp_uuid[UUID_SIZE], *uuid; |
| 1637 | char uuid_string[UUID_STRING_LEN + 1]; |
| 1638 | struct ctl_table fake_table = { |
| 1639 | .data = uuid_string, |
| 1640 | .maxlen = UUID_STRING_LEN |
| 1641 | }; |
| 1642 | |
| 1643 | if (write) |
| 1644 | return -EPERM; |
| 1645 | |
| 1646 | uuid = table->data; |
| 1647 | if (!uuid) { |
| 1648 | uuid = tmp_uuid; |
| 1649 | generate_random_uuid(uuid); |
| 1650 | } else { |
| 1651 | static DEFINE_SPINLOCK(bootid_spinlock); |
| 1652 | |
| 1653 | spin_lock(lock: &bootid_spinlock); |
| 1654 | if (!uuid[8]) |
| 1655 | generate_random_uuid(uuid); |
| 1656 | spin_unlock(lock: &bootid_spinlock); |
| 1657 | } |
| 1658 | |
| 1659 | snprintf(buf: uuid_string, size: sizeof(uuid_string), fmt: "%pU" , uuid); |
| 1660 | return proc_dostring(&fake_table, 0, buf, lenp, ppos); |
| 1661 | } |
| 1662 | |
| 1663 | /* The same as proc_dointvec, but writes don't change anything. */ |
| 1664 | static int proc_do_rointvec(const struct ctl_table *table, int write, void *buf, |
| 1665 | size_t *lenp, loff_t *ppos) |
| 1666 | { |
| 1667 | return write ? 0 : proc_dointvec(table, 0, buf, lenp, ppos); |
| 1668 | } |
| 1669 | |
| 1670 | static const struct ctl_table random_table[] = { |
| 1671 | { |
| 1672 | .procname = "poolsize" , |
| 1673 | .data = &sysctl_poolsize, |
| 1674 | .maxlen = sizeof(int), |
| 1675 | .mode = 0444, |
| 1676 | .proc_handler = proc_dointvec, |
| 1677 | }, |
| 1678 | { |
| 1679 | .procname = "entropy_avail" , |
| 1680 | .data = &input_pool.init_bits, |
| 1681 | .maxlen = sizeof(int), |
| 1682 | .mode = 0444, |
| 1683 | .proc_handler = proc_dointvec, |
| 1684 | }, |
| 1685 | { |
| 1686 | .procname = "write_wakeup_threshold" , |
| 1687 | .data = &sysctl_random_write_wakeup_bits, |
| 1688 | .maxlen = sizeof(int), |
| 1689 | .mode = 0644, |
| 1690 | .proc_handler = proc_do_rointvec, |
| 1691 | }, |
| 1692 | { |
| 1693 | .procname = "urandom_min_reseed_secs" , |
| 1694 | .data = &sysctl_random_min_urandom_seed, |
| 1695 | .maxlen = sizeof(int), |
| 1696 | .mode = 0644, |
| 1697 | .proc_handler = proc_do_rointvec, |
| 1698 | }, |
| 1699 | { |
| 1700 | .procname = "boot_id" , |
| 1701 | .data = &sysctl_bootid, |
| 1702 | .mode = 0444, |
| 1703 | .proc_handler = proc_do_uuid, |
| 1704 | }, |
| 1705 | { |
| 1706 | .procname = "uuid" , |
| 1707 | .mode = 0444, |
| 1708 | .proc_handler = proc_do_uuid, |
| 1709 | }, |
| 1710 | }; |
| 1711 | |
| 1712 | /* |
| 1713 | * random_init() is called before sysctl_init(), |
| 1714 | * so we cannot call register_sysctl_init() in random_init() |
| 1715 | */ |
| 1716 | static int __init random_sysctls_init(void) |
| 1717 | { |
| 1718 | register_sysctl_init("kernel/random" , random_table); |
| 1719 | return 0; |
| 1720 | } |
| 1721 | device_initcall(random_sysctls_init); |
| 1722 | #endif |
| 1723 | |