| 1 | /* SPDX-License-Identifier: GPL-2.0 */ |
| 2 | #ifndef _LINUX_MATH_H |
| 3 | #define _LINUX_MATH_H |
| 4 | |
| 5 | #include <linux/types.h> |
| 6 | #include <asm/div64.h> |
| 7 | #include <uapi/linux/kernel.h> |
| 8 | |
| 9 | /* |
| 10 | * This looks more complex than it should be. But we need to |
| 11 | * get the type for the ~ right in round_down (it needs to be |
| 12 | * as wide as the result!), and we want to evaluate the macro |
| 13 | * arguments just once each. |
| 14 | */ |
| 15 | #define __round_mask(x, y) ((__typeof__(x))((y)-1)) |
| 16 | |
| 17 | /** |
| 18 | * round_up - round up to next specified power of 2 |
| 19 | * @x: the value to round |
| 20 | * @y: multiple to round up to (must be a power of 2) |
| 21 | * |
| 22 | * Rounds @x up to next multiple of @y (which must be a power of 2). |
| 23 | * To perform arbitrary rounding up, use roundup() below. |
| 24 | */ |
| 25 | #define round_up(x, y) ((((x)-1) | __round_mask(x, y))+1) |
| 26 | |
| 27 | /** |
| 28 | * round_down - round down to next specified power of 2 |
| 29 | * @x: the value to round |
| 30 | * @y: multiple to round down to (must be a power of 2) |
| 31 | * |
| 32 | * Rounds @x down to next multiple of @y (which must be a power of 2). |
| 33 | * To perform arbitrary rounding down, use rounddown() below. |
| 34 | */ |
| 35 | #define round_down(x, y) ((x) & ~__round_mask(x, y)) |
| 36 | |
| 37 | /** |
| 38 | * DIV_ROUND_UP_POW2 - divide and round up |
| 39 | * @n: numerator |
| 40 | * @d: denominator (must be a power of 2) |
| 41 | * |
| 42 | * Divides @n by @d and rounds up to next multiple of @d (which must be a power |
| 43 | * of 2). Avoids integer overflows that may occur with __KERNEL_DIV_ROUND_UP(). |
| 44 | * Performance is roughly equivalent to __KERNEL_DIV_ROUND_UP(). |
| 45 | */ |
| 46 | #define DIV_ROUND_UP_POW2(n, d) \ |
| 47 | ((n) / (d) + !!((n) & ((d) - 1))) |
| 48 | |
| 49 | #define DIV_ROUND_UP __KERNEL_DIV_ROUND_UP |
| 50 | |
| 51 | #define DIV_ROUND_DOWN_ULL(ll, d) \ |
| 52 | ({ unsigned long long _tmp = (ll); do_div(_tmp, d); _tmp; }) |
| 53 | |
| 54 | #define DIV_ROUND_UP_ULL(ll, d) \ |
| 55 | DIV_ROUND_DOWN_ULL((unsigned long long)(ll) + (d) - 1, (d)) |
| 56 | |
| 57 | #if BITS_PER_LONG == 32 |
| 58 | # define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP_ULL(ll, d) |
| 59 | #else |
| 60 | # define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP(ll,d) |
| 61 | #endif |
| 62 | |
| 63 | /** |
| 64 | * roundup - round up to the next specified multiple |
| 65 | * @x: the value to up |
| 66 | * @y: multiple to round up to |
| 67 | * |
| 68 | * Rounds @x up to next multiple of @y. If @y will always be a power |
| 69 | * of 2, consider using the faster round_up(). |
| 70 | */ |
| 71 | #define roundup(x, y) ( \ |
| 72 | { \ |
| 73 | typeof(y) __y = y; \ |
| 74 | (((x) + (__y - 1)) / __y) * __y; \ |
| 75 | } \ |
| 76 | ) |
| 77 | /** |
| 78 | * rounddown - round down to next specified multiple |
| 79 | * @x: the value to round |
| 80 | * @y: multiple to round down to |
| 81 | * |
| 82 | * Rounds @x down to next multiple of @y. If @y will always be a power |
| 83 | * of 2, consider using the faster round_down(). |
| 84 | */ |
| 85 | #define rounddown(x, y) ( \ |
| 86 | { \ |
| 87 | typeof(x) __x = (x); \ |
| 88 | __x - (__x % (y)); \ |
| 89 | } \ |
| 90 | ) |
| 91 | |
| 92 | /* |
| 93 | * Divide positive or negative dividend by positive or negative divisor |
| 94 | * and round to closest integer. Result is undefined for negative |
| 95 | * divisors if the dividend variable type is unsigned and for negative |
| 96 | * dividends if the divisor variable type is unsigned. |
| 97 | */ |
| 98 | #define DIV_ROUND_CLOSEST(x, divisor)( \ |
| 99 | { \ |
| 100 | typeof(x) __x = x; \ |
| 101 | typeof(divisor) __d = divisor; \ |
| 102 | (((typeof(x))-1) > 0 || \ |
| 103 | ((typeof(divisor))-1) > 0 || \ |
| 104 | (((__x) > 0) == ((__d) > 0))) ? \ |
| 105 | (((__x) + ((__d) / 2)) / (__d)) : \ |
| 106 | (((__x) - ((__d) / 2)) / (__d)); \ |
| 107 | } \ |
| 108 | ) |
| 109 | /* |
| 110 | * Same as above but for u64 dividends. divisor must be a 32-bit |
| 111 | * number. |
| 112 | */ |
| 113 | #define DIV_ROUND_CLOSEST_ULL(x, divisor)( \ |
| 114 | { \ |
| 115 | typeof(divisor) __d = divisor; \ |
| 116 | unsigned long long _tmp = (x) + (__d) / 2; \ |
| 117 | do_div(_tmp, __d); \ |
| 118 | _tmp; \ |
| 119 | } \ |
| 120 | ) |
| 121 | |
| 122 | #define __STRUCT_FRACT(type) \ |
| 123 | struct type##_fract { \ |
| 124 | __##type numerator; \ |
| 125 | __##type denominator; \ |
| 126 | }; |
| 127 | __STRUCT_FRACT(s8) |
| 128 | __STRUCT_FRACT(u8) |
| 129 | __STRUCT_FRACT(s16) |
| 130 | __STRUCT_FRACT(u16) |
| 131 | __STRUCT_FRACT(s32) |
| 132 | __STRUCT_FRACT(u32) |
| 133 | #undef __STRUCT_FRACT |
| 134 | |
| 135 | /* Calculate "x * n / d" without unnecessary overflow or loss of precision. */ |
| 136 | #define mult_frac(x, n, d) \ |
| 137 | ({ \ |
| 138 | typeof(x) x_ = (x); \ |
| 139 | typeof(n) n_ = (n); \ |
| 140 | typeof(d) d_ = (d); \ |
| 141 | \ |
| 142 | typeof(x_) q = x_ / d_; \ |
| 143 | typeof(x_) r = x_ % d_; \ |
| 144 | q * n_ + r * n_ / d_; \ |
| 145 | }) |
| 146 | |
| 147 | #define sector_div(a, b) do_div(a, b) |
| 148 | |
| 149 | /** |
| 150 | * abs - return absolute value of an argument |
| 151 | * @x: the value. If it is unsigned type, it is converted to signed type first. |
| 152 | * char is treated as if it was signed (regardless of whether it really is) |
| 153 | * but the macro's return type is preserved as char. |
| 154 | * |
| 155 | * Return: an absolute value of x. |
| 156 | */ |
| 157 | #define abs(x) __abs_choose_expr(x, long long, \ |
| 158 | __abs_choose_expr(x, long, \ |
| 159 | __abs_choose_expr(x, int, \ |
| 160 | __abs_choose_expr(x, short, \ |
| 161 | __abs_choose_expr(x, char, \ |
| 162 | __builtin_choose_expr( \ |
| 163 | __builtin_types_compatible_p(typeof(x), char), \ |
| 164 | (char)({ signed char __x = (x); __x<0?-__x:__x; }), \ |
| 165 | ((void)0))))))) |
| 166 | |
| 167 | #define __abs_choose_expr(x, type, other) __builtin_choose_expr( \ |
| 168 | __builtin_types_compatible_p(typeof(x), signed type) || \ |
| 169 | __builtin_types_compatible_p(typeof(x), unsigned type), \ |
| 170 | ({ signed type __x = (x); __x < 0 ? -__x : __x; }), other) |
| 171 | |
| 172 | /** |
| 173 | * abs_diff - return absolute value of the difference between the arguments |
| 174 | * @a: the first argument |
| 175 | * @b: the second argument |
| 176 | * |
| 177 | * @a and @b have to be of the same type. With this restriction we compare |
| 178 | * signed to signed and unsigned to unsigned. The result is the subtraction |
| 179 | * the smaller of the two from the bigger, hence result is always a positive |
| 180 | * value. |
| 181 | * |
| 182 | * Return: an absolute value of the difference between the @a and @b. |
| 183 | */ |
| 184 | #define abs_diff(a, b) ({ \ |
| 185 | typeof(a) __a = (a); \ |
| 186 | typeof(b) __b = (b); \ |
| 187 | (void)(&__a == &__b); \ |
| 188 | __a > __b ? (__a - __b) : (__b - __a); \ |
| 189 | }) |
| 190 | |
| 191 | /** |
| 192 | * reciprocal_scale - "scale" a value into range [0, ep_ro) |
| 193 | * @val: value |
| 194 | * @ep_ro: right open interval endpoint |
| 195 | * |
| 196 | * Perform a "reciprocal multiplication" in order to "scale" a value into |
| 197 | * range [0, @ep_ro), where the upper interval endpoint is right-open. |
| 198 | * This is useful, e.g. for accessing a index of an array containing |
| 199 | * @ep_ro elements, for example. Think of it as sort of modulus, only that |
| 200 | * the result isn't that of modulo. ;) Note that if initial input is a |
| 201 | * small value, then result will return 0. |
| 202 | * |
| 203 | * Return: a result based on @val in interval [0, @ep_ro). |
| 204 | */ |
| 205 | static inline u32 reciprocal_scale(u32 val, u32 ep_ro) |
| 206 | { |
| 207 | return (u32)(((u64) val * ep_ro) >> 32); |
| 208 | } |
| 209 | |
| 210 | u64 int_pow(u64 base, unsigned int exp); |
| 211 | unsigned long int_sqrt(unsigned long); |
| 212 | |
| 213 | #if BITS_PER_LONG < 64 |
| 214 | u32 int_sqrt64(u64 x); |
| 215 | #else |
| 216 | static inline u32 int_sqrt64(u64 x) |
| 217 | { |
| 218 | return (u32)int_sqrt(x); |
| 219 | } |
| 220 | #endif |
| 221 | |
| 222 | #endif /* _LINUX_MATH_H */ |
| 223 | |