Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Fueling defense: PPARα enhances macrophage inflammatory responses

The Original Article was published on 05 February 2025

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

References

  1. Cao DY, Saito S, Veiras LC, Okwan-Duodo D, Bernstein EA, Giani JF, et al. Role of angiotensinconverting enzyme in myeloid cell immune responses. Cell Mol Biol Lett. 2020;25:31. https://doi.org/10.1186/s11658-020-00225-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bernstein KE, Khan Z, Giani JF, Cao DY, Bernstein EA, Shen XZ, et al. Angiotensin-converting enzyme in innate and adaptive immunity. Nat Rev Nephrol. 2018;14:325–36. https://doi.org/10.1038/nrneph.2018.15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cao D, Khan Z, Li X, Saito S, Bernstein EA, Victor AR, et al. Macrophage angiotensin-converting enzyme reduces atherosclerosis by increasing peroxisome proliferator-activated receptor alpha and fundamentally changing lipid metabolism. Cardiovasc Res. 2023;119:1825–41. https://doi.org/10.1093/cvr/cvad082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cao D, Saito S, Xu L, Fan W, Li X, Ahmed F, et al. Myeloid cell ACE shapes cellular metabolism and function in PCSK-9 induced atherosclerosis. Front Immunol. 2023;14:1278383. https://doi.org/10.3389/fimmu.2023.1278383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Saito S, Cao DY, Benstein EA, Shibata T, Jones AE, Rios A, et al. Peroxisome proliferator-activated receptor alpha is an essential factor in enhanced macrophage immune function induced by angiotensin converting enzyme. Cell Mol Immunol. 2025;22:243–59. https://doi.org/10.1038/s41423-025-01257-y.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Wculek SK, Dunphy G, Heras-Murillo I, Mastrangelo A, Sancho D. Metabolism of tissue macrophages in homeostasis and pathology. Cell Mol Immunol. 2022;19:384–408. https://doi.org/10.1038/s41423-021-00791-9.

    Article  CAS  PubMed  Google Scholar 

  7. Remmerie A, Scott CL. Macrophages and lipid metabolism. Cell Immunol. 2018;330:27–42. https://doi.org/10.1016/j.cellimm.2018.01.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Vats D, Mukundan L, Odegaard JI, Zhang L, Smith KL, Morel CR, et al. Oxidative metabolism and PGC- 1beta attenuate macrophage-mediated inflammation. Cell Metab. 2006;4:13–24. https://doi.org/10.1016/j.cmet.2006.05.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Van den Bossche J, Baardman J, Otto NA, van der Velden S, Neele AE, van den Berg SM, et al. Mitochondrial dysfunction prevents repolarization of inflammatory macrophages. Cell Rep. 2016;17:684–96. https://doi.org/10.1016/j.celrep.2016.09.008.

    Article  CAS  PubMed  Google Scholar 

  10. Bidault G, Virtue S, Petkevicius K, Jolin HE, Dugourd A, Guenantin AC. al. SREBP1-induced fatty acid synthesis depletes macrophages antioxidant defenses to promote their alternative activation. Nat Metab. 2021;3:1150–62. https://doi.org/10.1038/s42255-021-00440-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wculek SK, Forisch S, Miguel V, Sancho D. Metabolic homeostasis of tissue macrophages across the lifespan. Trends Endocrinol Metab. 2024;35:793–808. https://doi.org/10.1016/j.tem.2024.04.017.

    Article  CAS  PubMed  Google Scholar 

  12. Wang Z, Wang M, Xu X, Liu Y, Chen Q, Wu B, et al. PPARs/macrophages: a bridge between the inflammatory response and lipid metabolism in autoimmune diseases. Biochem Biophys Res Commun. 2023;684:149128. https://doi.org/10.1016/j.bbrc.2023.149128.

    Article  CAS  PubMed  Google Scholar 

  13. Marx N, Duez H, Fruchart JC, Staels B. Peroxisome proliferator-activated receptors and atherogenesis: regulators of gene expression in vascular cells. Circ Res. 2004;94:1168–78. https://doi.org/10.1161/01.RES.0000127122.22685.0A.

    Article  CAS  PubMed  Google Scholar 

  14. Wu H, Han Y, Rodriguez Silke Y, Deng H, Siddiqui S, Treese C, et al. Lipid droplet-dependent fatty acid metabolism controls the immune suppressive phenotype of tumor-associated macrophages. EMBO Mol Med. 2019;11:e10698. https://doi.org/10.15252/emmm.201910698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Montaigne D, Butruille L, Staels B. PPAR control of metabolism and cardiovascular functions. Nat Rev Cardiol. 2021;18:809–23. https://doi.org/10.1038/s41569-021-00569-6.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marten A. Hoeksema.

Ethics declarations

Competing interests

The author declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoeksema, M.A. Fueling defense: PPARα enhances macrophage inflammatory responses. Cell Mol Immunol 22, 461–462 (2025). https://doi.org/10.1038/s41423-025-01265-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-025-01265-y

Search

Quick links

Morty Proxy This is a proxified and sanitized view of the page, visit original site.