Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Precise synthesis of advanced polyarylamines for efficient perovskite solar cells

Abstract

Although being highly demanded in organic electronics, functional conjugated polymers face challenges on scalable synthesis with batch uniformities. Here a reactivity-regulated sequent cross-coupling carbon–nitrogen polycondensation method is developed to enable the precise synthesis of functional polyarylamines with excellent batch-to-batch uniformity. It is revealed that the stepwise regulation of intermediate reactivities is key to accomplish controllable polycondensation via two sequent palladium-promoted carbon–nitrogen coupling cycles, which is distinct to the unicyclic carbon–carbon coupling. A variety of polyarylamines are prepared to improve the material functionalities, where a ternary polymer consisting of polar substituents is shown to optimize the interfacial and bulk properties of perovskite layers fabricated on top. The corresponding inverted perovskite solar cells achieved remarkable power conversion efficiencies of 25.2% (active area, 5.97 mm2) and 23.2% (active area, 128 mm2), along with decent operational stabilities. Overall, this work provides an effective polymerization method for advanced conjugated polymers to enable high-performance optoelectronics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cross-coupling polycondensation.
Fig. 2: Mechanistic investigation.
Fig. 3: Substrate scope.
Fig. 4: Device performances of PSCs.

Similar content being viewed by others

Data availability

The main data supporting the findings of this study are available within the Article and its Supplementary Information.

References

  1. Swager, T. M. 50th anniversary perspective: conducting/semiconducting conjugated polymers. A personal perspective on the past and the future. Macromolecules 50, 4867–4886 (2017).

    Article  CAS  Google Scholar 

  2. Ding, L. et al. Polymer semiconductors: synthesis, processing, and applications. Chem. Rev. 123, 7421–7497 (2023).

    Article  CAS  PubMed  Google Scholar 

  3. Yu, Z.-P., Yan, K., Ullah, W., Chen, H. & Li, C.-Z. Conjugated polymers for photon-to-electron and photon-to-fuel conversions. ACS Appl. Polym. Mater. 3, 60–92 (2020).

    Article  Google Scholar 

  4. Sun, F. et al. Soft fiber electronics based on semiconducting polymer. Chem. Rev. 123, 4693–4763 (2023).

    Article  CAS  PubMed  Google Scholar 

  5. An, C. & Hou, J. Benzo[1,2-b:4,5-b′]dithiophene-based conjugated polymers for highly efficient organic photovoltaics. Acc. Mater. Res. 3, 540–551 (2022).

    Article  CAS  Google Scholar 

  6. Freudenberg, J., Jansch, D., Hinkel, F. & Bunz, U. H. F. Immobilization strategies for organic semiconducting conjugated polymers. Chem. Rev. 118, 5598–5689 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Fei, C. et al. Strong-bonding hole-transport layers reduce ultraviolet degradation of perovskite solar cells. Science 384, 1126–1134 (2024).

    Article  CAS  PubMed  Google Scholar 

  8. Li, B. et al. Highly efficient and scalable p-i-n perovskite solar cells enabled by poly-metallocene interfaces. J. Am. Chem. Soc. 146, 13391–13398 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li, H. et al. 2D/3D heterojunction engineering at the buried interface towards high-performance inverted methylammonium-free perovskite solar cells. Nat. Energy 8, 946–955 (2023).

    Article  CAS  Google Scholar 

  10. Liang, Z. et al. Homogenizing out-of-plane cation composition in perovskite solar cells. Nature 624, 557–563 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fei, C. et al. Lead-chelating hole-transport layers for efficient and stable perovskite minimodules. Science 380, 823–829 (2023).

    Article  CAS  PubMed  Google Scholar 

  12. Luo, D. et al. Enhanced photovoltage for inverted planar heterojunction perovskite solar cells. Science 360, 1442–1446 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. Huang, Y. et al. Finite perovskite hierarchical structures via ligand confinement leading to efficient inverted perovskite solar cells. Energy Environ. Sci. 16, 557–564 (2023).

    Article  CAS  Google Scholar 

  14. Sun, Y. et al. Bright and stable perovskite light-emitting diodes in the near-infrared range. Nature 615, 830–835 (2023).

    Article  CAS  PubMed  Google Scholar 

  15. Zhao, X. & Tan, Z.-K. Large-area near-infrared perovskite light-emitting diodes. Nat. Photon. 14, 215–218 (2019).

    Article  Google Scholar 

  16. Jiang, Q. & Zhu, K. Rapid advances enabling high-performance inverted perovskite solar cells. Nat. Rev. Mater. 9, 399–419 (2024).

    Article  CAS  Google Scholar 

  17. Veres, J., Ogier, S. D., Leeming, S. W., Cupertino, D. C. & Khaffaf, S. M. Low‐k insulators as the choice of dielectrics in organic field‐effect transistors. Adv. Funct. Mater. 13, 199–204 (2003).

    Article  CAS  Google Scholar 

  18. Mathijssen, S. G. J. et al. Dynamics of threshold voltage shifts in organic and amorphous silicon field-effect transistors. Adv. Mater. 19, 2785–2789 (2007).

    Article  CAS  Google Scholar 

  19. Zhang, W. et al. Systematic improvement in charge carrier mobility of air stable triarylamine copolymers. J. Am. Chem. Soc. 131, 10814–10815 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Wang, Y. et al. PTAA as efficient hole transport materials in perovskite solar cells: a review. Sol. RRL 6, 2200234 (2022).

    Article  CAS  Google Scholar 

  21. Xu, X. et al. Improving contact and passivation of buried interface for high‐efficiency and large‐area inverted perovskite solar cells. Adv. Funct. Mater. 32, 2109968 (2021).

    Article  Google Scholar 

  22. Chen, R. et al. Robust hole transport material with interface anchors enhances the efficiency and stability of inverted formamidinium–cesium perovskite solar cells with a certified efficiency of 22.3%. Energy Environ. Sci. 15, 2567–2580 (2022).

    Article  CAS  Google Scholar 

  23. Wu, X. et al. Backbone engineering enables highly efficient polymer hole‐transporting materials for inverted perovskite solar cells. Adv. Mater. 35, 2208431 (2023).

    Article  CAS  Google Scholar 

  24. Miyaura, N. & Suzuki, A. Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chem. Rev. 95, 2457–2483 (1995).

    Article  CAS  Google Scholar 

  25. Burke, D. J. & Lipomi, D. J. Green chemistry for organic solar cells. Energy Environ. Sci. 6, 2053–2066 (2013).

    Article  CAS  Google Scholar 

  26. Xiong, H. et al. General room-temperature Suzuki–Miyaura polymerization for organic electronics. Nat. Mater. 23, 695–702 (2024).

    Article  CAS  PubMed  Google Scholar 

  27. Yamamoto, T., Hayashi, Y. & Yamamoto, A. A novel type of polycondensation utilizing transition metal-catalyzed C–C coupling. I. Preparation of thermostable polyphenylene type polymers. Bull. Chem. Soc. Jpn 51, 2091–2097 (1978).

    Article  CAS  Google Scholar 

  28. Kim, Y. et al. Sequentially fluorinated PTAA polymers for enhancing Voc of high-performance perovskite solar cells. Adv. Energy Mater. 8, 1801668 (2018).

    Article  Google Scholar 

  29. Kim, Y. et al. Methoxy-functionalized triarylamine-based hole-transporting polymers for highly efficient and stable perovskite solar cells. ACS Energy Lett. 5, 3304–3313 (2020).

    Article  CAS  Google Scholar 

  30. Lim, C. et al. Oligo(ethylene glycol)-incorporated hole transporting polymers for efficient and stable inverted perovskite solar cells. J. Mater. Chem. A 11, 6615–6624 (2023).

    Article  CAS  Google Scholar 

  31. Wang, K.-L. et al. High-performance organic photorefractive materials containing 2-ethylhexyl plasticized poly(triarylamine). J. Mater. Chem. C 8, 13357–13367 (2020).

    Article  CAS  Google Scholar 

  32. Uehling, M. R., King, R. P., Krska, S. W., Cernak, T. & Buchwald, S. L. Pharmaceutical diversification via palladium oxidative addition complexes. Science 363, 405–408 (2019).

    Article  CAS  PubMed  Google Scholar 

  33. Arora, R. & Lautens, M. Photoexcited nickel-catalyzed carbohalogenation. ACS Catal. 14, 1970–1975 (2024).

    Article  CAS  Google Scholar 

  34. Yokoyama, A. et al. Chain-growth polymerization for the synthesis of polyfluorene via Suzuki-Miyaura coupling reaction from an externally added initiator unit. J. Am. Chem. Soc. 129, 7236–7237 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Xu, C., Dong, J., He, C., Yun, J. & Pan, X. Precise control of conjugated polymer synthesis from step-growth polymerization to iterative synthesis. Giant 14, 100154 (2023).

    Article  CAS  Google Scholar 

  36. Lee, S. M., Park, K. H., Jung, S., Park, H. & Yang, C. Stepwise heating in Stille polycondensation toward no batch-to-batch variations in polymer solar cell performance. Nat. Commun. 9, 1867 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  37. McCann, S. D., Reichert, E. C., Arrechea, P. L. & Buchwald, S. L. Development of an aryl amination catalyst with broad scope guided by consideration of catalyst stability. J. Am. Chem. Soc. 142, 15027–15037 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was funded by the National Natural Science Foundation of China (no. 22125901), the National Key Research and Development Program of China (no. 2019YFA0705900), the Fundamental Research Funds for the Central Universities (no. 226-2024-00005) and the Scientific Research Project of China Three Gorges Corporation (no. 202303014). We thank P. Qian and B. Shi from the Department of Chemistry, Zhejiang University, for technical support on scale synthesis.

Author information

Authors and Affiliations

Authors

Contributions

C.-Z.L. and Z.S. developed the concept. C.-Z.L., Z.S., Y.H. and K.Y. designed the experiments. C.-Z.L. and H.C. supervised the project. Z.S. conducted the synthesis experiments. Y.H. and Z.S. performed the PSC fabrication and characterization. Y.H., Z.S., Y.D. and K.Y. carried out the film measurements and analysis. Z.S., Y.H. and C.-Z.L. prepared the manuscript. All authors provided feedback and commented on the manuscript.

Corresponding author

Correspondence to Chang-Zhi Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Mohammad Khaja Nazeeruddin, Yanlin Song and Atsushi Wakamiya for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–25 and Tables 1–7.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Z., Huang, Y., Dong, Y. et al. Precise synthesis of advanced polyarylamines for efficient perovskite solar cells. Nat. Mater. (2025). https://doi.org/10.1038/s41563-025-02199-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41563-025-02199-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing
Morty Proxy This is a proxified and sanitized view of the page, visit original site.