Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Frustrated spin-1/2 chains in a correlated metal

Abstract

Electronic correlations lead to heavy quasiparticles in three-dimensional (3D) metals, and their collapse can destabilize magnetic moments. It is an open question whether there is an analogous instability in one-dimensional (1D) systems, unanswered due to the lack of metallic spin chain materials. We report neutron scattering measurements and density matrix renormalization group calculations establishing spinons in the correlated metal Ti4MnBi2, confirming that its magnetism is 1D. Ti4MnBi2 is inherently frustrated, forming near a quantum critical point that separates different phases at temperature T = 0. One-dimensional magnetism dominates at the lowest T, and is barely affected by weak interchain coupling. Ti4MnBi2 is a previously unrecognized metallic spin chain in which 3D conduction electrons become strongly correlated due to their coupling to 1D magnetic moments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Spin S = 1/2 chains in Ti4MnBi2.
Fig. 2: Emerging magnetic correlations in Ti4MnBi2.
Fig. 3: Spinons and helical modes in Ti4MnBi2.
Fig. 4: Temperature dependence of the spin dynamics in Ti4MnBi2.

Similar content being viewed by others

Data availability

All data needed to evaluate the conclusions in the paper are available in the article or the Supplementary Information. Raw neutron scattering data acquired in this study are preserved indefinitely at J-PARC.

Code availability

The numerical results reported in this work were obtained with DMRG++ v.6.07 and PsimagLite v.3.07. The DMRG++ computer program is available at https://github.com/g1257/dmrgpp.git (see Supplementary Information, section 4 for more details).

References

  1. Coleman, P. & Nevidomskyy, A. H. Frustration and the Kondo effect in heavy fermion materials. J. Low Temp. Phys. 161, 182–202 (2010).

    Article  CAS  Google Scholar 

  2. Si, Q. Quantum criticality and global phase diagram of magnetic heavy fermions. Phys. Status Solidi 247, 476–484 (2010).

    Article  CAS  Google Scholar 

  3. Giamarchi, T. Quantum Physics in One Dimension (Oxford Univ. Press, 2003).

  4. Jerome, D. & Bourbonnais, C. Quasi one-dimensional organic conductors: from Fröhlich conductivity and Peierls insulating state to magnetically-mediated superconductivity, a retrospective. C. R. Phys. 25, 17–178 (2024).

    Article  Google Scholar 

  5. Wu, L. S. et al. Orbital-exchange and fractional quantum number excitations in an f-electron metal, Yb2Pt2Pb. Science 352, 1206–1210 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Pandey, A. et al. Correlations and incipient antiferromagnetic order within the linear Mn chains of metallic Ti4MnBi2. Phys. Rev. B 102, 014406 (2020).

    Article  CAS  Google Scholar 

  7. Richter, C. G., Jeitschko, W., Künnen, B. & Gerdes, M. H. The ternary titanium transition metal bismuthides Ti4TBi2 with T = Cr, Mn, Fe, Co, and Ni. J. Solid State Chem. 133, 400–406 (1997).

    Article  CAS  Google Scholar 

  8. Rytz, R. & Hoffmann, R. Chemical bonding in the ternary transition metal bismuthides Ti4TBi2 with T = Cr, Mn, Fe, Co, and Ni. Inorg. Chem. 38, 1609–1617 (1999).

    Article  CAS  Google Scholar 

  9. Wada, H., Nakamura, H., Yoshimura, K., Shiga, M. & Nakamura, Y. Stability of Mn moments and spin fluctuations in RMn2 (R: rare earth). J. Magn. Magn. Mater. 70, 134–136 (1987).

    Article  CAS  Google Scholar 

  10. Jin, Z. et al. Magnetic molecular orbitals in MnSi. Sci. Adv. 9, eadd5239 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sirker, J. et al. J1J2 Heisenberg model at and close to its z = 4 quantum critical point. Phys. Rev. B 84, 144403 (2011).

    Article  Google Scholar 

  12. Furukawa, S., Sato, M., Onoda, S. & Furusaki, A. Ground-state phase diagram of a spin-1/2 frustrated ferromagnetic XXZ chain: Haldane dimer phase and gapped/gapless chiral phases. Phys. Rev. B 86, 094417 (2012).

    Article  Google Scholar 

  13. Ueda, H. & Onoda, S. Roles of easy-plane and easy-axis XXZ anisotropy and bond alternation in a frustrated ferromagnetic spin-1/2 chain. Phys. Rev. B 101, 224439 (2020).

    Article  CAS  Google Scholar 

  14. Igarashi, J. I. Ground state and excitation spectrum of a spin-1/2 Ising-like ferromagnetic chain with competing interactions. J. Phys. Soc. Japan 58, 4600–4609 (1989).

    Article  Google Scholar 

  15. Tonegawa, T., Harada, I. & Igarashi, J. Ground-state properties of the one-dimensional anisotropic spin-1/2 Heisenberg magnet with competing interactions. Prog. Theor. Phys. Suppl. 101, 513–527 (1990).

    Article  Google Scholar 

  16. Drechsler, S. L. et al. Frustrated cuprate route from antiferromagnetic to ferromagnetic spin-1/2 Heisenberg chains: Li2ZrCuO4 as a missing link near the quantum critical point. Phys. Rev. Lett. 98, 077202 (2007).

    Article  PubMed  Google Scholar 

  17. Sirker, J. Thermodynamics of multiferroic spin chains. Phys. Rev. B 81, 014419 (2010).

    Article  Google Scholar 

  18. Furukawa, S., Sato, M. & Onoda, S. Chiral order and electromagnetic dynamics in one-dimensional multiferroic cuprates. Phys. Rev. Lett. 105, 257205 (2010).

    Article  PubMed  Google Scholar 

  19. Lake, B. et al. Confinement of fractional quantum number particles in a condensed-matter system. Nat. Phys. 6, 50–55 (2010).

    Article  CAS  Google Scholar 

  20. Gannon, W. J. et al. Spinon confinement and a sharp longitudinal mode in Yb2Pt2Pb in magnetic fields. Nat. Commun. 10, 1123 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wu, L. S. et al. Tomonaga–Luttinger liquid behavior and spinon confinement in YbAlO3. Nat. Commun. 10, 698 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li, X. Y. et al. Neutron scattering study of the kagome metal. Phys. Rev. B 104, 134305 (2021).

    Article  CAS  Google Scholar 

  23. Jacko, A. C., Fjærestad, J. O. & Powell, B. J. A unified explanation of the Kadowaki–Woods ratio in strongly correlated metals. Nat. Phys. 5, 422–425 (2009).

    Article  CAS  Google Scholar 

  24. Doniach, S. The Kondo lattice and weak antiferromagnetism. Phys. B+C 91, 231–234 (1977).

    Article  Google Scholar 

  25. Tsunetsugu, H., Sigrist, M. & Ueda, K. The ground-state phase diagram of the one-dimensional Kondo lattice model. Rev. Mod. Phys. 69, 809–863 (1997).

    Article  CAS  Google Scholar 

  26. Nikolaenko, A. & Zhang, Y. H. Numerical signatures of ultra-local criticality in a one dimensional Kondo lattice model. SciPost Phys. 17, 034 (2024).

    Article  Google Scholar 

  27. Classen, L., Zaliznyak, I. & Tsvelik, A. M. Three-dimensional non-Fermi-liquid behavior from one-dimensional quantum critical local moments. Phys. Rev. Lett. 120, 156404 (2018).

    Article  CAS  PubMed  Google Scholar 

  28. Laflorencie, N., Sørensen, E. S. & Affleck, I. The Kondo effect in spin chains. J. Stat. Mech. Theory Exp. 2008, P02007 (2008).

    Article  Google Scholar 

  29. Schimmel, D. H., Tsvelik, A. M. & Yevtushenko, O. M. Low energy properties of the Kondo chain in the RKKY regime. New J. Phys. 18, 053004 (2016).

    Article  Google Scholar 

  30. Scheie, A. et al. Erratum: Witnessing entanglement in quantum magnets using neutron scattering [Phys. Rev. B 103, 224434 (2021)]. Phys. Rev. B 107, 059902 (2023).

    Article  Google Scholar 

  31. Rule, K. C., Mole, R. A. & Yu, D. Which glue to choose? A neutron scattering study of various adhesive materials and their effect on background scattering. J. Appl. Crystallogr. 51, 1766–1772 (2018).

    Article  CAS  Google Scholar 

  32. Nakajima, K. et al. AMATERAS: a cold-neutron disk chopper spectrometer. J. Phys. Soc. Japan 80, SB028 (2011).

    Article  Google Scholar 

  33. Kawakita, Y. et al. Recent progress on DNA ToF backscattering spectrometer in MLF, J-PARC. EPJ Web Conf. 272, 02002 (2022).

    Article  CAS  Google Scholar 

  34. Inamura, Y., Nakatani, T., Suzuki, J. & Otomo, T. Development status of software ‘Utsusemi’ for chopper spectrometers at MLF, J-PARC. J. Phys. Soc. Japan 82, SA031 (2013).

    Article  Google Scholar 

  35. Azuah, R. T. et al. DAVE: A comprehensive software suite for the reduction, visualization, and analysis of low energy neutron spectroscopic data. J. Res. Natl Inst. Stand. Technol. 114, 341–358 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Blaha, P. et al. WIEN2k: an APW+lo program for calculating the properties of solids. J. Chem. Phys. 152, 074101 (2020).

    Article  CAS  PubMed  Google Scholar 

  37. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. White, S. R. Density matrix formulation for quantum renormalization groups. Phys. Rev. Lett. 69, 2863–2866 (1992).

    Article  CAS  PubMed  Google Scholar 

  39. Schollwöck, U. The density-matrix renormalization group in the age of matrix product states. Ann. Phys. 326, 96–192 (2011).

    Article  Google Scholar 

  40. Alvarez, G. The density matrix renormalization group for strongly correlated electron systems: a generic implementation. Comput. Phys. Commun. 180, 1572–1578 (2009).

    Article  CAS  Google Scholar 

  41. Nocera, A. & Alvarez, G. Spectral functions with the density matrix renormalization group: Krylov-space approach for correction vectors. Phys. Rev. E 94, 053308 (2016).

    Article  CAS  PubMed  Google Scholar 

  42. Nocera, A. & Alvarez, G. Root-N Krylov-space correction vectors for spectral functions with the density matrix renormalization group. Phys. Rev. B 106, 205106 (2022).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. I. Khomskii, I. Zaliznyak, A. M. Tsvelik, K. Nakajima, S. E. Nagler, J. Fernandez-Baca, Y. M. Qiu and W. Yang for helpful discussions. A.N. acknowledges computational resources and services provided by Advanced Research Computing at The University of British Columbia. The AMATERAS and DNA experiments were performed under the auspices of the user programme at the Materials and Life Science Experimental Facility of the J-PARC (proposal numbers 2020B0107 and 2022A0069). Work at Texas A&M University (X.Y.L.) was supported by the National Science Foundation through grant NSF-DMR-1807451. Work at The University of British Columbia (X.Y.L., M.C.A., M.O., A.N., K.F., G.S.) was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC), and through the Stewart Blusson Quantum Matter Institute by the Canada First Research Excellence Fund (CFREF).

Author information

Authors and Affiliations

Authors

Contributions

X.Y.L. and M.O. grew the single crystals and characterized them. X.Y.L., N.M. and M.K. performed neutron scattering experiments on AMATERAS at J-PARC. X.Y.L., M.M. and H.T. performed neutron scattering experiments on DNA at J-PARC. X.Y.L. analysed the neutron scattering data in consultation with M.C.A. A.N. carried out DMRG calculations, and K.F. carried out DFT calculations in consultation with G.A.S. X.Y.L. and M.C.A. wrote the paper with contributions from all the authors.

Corresponding author

Correspondence to X. Y. Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Xingye Lu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–22, text and Tables 1–3.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X.Y., Nocera, A., Foyevtsova, K. et al. Frustrated spin-1/2 chains in a correlated metal. Nat. Mater. 24, 716–721 (2025). https://doi.org/10.1038/s41563-025-02192-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-025-02192-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing
Morty Proxy This is a proxified and sanitized view of the page, visit original site.