1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright (C) 2002 Richard Henderson
4 * Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
5 * Copyright (C) 2023 Luis Chamberlain <mcgrof@kernel.org>
6 */
7
8#define INCLUDE_VERMAGIC
9
10#include <linux/export.h>
11#include <linux/extable.h>
12#include <linux/moduleloader.h>
13#include <linux/module_signature.h>
14#include <linux/trace_events.h>
15#include <linux/init.h>
16#include <linux/kallsyms.h>
17#include <linux/buildid.h>
18#include <linux/fs.h>
19#include <linux/kernel.h>
20#include <linux/kernel_read_file.h>
21#include <linux/kstrtox.h>
22#include <linux/slab.h>
23#include <linux/vmalloc.h>
24#include <linux/elf.h>
25#include <linux/seq_file.h>
26#include <linux/syscalls.h>
27#include <linux/fcntl.h>
28#include <linux/rcupdate.h>
29#include <linux/capability.h>
30#include <linux/cpu.h>
31#include <linux/moduleparam.h>
32#include <linux/errno.h>
33#include <linux/err.h>
34#include <linux/vermagic.h>
35#include <linux/notifier.h>
36#include <linux/sched.h>
37#include <linux/device.h>
38#include <linux/string.h>
39#include <linux/mutex.h>
40#include <linux/rculist.h>
41#include <linux/uaccess.h>
42#include <asm/cacheflush.h>
43#include <linux/set_memory.h>
44#include <asm/mmu_context.h>
45#include <linux/license.h>
46#include <asm/sections.h>
47#include <linux/tracepoint.h>
48#include <linux/ftrace.h>
49#include <linux/livepatch.h>
50#include <linux/async.h>
51#include <linux/percpu.h>
52#include <linux/kmemleak.h>
53#include <linux/jump_label.h>
54#include <linux/pfn.h>
55#include <linux/bsearch.h>
56#include <linux/dynamic_debug.h>
57#include <linux/audit.h>
58#include <linux/cfi.h>
59#include <linux/codetag.h>
60#include <linux/debugfs.h>
61#include <linux/execmem.h>
62#include <uapi/linux/module.h>
63#include "internal.h"
64
65#define CREATE_TRACE_POINTS
66#include <trace/events/module.h>
67
68/*
69 * Mutex protects:
70 * 1) List of modules (also safely readable within RCU read section),
71 * 2) module_use links,
72 * 3) mod_tree.addr_min/mod_tree.addr_max.
73 * (delete and add uses RCU list operations).
74 */
75DEFINE_MUTEX(module_mutex);
76LIST_HEAD(modules);
77
78/* Work queue for freeing init sections in success case */
79static void do_free_init(struct work_struct *w);
80static DECLARE_WORK(init_free_wq, do_free_init);
81static LLIST_HEAD(init_free_list);
82
83struct mod_tree_root mod_tree __cacheline_aligned = {
84 .addr_min = -1UL,
85};
86
87struct symsearch {
88 const struct kernel_symbol *start, *stop;
89 const u32 *crcs;
90 enum mod_license license;
91};
92
93/*
94 * Bounds of module memory, for speeding up __module_address.
95 * Protected by module_mutex.
96 */
97static void __mod_update_bounds(enum mod_mem_type type __maybe_unused, void *base,
98 unsigned int size, struct mod_tree_root *tree)
99{
100 unsigned long min = (unsigned long)base;
101 unsigned long max = min + size;
102
103#ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
104 if (mod_mem_type_is_core_data(type)) {
105 if (min < tree->data_addr_min)
106 tree->data_addr_min = min;
107 if (max > tree->data_addr_max)
108 tree->data_addr_max = max;
109 return;
110 }
111#endif
112 if (min < tree->addr_min)
113 tree->addr_min = min;
114 if (max > tree->addr_max)
115 tree->addr_max = max;
116}
117
118static void mod_update_bounds(struct module *mod)
119{
120 for_each_mod_mem_type(type) {
121 struct module_memory *mod_mem = &mod->mem[type];
122
123 if (mod_mem->size)
124 __mod_update_bounds(type, base: mod_mem->base, size: mod_mem->size, tree: &mod_tree);
125 }
126}
127
128/* Block module loading/unloading? */
129int modules_disabled;
130core_param(nomodule, modules_disabled, bint, 0);
131
132/* Waiting for a module to finish initializing? */
133static DECLARE_WAIT_QUEUE_HEAD(module_wq);
134
135static BLOCKING_NOTIFIER_HEAD(module_notify_list);
136
137int register_module_notifier(struct notifier_block *nb)
138{
139 return blocking_notifier_chain_register(nh: &module_notify_list, nb);
140}
141EXPORT_SYMBOL(register_module_notifier);
142
143int unregister_module_notifier(struct notifier_block *nb)
144{
145 return blocking_notifier_chain_unregister(nh: &module_notify_list, nb);
146}
147EXPORT_SYMBOL(unregister_module_notifier);
148
149/*
150 * We require a truly strong try_module_get(): 0 means success.
151 * Otherwise an error is returned due to ongoing or failed
152 * initialization etc.
153 */
154static inline int strong_try_module_get(struct module *mod)
155{
156 BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
157 if (mod && mod->state == MODULE_STATE_COMING)
158 return -EBUSY;
159 if (try_module_get(module: mod))
160 return 0;
161 else
162 return -ENOENT;
163}
164
165static inline void add_taint_module(struct module *mod, unsigned flag,
166 enum lockdep_ok lockdep_ok)
167{
168 add_taint(flag, lockdep_ok);
169 set_bit(nr: flag, addr: &mod->taints);
170}
171
172/*
173 * Like strncmp(), except s/-/_/g as per scripts/Makefile.lib:name-fix-token rule.
174 */
175static int mod_strncmp(const char *str_a, const char *str_b, size_t n)
176{
177 for (int i = 0; i < n; i++) {
178 char a = str_a[i];
179 char b = str_b[i];
180 int d;
181
182 if (a == '-') a = '_';
183 if (b == '-') b = '_';
184
185 d = a - b;
186 if (d)
187 return d;
188
189 if (!a)
190 break;
191 }
192
193 return 0;
194}
195
196/*
197 * A thread that wants to hold a reference to a module only while it
198 * is running can call this to safely exit.
199 */
200void __noreturn __module_put_and_kthread_exit(struct module *mod, long code)
201{
202 module_put(module: mod);
203 kthread_exit(result: code);
204}
205EXPORT_SYMBOL(__module_put_and_kthread_exit);
206
207/* Find a module section: 0 means not found. */
208static unsigned int find_sec(const struct load_info *info, const char *name)
209{
210 unsigned int i;
211
212 for (i = 1; i < info->hdr->e_shnum; i++) {
213 Elf_Shdr *shdr = &info->sechdrs[i];
214 /* Alloc bit cleared means "ignore it." */
215 if ((shdr->sh_flags & SHF_ALLOC)
216 && strcmp(info->secstrings + shdr->sh_name, name) == 0)
217 return i;
218 }
219 return 0;
220}
221
222/**
223 * find_any_unique_sec() - Find a unique section index by name
224 * @info: Load info for the module to scan
225 * @name: Name of the section we're looking for
226 *
227 * Locates a unique section by name. Ignores SHF_ALLOC.
228 *
229 * Return: Section index if found uniquely, zero if absent, negative count
230 * of total instances if multiple were found.
231 */
232static int find_any_unique_sec(const struct load_info *info, const char *name)
233{
234 unsigned int idx;
235 unsigned int count = 0;
236 int i;
237
238 for (i = 1; i < info->hdr->e_shnum; i++) {
239 if (strcmp(info->secstrings + info->sechdrs[i].sh_name,
240 name) == 0) {
241 count++;
242 idx = i;
243 }
244 }
245 if (count == 1) {
246 return idx;
247 } else if (count == 0) {
248 return 0;
249 } else {
250 return -count;
251 }
252}
253
254/* Find a module section, or NULL. */
255static void *section_addr(const struct load_info *info, const char *name)
256{
257 /* Section 0 has sh_addr 0. */
258 return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
259}
260
261/* Find a module section, or NULL. Fill in number of "objects" in section. */
262static void *section_objs(const struct load_info *info,
263 const char *name,
264 size_t object_size,
265 unsigned int *num)
266{
267 unsigned int sec = find_sec(info, name);
268
269 /* Section 0 has sh_addr 0 and sh_size 0. */
270 *num = info->sechdrs[sec].sh_size / object_size;
271 return (void *)info->sechdrs[sec].sh_addr;
272}
273
274/* Find a module section: 0 means not found. Ignores SHF_ALLOC flag. */
275static unsigned int find_any_sec(const struct load_info *info, const char *name)
276{
277 unsigned int i;
278
279 for (i = 1; i < info->hdr->e_shnum; i++) {
280 Elf_Shdr *shdr = &info->sechdrs[i];
281 if (strcmp(info->secstrings + shdr->sh_name, name) == 0)
282 return i;
283 }
284 return 0;
285}
286
287/*
288 * Find a module section, or NULL. Fill in number of "objects" in section.
289 * Ignores SHF_ALLOC flag.
290 */
291static __maybe_unused void *any_section_objs(const struct load_info *info,
292 const char *name,
293 size_t object_size,
294 unsigned int *num)
295{
296 unsigned int sec = find_any_sec(info, name);
297
298 /* Section 0 has sh_addr 0 and sh_size 0. */
299 *num = info->sechdrs[sec].sh_size / object_size;
300 return (void *)info->sechdrs[sec].sh_addr;
301}
302
303#ifndef CONFIG_MODVERSIONS
304#define symversion(base, idx) NULL
305#else
306#define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
307#endif
308
309static const char *kernel_symbol_name(const struct kernel_symbol *sym)
310{
311#ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
312 return offset_to_ptr(off: &sym->name_offset);
313#else
314 return sym->name;
315#endif
316}
317
318static const char *kernel_symbol_namespace(const struct kernel_symbol *sym)
319{
320#ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
321 if (!sym->namespace_offset)
322 return NULL;
323 return offset_to_ptr(off: &sym->namespace_offset);
324#else
325 return sym->namespace;
326#endif
327}
328
329int cmp_name(const void *name, const void *sym)
330{
331 return strcmp(name, kernel_symbol_name(sym));
332}
333
334static bool find_exported_symbol_in_section(const struct symsearch *syms,
335 struct module *owner,
336 struct find_symbol_arg *fsa)
337{
338 struct kernel_symbol *sym;
339
340 if (!fsa->gplok && syms->license == GPL_ONLY)
341 return false;
342
343 sym = bsearch(key: fsa->name, base: syms->start, num: syms->stop - syms->start,
344 size: sizeof(struct kernel_symbol), cmp: cmp_name);
345 if (!sym)
346 return false;
347
348 fsa->owner = owner;
349 fsa->crc = symversion(syms->crcs, sym - syms->start);
350 fsa->sym = sym;
351 fsa->license = syms->license;
352
353 return true;
354}
355
356/*
357 * Find an exported symbol and return it, along with, (optional) crc and
358 * (optional) module which owns it. Needs RCU or module_mutex.
359 */
360bool find_symbol(struct find_symbol_arg *fsa)
361{
362 static const struct symsearch arr[] = {
363 { __start___ksymtab, __stop___ksymtab, __start___kcrctab,
364 NOT_GPL_ONLY },
365 { __start___ksymtab_gpl, __stop___ksymtab_gpl,
366 __start___kcrctab_gpl,
367 GPL_ONLY },
368 };
369 struct module *mod;
370 unsigned int i;
371
372 for (i = 0; i < ARRAY_SIZE(arr); i++)
373 if (find_exported_symbol_in_section(syms: &arr[i], NULL, fsa))
374 return true;
375
376 list_for_each_entry_rcu(mod, &modules, list,
377 lockdep_is_held(&module_mutex)) {
378 struct symsearch arr[] = {
379 { mod->syms, mod->syms + mod->num_syms, mod->crcs,
380 NOT_GPL_ONLY },
381 { mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
382 mod->gpl_crcs,
383 GPL_ONLY },
384 };
385
386 if (mod->state == MODULE_STATE_UNFORMED)
387 continue;
388
389 for (i = 0; i < ARRAY_SIZE(arr); i++)
390 if (find_exported_symbol_in_section(syms: &arr[i], owner: mod, fsa))
391 return true;
392 }
393
394 pr_debug("Failed to find symbol %s\n", fsa->name);
395 return false;
396}
397
398/*
399 * Search for module by name: must hold module_mutex (or RCU for read-only
400 * access).
401 */
402struct module *find_module_all(const char *name, size_t len,
403 bool even_unformed)
404{
405 struct module *mod;
406
407 list_for_each_entry_rcu(mod, &modules, list,
408 lockdep_is_held(&module_mutex)) {
409 if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
410 continue;
411 if (strlen(mod->name) == len && !memcmp(p: mod->name, q: name, size: len))
412 return mod;
413 }
414 return NULL;
415}
416
417struct module *find_module(const char *name)
418{
419 return find_module_all(name, strlen(name), even_unformed: false);
420}
421
422#ifdef CONFIG_SMP
423
424static inline void __percpu *mod_percpu(struct module *mod)
425{
426 return mod->percpu;
427}
428
429static int percpu_modalloc(struct module *mod, struct load_info *info)
430{
431 Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
432 unsigned long align = pcpusec->sh_addralign;
433
434 if (!pcpusec->sh_size)
435 return 0;
436
437 if (align > PAGE_SIZE) {
438 pr_warn("%s: per-cpu alignment %li > %li\n",
439 mod->name, align, PAGE_SIZE);
440 align = PAGE_SIZE;
441 }
442
443 mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align);
444 if (!mod->percpu) {
445 pr_warn("%s: Could not allocate %lu bytes percpu data\n",
446 mod->name, (unsigned long)pcpusec->sh_size);
447 return -ENOMEM;
448 }
449 mod->percpu_size = pcpusec->sh_size;
450 return 0;
451}
452
453static void percpu_modfree(struct module *mod)
454{
455 free_percpu(pdata: mod->percpu);
456}
457
458static unsigned int find_pcpusec(struct load_info *info)
459{
460 return find_sec(info, name: ".data..percpu");
461}
462
463static void percpu_modcopy(struct module *mod,
464 const void *from, unsigned long size)
465{
466 int cpu;
467
468 for_each_possible_cpu(cpu)
469 memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
470}
471
472bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
473{
474 struct module *mod;
475 unsigned int cpu;
476
477 guard(rcu)();
478 list_for_each_entry_rcu(mod, &modules, list) {
479 if (mod->state == MODULE_STATE_UNFORMED)
480 continue;
481 if (!mod->percpu_size)
482 continue;
483 for_each_possible_cpu(cpu) {
484 void *start = per_cpu_ptr(mod->percpu, cpu);
485 void *va = (void *)addr;
486
487 if (va >= start && va < start + mod->percpu_size) {
488 if (can_addr) {
489 *can_addr = (unsigned long) (va - start);
490 *can_addr += (unsigned long)
491 per_cpu_ptr(mod->percpu,
492 get_boot_cpu_id());
493 }
494 return true;
495 }
496 }
497 }
498 return false;
499}
500
501/**
502 * is_module_percpu_address() - test whether address is from module static percpu
503 * @addr: address to test
504 *
505 * Test whether @addr belongs to module static percpu area.
506 *
507 * Return: %true if @addr is from module static percpu area
508 */
509bool is_module_percpu_address(unsigned long addr)
510{
511 return __is_module_percpu_address(addr, NULL);
512}
513
514#else /* ... !CONFIG_SMP */
515
516static inline void __percpu *mod_percpu(struct module *mod)
517{
518 return NULL;
519}
520static int percpu_modalloc(struct module *mod, struct load_info *info)
521{
522 /* UP modules shouldn't have this section: ENOMEM isn't quite right */
523 if (info->sechdrs[info->index.pcpu].sh_size != 0)
524 return -ENOMEM;
525 return 0;
526}
527static inline void percpu_modfree(struct module *mod)
528{
529}
530static unsigned int find_pcpusec(struct load_info *info)
531{
532 return 0;
533}
534static inline void percpu_modcopy(struct module *mod,
535 const void *from, unsigned long size)
536{
537 /* pcpusec should be 0, and size of that section should be 0. */
538 BUG_ON(size != 0);
539}
540bool is_module_percpu_address(unsigned long addr)
541{
542 return false;
543}
544
545bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
546{
547 return false;
548}
549
550#endif /* CONFIG_SMP */
551
552#define MODINFO_ATTR(field) \
553static void setup_modinfo_##field(struct module *mod, const char *s) \
554{ \
555 mod->field = kstrdup(s, GFP_KERNEL); \
556} \
557static ssize_t show_modinfo_##field(const struct module_attribute *mattr, \
558 struct module_kobject *mk, char *buffer) \
559{ \
560 return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field); \
561} \
562static int modinfo_##field##_exists(struct module *mod) \
563{ \
564 return mod->field != NULL; \
565} \
566static void free_modinfo_##field(struct module *mod) \
567{ \
568 kfree(mod->field); \
569 mod->field = NULL; \
570} \
571static const struct module_attribute modinfo_##field = { \
572 .attr = { .name = __stringify(field), .mode = 0444 }, \
573 .show = show_modinfo_##field, \
574 .setup = setup_modinfo_##field, \
575 .test = modinfo_##field##_exists, \
576 .free = free_modinfo_##field, \
577};
578
579MODINFO_ATTR(version);
580MODINFO_ATTR(srcversion);
581
582static struct {
583 char name[MODULE_NAME_LEN + 1];
584 char taints[MODULE_FLAGS_BUF_SIZE];
585} last_unloaded_module;
586
587#ifdef CONFIG_MODULE_UNLOAD
588
589EXPORT_TRACEPOINT_SYMBOL(module_get);
590
591/* MODULE_REF_BASE is the base reference count by kmodule loader. */
592#define MODULE_REF_BASE 1
593
594/* Init the unload section of the module. */
595static int module_unload_init(struct module *mod)
596{
597 /*
598 * Initialize reference counter to MODULE_REF_BASE.
599 * refcnt == 0 means module is going.
600 */
601 atomic_set(v: &mod->refcnt, MODULE_REF_BASE);
602
603 INIT_LIST_HEAD(list: &mod->source_list);
604 INIT_LIST_HEAD(list: &mod->target_list);
605
606 /* Hold reference count during initialization. */
607 atomic_inc(v: &mod->refcnt);
608
609 return 0;
610}
611
612/* Does a already use b? */
613static int already_uses(struct module *a, struct module *b)
614{
615 struct module_use *use;
616
617 list_for_each_entry(use, &b->source_list, source_list) {
618 if (use->source == a)
619 return 1;
620 }
621 pr_debug("%s does not use %s!\n", a->name, b->name);
622 return 0;
623}
624
625/*
626 * Module a uses b
627 * - we add 'a' as a "source", 'b' as a "target" of module use
628 * - the module_use is added to the list of 'b' sources (so
629 * 'b' can walk the list to see who sourced them), and of 'a'
630 * targets (so 'a' can see what modules it targets).
631 */
632static int add_module_usage(struct module *a, struct module *b)
633{
634 struct module_use *use;
635
636 pr_debug("Allocating new usage for %s.\n", a->name);
637 use = kmalloc(sizeof(*use), GFP_ATOMIC);
638 if (!use)
639 return -ENOMEM;
640
641 use->source = a;
642 use->target = b;
643 list_add(new: &use->source_list, head: &b->source_list);
644 list_add(new: &use->target_list, head: &a->target_list);
645 return 0;
646}
647
648/* Module a uses b: caller needs module_mutex() */
649static int ref_module(struct module *a, struct module *b)
650{
651 int err;
652
653 if (b == NULL || already_uses(a, b))
654 return 0;
655
656 /* If module isn't available, we fail. */
657 err = strong_try_module_get(mod: b);
658 if (err)
659 return err;
660
661 err = add_module_usage(a, b);
662 if (err) {
663 module_put(module: b);
664 return err;
665 }
666 return 0;
667}
668
669/* Clear the unload stuff of the module. */
670static void module_unload_free(struct module *mod)
671{
672 struct module_use *use, *tmp;
673
674 mutex_lock(&module_mutex);
675 list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
676 struct module *i = use->target;
677 pr_debug("%s unusing %s\n", mod->name, i->name);
678 module_put(module: i);
679 list_del(entry: &use->source_list);
680 list_del(entry: &use->target_list);
681 kfree(objp: use);
682 }
683 mutex_unlock(lock: &module_mutex);
684}
685
686#ifdef CONFIG_MODULE_FORCE_UNLOAD
687static inline int try_force_unload(unsigned int flags)
688{
689 int ret = (flags & O_TRUNC);
690 if (ret)
691 add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
692 return ret;
693}
694#else
695static inline int try_force_unload(unsigned int flags)
696{
697 return 0;
698}
699#endif /* CONFIG_MODULE_FORCE_UNLOAD */
700
701/* Try to release refcount of module, 0 means success. */
702static int try_release_module_ref(struct module *mod)
703{
704 int ret;
705
706 /* Try to decrement refcnt which we set at loading */
707 ret = atomic_sub_return(MODULE_REF_BASE, v: &mod->refcnt);
708 BUG_ON(ret < 0);
709 if (ret)
710 /* Someone can put this right now, recover with checking */
711 ret = atomic_add_unless(v: &mod->refcnt, MODULE_REF_BASE, u: 0);
712
713 return ret;
714}
715
716static int try_stop_module(struct module *mod, int flags, int *forced)
717{
718 /* If it's not unused, quit unless we're forcing. */
719 if (try_release_module_ref(mod) != 0) {
720 *forced = try_force_unload(flags);
721 if (!(*forced))
722 return -EWOULDBLOCK;
723 }
724
725 /* Mark it as dying. */
726 mod->state = MODULE_STATE_GOING;
727
728 return 0;
729}
730
731/**
732 * module_refcount() - return the refcount or -1 if unloading
733 * @mod: the module we're checking
734 *
735 * Return:
736 * -1 if the module is in the process of unloading
737 * otherwise the number of references in the kernel to the module
738 */
739int module_refcount(struct module *mod)
740{
741 return atomic_read(v: &mod->refcnt) - MODULE_REF_BASE;
742}
743EXPORT_SYMBOL(module_refcount);
744
745/* This exists whether we can unload or not */
746static void free_module(struct module *mod);
747
748SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
749 unsigned int, flags)
750{
751 struct module *mod;
752 char name[MODULE_NAME_LEN];
753 char buf[MODULE_FLAGS_BUF_SIZE];
754 int ret, forced = 0;
755
756 if (!capable(CAP_SYS_MODULE) || modules_disabled)
757 return -EPERM;
758
759 if (strncpy_from_user(dst: name, src: name_user, MODULE_NAME_LEN-1) < 0)
760 return -EFAULT;
761 name[MODULE_NAME_LEN-1] = '\0';
762
763 audit_log_kern_module(name);
764
765 if (mutex_lock_interruptible(&module_mutex) != 0)
766 return -EINTR;
767
768 mod = find_module(name);
769 if (!mod) {
770 ret = -ENOENT;
771 goto out;
772 }
773
774 if (!list_empty(head: &mod->source_list)) {
775 /* Other modules depend on us: get rid of them first. */
776 ret = -EWOULDBLOCK;
777 goto out;
778 }
779
780 /* Doing init or already dying? */
781 if (mod->state != MODULE_STATE_LIVE) {
782 /* FIXME: if (force), slam module count damn the torpedoes */
783 pr_debug("%s already dying\n", mod->name);
784 ret = -EBUSY;
785 goto out;
786 }
787
788 /* If it has an init func, it must have an exit func to unload */
789 if (mod->init && !mod->exit) {
790 forced = try_force_unload(flags);
791 if (!forced) {
792 /* This module can't be removed */
793 ret = -EBUSY;
794 goto out;
795 }
796 }
797
798 ret = try_stop_module(mod, flags, forced: &forced);
799 if (ret != 0)
800 goto out;
801
802 mutex_unlock(lock: &module_mutex);
803 /* Final destruction now no one is using it. */
804 if (mod->exit != NULL)
805 mod->exit();
806 blocking_notifier_call_chain(nh: &module_notify_list,
807 val: MODULE_STATE_GOING, v: mod);
808 klp_module_going(mod);
809 ftrace_release_mod(mod);
810
811 async_synchronize_full();
812
813 /* Store the name and taints of the last unloaded module for diagnostic purposes */
814 strscpy(last_unloaded_module.name, mod->name);
815 strscpy(last_unloaded_module.taints, module_flags(mod, buf, false));
816
817 free_module(mod);
818 /* someone could wait for the module in add_unformed_module() */
819 wake_up_all(&module_wq);
820 return 0;
821out:
822 mutex_unlock(lock: &module_mutex);
823 return ret;
824}
825
826void __symbol_put(const char *symbol)
827{
828 struct find_symbol_arg fsa = {
829 .name = symbol,
830 .gplok = true,
831 };
832
833 guard(rcu)();
834 BUG_ON(!find_symbol(&fsa));
835 module_put(module: fsa.owner);
836}
837EXPORT_SYMBOL(__symbol_put);
838
839/* Note this assumes addr is a function, which it currently always is. */
840void symbol_put_addr(void *addr)
841{
842 struct module *modaddr;
843 unsigned long a = (unsigned long)dereference_function_descriptor(addr);
844
845 if (core_kernel_text(addr: a))
846 return;
847
848 /*
849 * Even though we hold a reference on the module; we still need to
850 * RCU read section in order to safely traverse the data structure.
851 */
852 guard(rcu)();
853 modaddr = __module_text_address(addr: a);
854 BUG_ON(!modaddr);
855 module_put(module: modaddr);
856}
857EXPORT_SYMBOL_GPL(symbol_put_addr);
858
859static ssize_t show_refcnt(const struct module_attribute *mattr,
860 struct module_kobject *mk, char *buffer)
861{
862 return sprintf(buf: buffer, fmt: "%i\n", module_refcount(mk->mod));
863}
864
865static const struct module_attribute modinfo_refcnt =
866 __ATTR(refcnt, 0444, show_refcnt, NULL);
867
868void __module_get(struct module *module)
869{
870 if (module) {
871 atomic_inc(v: &module->refcnt);
872 trace_module_get(mod: module, _RET_IP_);
873 }
874}
875EXPORT_SYMBOL(__module_get);
876
877bool try_module_get(struct module *module)
878{
879 bool ret = true;
880
881 if (module) {
882 /* Note: here, we can fail to get a reference */
883 if (likely(module_is_live(module) &&
884 atomic_inc_not_zero(&module->refcnt) != 0))
885 trace_module_get(mod: module, _RET_IP_);
886 else
887 ret = false;
888 }
889 return ret;
890}
891EXPORT_SYMBOL(try_module_get);
892
893void module_put(struct module *module)
894{
895 int ret;
896
897 if (module) {
898 ret = atomic_dec_if_positive(v: &module->refcnt);
899 WARN_ON(ret < 0); /* Failed to put refcount */
900 trace_module_put(mod: module, _RET_IP_);
901 }
902}
903EXPORT_SYMBOL(module_put);
904
905#else /* !CONFIG_MODULE_UNLOAD */
906static inline void module_unload_free(struct module *mod)
907{
908}
909
910static int ref_module(struct module *a, struct module *b)
911{
912 return strong_try_module_get(b);
913}
914
915static inline int module_unload_init(struct module *mod)
916{
917 return 0;
918}
919#endif /* CONFIG_MODULE_UNLOAD */
920
921size_t module_flags_taint(unsigned long taints, char *buf)
922{
923 size_t l = 0;
924 int i;
925
926 for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
927 if (taint_flags[i].module && test_bit(i, &taints))
928 buf[l++] = taint_flags[i].c_true;
929 }
930
931 return l;
932}
933
934static ssize_t show_initstate(const struct module_attribute *mattr,
935 struct module_kobject *mk, char *buffer)
936{
937 const char *state = "unknown";
938
939 switch (mk->mod->state) {
940 case MODULE_STATE_LIVE:
941 state = "live";
942 break;
943 case MODULE_STATE_COMING:
944 state = "coming";
945 break;
946 case MODULE_STATE_GOING:
947 state = "going";
948 break;
949 default:
950 BUG();
951 }
952 return sprintf(buf: buffer, fmt: "%s\n", state);
953}
954
955static const struct module_attribute modinfo_initstate =
956 __ATTR(initstate, 0444, show_initstate, NULL);
957
958static ssize_t store_uevent(const struct module_attribute *mattr,
959 struct module_kobject *mk,
960 const char *buffer, size_t count)
961{
962 int rc;
963
964 rc = kobject_synth_uevent(kobj: &mk->kobj, buf: buffer, count);
965 return rc ? rc : count;
966}
967
968const struct module_attribute module_uevent =
969 __ATTR(uevent, 0200, NULL, store_uevent);
970
971static ssize_t show_coresize(const struct module_attribute *mattr,
972 struct module_kobject *mk, char *buffer)
973{
974 unsigned int size = mk->mod->mem[MOD_TEXT].size;
975
976 if (!IS_ENABLED(CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC)) {
977 for_class_mod_mem_type(type, core_data)
978 size += mk->mod->mem[type].size;
979 }
980 return sprintf(buf: buffer, fmt: "%u\n", size);
981}
982
983static const struct module_attribute modinfo_coresize =
984 __ATTR(coresize, 0444, show_coresize, NULL);
985
986#ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
987static ssize_t show_datasize(const struct module_attribute *mattr,
988 struct module_kobject *mk, char *buffer)
989{
990 unsigned int size = 0;
991
992 for_class_mod_mem_type(type, core_data)
993 size += mk->mod->mem[type].size;
994 return sprintf(buffer, "%u\n", size);
995}
996
997static const struct module_attribute modinfo_datasize =
998 __ATTR(datasize, 0444, show_datasize, NULL);
999#endif
1000
1001static ssize_t show_initsize(const struct module_attribute *mattr,
1002 struct module_kobject *mk, char *buffer)
1003{
1004 unsigned int size = 0;
1005
1006 for_class_mod_mem_type(type, init)
1007 size += mk->mod->mem[type].size;
1008 return sprintf(buf: buffer, fmt: "%u\n", size);
1009}
1010
1011static const struct module_attribute modinfo_initsize =
1012 __ATTR(initsize, 0444, show_initsize, NULL);
1013
1014static ssize_t show_taint(const struct module_attribute *mattr,
1015 struct module_kobject *mk, char *buffer)
1016{
1017 size_t l;
1018
1019 l = module_flags_taint(taints: mk->mod->taints, buf: buffer);
1020 buffer[l++] = '\n';
1021 return l;
1022}
1023
1024static const struct module_attribute modinfo_taint =
1025 __ATTR(taint, 0444, show_taint, NULL);
1026
1027const struct module_attribute *const modinfo_attrs[] = {
1028 &module_uevent,
1029 &modinfo_version,
1030 &modinfo_srcversion,
1031 &modinfo_initstate,
1032 &modinfo_coresize,
1033#ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
1034 &modinfo_datasize,
1035#endif
1036 &modinfo_initsize,
1037 &modinfo_taint,
1038#ifdef CONFIG_MODULE_UNLOAD
1039 &modinfo_refcnt,
1040#endif
1041 NULL,
1042};
1043
1044const size_t modinfo_attrs_count = ARRAY_SIZE(modinfo_attrs);
1045
1046static const char vermagic[] = VERMAGIC_STRING;
1047
1048int try_to_force_load(struct module *mod, const char *reason)
1049{
1050#ifdef CONFIG_MODULE_FORCE_LOAD
1051 if (!test_taint(TAINT_FORCED_MODULE))
1052 pr_warn("%s: %s: kernel tainted.\n", mod->name, reason);
1053 add_taint_module(mod, TAINT_FORCED_MODULE, lockdep_ok: LOCKDEP_NOW_UNRELIABLE);
1054 return 0;
1055#else
1056 return -ENOEXEC;
1057#endif
1058}
1059
1060/* Parse tag=value strings from .modinfo section */
1061char *module_next_tag_pair(char *string, unsigned long *secsize)
1062{
1063 /* Skip non-zero chars */
1064 while (string[0]) {
1065 string++;
1066 if ((*secsize)-- <= 1)
1067 return NULL;
1068 }
1069
1070 /* Skip any zero padding. */
1071 while (!string[0]) {
1072 string++;
1073 if ((*secsize)-- <= 1)
1074 return NULL;
1075 }
1076 return string;
1077}
1078
1079static char *get_next_modinfo(const struct load_info *info, const char *tag,
1080 char *prev)
1081{
1082 char *p;
1083 unsigned int taglen = strlen(tag);
1084 Elf_Shdr *infosec = &info->sechdrs[info->index.info];
1085 unsigned long size = infosec->sh_size;
1086
1087 /*
1088 * get_modinfo() calls made before rewrite_section_headers()
1089 * must use sh_offset, as sh_addr isn't set!
1090 */
1091 char *modinfo = (char *)info->hdr + infosec->sh_offset;
1092
1093 if (prev) {
1094 size -= prev - modinfo;
1095 modinfo = module_next_tag_pair(string: prev, secsize: &size);
1096 }
1097
1098 for (p = modinfo; p; p = module_next_tag_pair(string: p, secsize: &size)) {
1099 if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
1100 return p + taglen + 1;
1101 }
1102 return NULL;
1103}
1104
1105static char *get_modinfo(const struct load_info *info, const char *tag)
1106{
1107 return get_next_modinfo(info, tag, NULL);
1108}
1109
1110/**
1111 * verify_module_namespace() - does @modname have access to this symbol's @namespace
1112 * @namespace: export symbol namespace
1113 * @modname: module name
1114 *
1115 * If @namespace is prefixed with "module:" to indicate it is a module namespace
1116 * then test if @modname matches any of the comma separated patterns.
1117 *
1118 * The patterns only support tail-glob.
1119 */
1120static bool verify_module_namespace(const char *namespace, const char *modname)
1121{
1122 size_t len, modlen = strlen(modname);
1123 const char *prefix = "module:";
1124 const char *sep;
1125 bool glob;
1126
1127 if (!strstarts(str: namespace, prefix))
1128 return false;
1129
1130 for (namespace += strlen(prefix); *namespace; namespace = sep) {
1131 sep = strchrnul(namespace, ',');
1132 len = sep - namespace;
1133
1134 glob = false;
1135 if (sep[-1] == '*') {
1136 len--;
1137 glob = true;
1138 }
1139
1140 if (*sep)
1141 sep++;
1142
1143 if (mod_strncmp(str_a: namespace, str_b: modname, n: len) == 0 && (glob || len == modlen))
1144 return true;
1145 }
1146
1147 return false;
1148}
1149
1150static int verify_namespace_is_imported(const struct load_info *info,
1151 const struct kernel_symbol *sym,
1152 struct module *mod)
1153{
1154 const char *namespace;
1155 char *imported_namespace;
1156
1157 namespace = kernel_symbol_namespace(sym);
1158 if (namespace && namespace[0]) {
1159
1160 if (verify_module_namespace(namespace, modname: mod->name))
1161 return 0;
1162
1163 for_each_modinfo_entry(imported_namespace, info, "import_ns") {
1164 if (strcmp(namespace, imported_namespace) == 0)
1165 return 0;
1166 }
1167#ifdef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1168 pr_warn(
1169#else
1170 pr_err(
1171#endif
1172 "%s: module uses symbol (%s) from namespace %s, but does not import it.\n",
1173 mod->name, kernel_symbol_name(sym), namespace);
1174#ifndef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1175 return -EINVAL;
1176#endif
1177 }
1178 return 0;
1179}
1180
1181static bool inherit_taint(struct module *mod, struct module *owner, const char *name)
1182{
1183 if (!owner || !test_bit(TAINT_PROPRIETARY_MODULE, &owner->taints))
1184 return true;
1185
1186 if (mod->using_gplonly_symbols) {
1187 pr_err("%s: module using GPL-only symbols uses symbols %s from proprietary module %s.\n",
1188 mod->name, name, owner->name);
1189 return false;
1190 }
1191
1192 if (!test_bit(TAINT_PROPRIETARY_MODULE, &mod->taints)) {
1193 pr_warn("%s: module uses symbols %s from proprietary module %s, inheriting taint.\n",
1194 mod->name, name, owner->name);
1195 set_bit(TAINT_PROPRIETARY_MODULE, addr: &mod->taints);
1196 }
1197 return true;
1198}
1199
1200/* Resolve a symbol for this module. I.e. if we find one, record usage. */
1201static const struct kernel_symbol *resolve_symbol(struct module *mod,
1202 const struct load_info *info,
1203 const char *name,
1204 char ownername[])
1205{
1206 struct find_symbol_arg fsa = {
1207 .name = name,
1208 .gplok = !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)),
1209 .warn = true,
1210 };
1211 int err;
1212
1213 /*
1214 * The module_mutex should not be a heavily contended lock;
1215 * if we get the occasional sleep here, we'll go an extra iteration
1216 * in the wait_event_interruptible(), which is harmless.
1217 */
1218 sched_annotate_sleep();
1219 mutex_lock(&module_mutex);
1220 if (!find_symbol(fsa: &fsa))
1221 goto unlock;
1222
1223 if (fsa.license == GPL_ONLY)
1224 mod->using_gplonly_symbols = true;
1225
1226 if (!inherit_taint(mod, owner: fsa.owner, name)) {
1227 fsa.sym = NULL;
1228 goto getname;
1229 }
1230
1231 if (!check_version(info, symname: name, mod, crc: fsa.crc)) {
1232 fsa.sym = ERR_PTR(error: -EINVAL);
1233 goto getname;
1234 }
1235
1236 err = verify_namespace_is_imported(info, sym: fsa.sym, mod);
1237 if (err) {
1238 fsa.sym = ERR_PTR(error: err);
1239 goto getname;
1240 }
1241
1242 err = ref_module(a: mod, b: fsa.owner);
1243 if (err) {
1244 fsa.sym = ERR_PTR(error: err);
1245 goto getname;
1246 }
1247
1248getname:
1249 /* We must make copy under the lock if we failed to get ref. */
1250 strscpy(ownername, module_name(fsa.owner), MODULE_NAME_LEN);
1251unlock:
1252 mutex_unlock(lock: &module_mutex);
1253 return fsa.sym;
1254}
1255
1256static const struct kernel_symbol *
1257resolve_symbol_wait(struct module *mod,
1258 const struct load_info *info,
1259 const char *name)
1260{
1261 const struct kernel_symbol *ksym;
1262 char owner[MODULE_NAME_LEN];
1263
1264 if (wait_event_interruptible_timeout(module_wq,
1265 !IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1266 || PTR_ERR(ksym) != -EBUSY,
1267 30 * HZ) <= 0) {
1268 pr_warn("%s: gave up waiting for init of module %s.\n",
1269 mod->name, owner);
1270 }
1271 return ksym;
1272}
1273
1274void __weak module_arch_cleanup(struct module *mod)
1275{
1276}
1277
1278void __weak module_arch_freeing_init(struct module *mod)
1279{
1280}
1281
1282static int module_memory_alloc(struct module *mod, enum mod_mem_type type)
1283{
1284 unsigned int size = PAGE_ALIGN(mod->mem[type].size);
1285 enum execmem_type execmem_type;
1286 void *ptr;
1287
1288 mod->mem[type].size = size;
1289
1290 if (mod_mem_type_is_data(type))
1291 execmem_type = EXECMEM_MODULE_DATA;
1292 else
1293 execmem_type = EXECMEM_MODULE_TEXT;
1294
1295 ptr = execmem_alloc(type: execmem_type, size);
1296 if (!ptr)
1297 return -ENOMEM;
1298
1299 if (execmem_is_rox(type: execmem_type)) {
1300 int err = execmem_make_temp_rw(ptr, size);
1301
1302 if (err) {
1303 execmem_free(ptr);
1304 return -ENOMEM;
1305 }
1306
1307 mod->mem[type].is_rox = true;
1308 }
1309
1310 /*
1311 * The pointer to these blocks of memory are stored on the module
1312 * structure and we keep that around so long as the module is
1313 * around. We only free that memory when we unload the module.
1314 * Just mark them as not being a leak then. The .init* ELF
1315 * sections *do* get freed after boot so we *could* treat them
1316 * slightly differently with kmemleak_ignore() and only grey
1317 * them out as they work as typical memory allocations which
1318 * *do* eventually get freed, but let's just keep things simple
1319 * and avoid *any* false positives.
1320 */
1321 if (!mod->mem[type].is_rox)
1322 kmemleak_not_leak(ptr);
1323
1324 memset(ptr, 0, size);
1325 mod->mem[type].base = ptr;
1326
1327 return 0;
1328}
1329
1330static void module_memory_restore_rox(struct module *mod)
1331{
1332 for_class_mod_mem_type(type, text) {
1333 struct module_memory *mem = &mod->mem[type];
1334
1335 if (mem->is_rox)
1336 execmem_restore_rox(ptr: mem->base, size: mem->size);
1337 }
1338}
1339
1340static void module_memory_free(struct module *mod, enum mod_mem_type type)
1341{
1342 struct module_memory *mem = &mod->mem[type];
1343
1344 execmem_free(ptr: mem->base);
1345}
1346
1347static void free_mod_mem(struct module *mod)
1348{
1349 for_each_mod_mem_type(type) {
1350 struct module_memory *mod_mem = &mod->mem[type];
1351
1352 if (type == MOD_DATA)
1353 continue;
1354
1355 /* Free lock-classes; relies on the preceding sync_rcu(). */
1356 lockdep_free_key_range(start: mod_mem->base, size: mod_mem->size);
1357 if (mod_mem->size)
1358 module_memory_free(mod, type);
1359 }
1360
1361 /* MOD_DATA hosts mod, so free it at last */
1362 lockdep_free_key_range(start: mod->mem[MOD_DATA].base, size: mod->mem[MOD_DATA].size);
1363 module_memory_free(mod, type: MOD_DATA);
1364}
1365
1366/* Free a module, remove from lists, etc. */
1367static void free_module(struct module *mod)
1368{
1369 trace_module_free(mod);
1370
1371 codetag_unload_module(mod);
1372
1373 mod_sysfs_teardown(mod);
1374
1375 /*
1376 * We leave it in list to prevent duplicate loads, but make sure
1377 * that noone uses it while it's being deconstructed.
1378 */
1379 mutex_lock(&module_mutex);
1380 mod->state = MODULE_STATE_UNFORMED;
1381 mutex_unlock(lock: &module_mutex);
1382
1383 /* Arch-specific cleanup. */
1384 module_arch_cleanup(mod);
1385
1386 /* Module unload stuff */
1387 module_unload_free(mod);
1388
1389 /* Free any allocated parameters. */
1390 destroy_params(params: mod->kp, num: mod->num_kp);
1391
1392 if (is_livepatch_module(mod))
1393 free_module_elf(mod);
1394
1395 /* Now we can delete it from the lists */
1396 mutex_lock(&module_mutex);
1397 /* Unlink carefully: kallsyms could be walking list. */
1398 list_del_rcu(entry: &mod->list);
1399 mod_tree_remove(mod);
1400 /* Remove this module from bug list, this uses list_del_rcu */
1401 module_bug_cleanup(mod);
1402 /* Wait for RCU synchronizing before releasing mod->list and buglist. */
1403 synchronize_rcu();
1404 if (try_add_tainted_module(mod))
1405 pr_err("%s: adding tainted module to the unloaded tainted modules list failed.\n",
1406 mod->name);
1407 mutex_unlock(lock: &module_mutex);
1408
1409 /* This may be empty, but that's OK */
1410 module_arch_freeing_init(mod);
1411 kfree(objp: mod->args);
1412 percpu_modfree(mod);
1413
1414 free_mod_mem(mod);
1415}
1416
1417void *__symbol_get(const char *symbol)
1418{
1419 struct find_symbol_arg fsa = {
1420 .name = symbol,
1421 .gplok = true,
1422 .warn = true,
1423 };
1424
1425 scoped_guard(rcu) {
1426 if (!find_symbol(fsa: &fsa))
1427 return NULL;
1428 if (fsa.license != GPL_ONLY) {
1429 pr_warn("failing symbol_get of non-GPLONLY symbol %s.\n",
1430 symbol);
1431 return NULL;
1432 }
1433 if (strong_try_module_get(mod: fsa.owner))
1434 return NULL;
1435 }
1436 return (void *)kernel_symbol_value(sym: fsa.sym);
1437}
1438EXPORT_SYMBOL_GPL(__symbol_get);
1439
1440/*
1441 * Ensure that an exported symbol [global namespace] does not already exist
1442 * in the kernel or in some other module's exported symbol table.
1443 *
1444 * You must hold the module_mutex.
1445 */
1446static int verify_exported_symbols(struct module *mod)
1447{
1448 unsigned int i;
1449 const struct kernel_symbol *s;
1450 struct {
1451 const struct kernel_symbol *sym;
1452 unsigned int num;
1453 } arr[] = {
1454 { mod->syms, mod->num_syms },
1455 { mod->gpl_syms, mod->num_gpl_syms },
1456 };
1457
1458 for (i = 0; i < ARRAY_SIZE(arr); i++) {
1459 for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
1460 struct find_symbol_arg fsa = {
1461 .name = kernel_symbol_name(sym: s),
1462 .gplok = true,
1463 };
1464 if (find_symbol(fsa: &fsa)) {
1465 pr_err("%s: exports duplicate symbol %s"
1466 " (owned by %s)\n",
1467 mod->name, kernel_symbol_name(s),
1468 module_name(fsa.owner));
1469 return -ENOEXEC;
1470 }
1471 }
1472 }
1473 return 0;
1474}
1475
1476static bool ignore_undef_symbol(Elf_Half emachine, const char *name)
1477{
1478 /*
1479 * On x86, PIC code and Clang non-PIC code may have call foo@PLT. GNU as
1480 * before 2.37 produces an unreferenced _GLOBAL_OFFSET_TABLE_ on x86-64.
1481 * i386 has a similar problem but may not deserve a fix.
1482 *
1483 * If we ever have to ignore many symbols, consider refactoring the code to
1484 * only warn if referenced by a relocation.
1485 */
1486 if (emachine == EM_386 || emachine == EM_X86_64)
1487 return !strcmp(name, "_GLOBAL_OFFSET_TABLE_");
1488 return false;
1489}
1490
1491/* Change all symbols so that st_value encodes the pointer directly. */
1492static int simplify_symbols(struct module *mod, const struct load_info *info)
1493{
1494 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
1495 Elf_Sym *sym = (void *)symsec->sh_addr;
1496 unsigned long secbase;
1497 unsigned int i;
1498 int ret = 0;
1499 const struct kernel_symbol *ksym;
1500
1501 for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
1502 const char *name = info->strtab + sym[i].st_name;
1503
1504 switch (sym[i].st_shndx) {
1505 case SHN_COMMON:
1506 /* Ignore common symbols */
1507 if (!strncmp(name, "__gnu_lto", 9))
1508 break;
1509
1510 /*
1511 * We compiled with -fno-common. These are not
1512 * supposed to happen.
1513 */
1514 pr_debug("Common symbol: %s\n", name);
1515 pr_warn("%s: please compile with -fno-common\n",
1516 mod->name);
1517 ret = -ENOEXEC;
1518 break;
1519
1520 case SHN_ABS:
1521 /* Don't need to do anything */
1522 pr_debug("Absolute symbol: 0x%08lx %s\n",
1523 (long)sym[i].st_value, name);
1524 break;
1525
1526 case SHN_LIVEPATCH:
1527 /* Livepatch symbols are resolved by livepatch */
1528 break;
1529
1530 case SHN_UNDEF:
1531 ksym = resolve_symbol_wait(mod, info, name);
1532 /* Ok if resolved. */
1533 if (ksym && !IS_ERR(ptr: ksym)) {
1534 sym[i].st_value = kernel_symbol_value(sym: ksym);
1535 break;
1536 }
1537
1538 /* Ok if weak or ignored. */
1539 if (!ksym &&
1540 (ELF_ST_BIND(sym[i].st_info) == STB_WEAK ||
1541 ignore_undef_symbol(emachine: info->hdr->e_machine, name)))
1542 break;
1543
1544 ret = PTR_ERR(ptr: ksym) ?: -ENOENT;
1545 pr_warn("%s: Unknown symbol %s (err %d)\n",
1546 mod->name, name, ret);
1547 break;
1548
1549 default:
1550 /* Divert to percpu allocation if a percpu var. */
1551 if (sym[i].st_shndx == info->index.pcpu)
1552 secbase = (unsigned long)mod_percpu(mod);
1553 else
1554 secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
1555 sym[i].st_value += secbase;
1556 break;
1557 }
1558 }
1559
1560 return ret;
1561}
1562
1563static int apply_relocations(struct module *mod, const struct load_info *info)
1564{
1565 unsigned int i;
1566 int err = 0;
1567
1568 /* Now do relocations. */
1569 for (i = 1; i < info->hdr->e_shnum; i++) {
1570 unsigned int infosec = info->sechdrs[i].sh_info;
1571
1572 /* Not a valid relocation section? */
1573 if (infosec >= info->hdr->e_shnum)
1574 continue;
1575
1576 /* Don't bother with non-allocated sections */
1577 if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
1578 continue;
1579
1580 if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH)
1581 err = klp_apply_section_relocs(pmod: mod, sechdrs: info->sechdrs,
1582 shstrtab: info->secstrings,
1583 strtab: info->strtab,
1584 symindex: info->index.sym, secindex: i,
1585 NULL);
1586 else if (info->sechdrs[i].sh_type == SHT_REL)
1587 err = apply_relocate(sechdrs: info->sechdrs, strtab: info->strtab,
1588 symindex: info->index.sym, relsec: i, me: mod);
1589 else if (info->sechdrs[i].sh_type == SHT_RELA)
1590 err = apply_relocate_add(sechdrs: info->sechdrs, strtab: info->strtab,
1591 symindex: info->index.sym, relsec: i, mod);
1592 if (err < 0)
1593 break;
1594 }
1595 return err;
1596}
1597
1598/* Additional bytes needed by arch in front of individual sections */
1599unsigned int __weak arch_mod_section_prepend(struct module *mod,
1600 unsigned int section)
1601{
1602 /* default implementation just returns zero */
1603 return 0;
1604}
1605
1606long module_get_offset_and_type(struct module *mod, enum mod_mem_type type,
1607 Elf_Shdr *sechdr, unsigned int section)
1608{
1609 long offset;
1610 long mask = ((unsigned long)(type) & SH_ENTSIZE_TYPE_MASK) << SH_ENTSIZE_TYPE_SHIFT;
1611
1612 mod->mem[type].size += arch_mod_section_prepend(mod, section);
1613 offset = ALIGN(mod->mem[type].size, sechdr->sh_addralign ?: 1);
1614 mod->mem[type].size = offset + sechdr->sh_size;
1615
1616 WARN_ON_ONCE(offset & mask);
1617 return offset | mask;
1618}
1619
1620bool module_init_layout_section(const char *sname)
1621{
1622#ifndef CONFIG_MODULE_UNLOAD
1623 if (module_exit_section(sname))
1624 return true;
1625#endif
1626 return module_init_section(name: sname);
1627}
1628
1629static void __layout_sections(struct module *mod, struct load_info *info, bool is_init)
1630{
1631 unsigned int m, i;
1632
1633 /*
1634 * { Mask of required section header flags,
1635 * Mask of excluded section header flags }
1636 */
1637 static const unsigned long masks[][2] = {
1638 { SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
1639 { SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
1640 { SHF_RO_AFTER_INIT | SHF_ALLOC, ARCH_SHF_SMALL },
1641 { SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
1642 { ARCH_SHF_SMALL | SHF_ALLOC, 0 }
1643 };
1644 static const int core_m_to_mem_type[] = {
1645 MOD_TEXT,
1646 MOD_RODATA,
1647 MOD_RO_AFTER_INIT,
1648 MOD_DATA,
1649 MOD_DATA,
1650 };
1651 static const int init_m_to_mem_type[] = {
1652 MOD_INIT_TEXT,
1653 MOD_INIT_RODATA,
1654 MOD_INVALID,
1655 MOD_INIT_DATA,
1656 MOD_INIT_DATA,
1657 };
1658
1659 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
1660 enum mod_mem_type type = is_init ? init_m_to_mem_type[m] : core_m_to_mem_type[m];
1661
1662 for (i = 0; i < info->hdr->e_shnum; ++i) {
1663 Elf_Shdr *s = &info->sechdrs[i];
1664 const char *sname = info->secstrings + s->sh_name;
1665
1666 if ((s->sh_flags & masks[m][0]) != masks[m][0]
1667 || (s->sh_flags & masks[m][1])
1668 || s->sh_entsize != ~0UL
1669 || is_init != module_init_layout_section(sname))
1670 continue;
1671
1672 if (WARN_ON_ONCE(type == MOD_INVALID))
1673 continue;
1674
1675 /*
1676 * Do not allocate codetag memory as we load it into
1677 * preallocated contiguous memory.
1678 */
1679 if (codetag_needs_module_section(mod, name: sname, size: s->sh_size)) {
1680 /*
1681 * s->sh_entsize won't be used but populate the
1682 * type field to avoid confusion.
1683 */
1684 s->sh_entsize = ((unsigned long)(type) & SH_ENTSIZE_TYPE_MASK)
1685 << SH_ENTSIZE_TYPE_SHIFT;
1686 continue;
1687 }
1688
1689 s->sh_entsize = module_get_offset_and_type(mod, type, sechdr: s, section: i);
1690 pr_debug("\t%s\n", sname);
1691 }
1692 }
1693}
1694
1695/*
1696 * Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
1697 * might -- code, read-only data, read-write data, small data. Tally
1698 * sizes, and place the offsets into sh_entsize fields: high bit means it
1699 * belongs in init.
1700 */
1701static void layout_sections(struct module *mod, struct load_info *info)
1702{
1703 unsigned int i;
1704
1705 for (i = 0; i < info->hdr->e_shnum; i++)
1706 info->sechdrs[i].sh_entsize = ~0UL;
1707
1708 pr_debug("Core section allocation order for %s:\n", mod->name);
1709 __layout_sections(mod, info, is_init: false);
1710
1711 pr_debug("Init section allocation order for %s:\n", mod->name);
1712 __layout_sections(mod, info, is_init: true);
1713}
1714
1715static void module_license_taint_check(struct module *mod, const char *license)
1716{
1717 if (!license)
1718 license = "unspecified";
1719
1720 if (!license_is_gpl_compatible(license)) {
1721 if (!test_taint(TAINT_PROPRIETARY_MODULE))
1722 pr_warn("%s: module license '%s' taints kernel.\n",
1723 mod->name, license);
1724 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
1725 lockdep_ok: LOCKDEP_NOW_UNRELIABLE);
1726 }
1727}
1728
1729static int setup_modinfo(struct module *mod, struct load_info *info)
1730{
1731 const struct module_attribute *attr;
1732 char *imported_namespace;
1733 int i;
1734
1735 for (i = 0; (attr = modinfo_attrs[i]); i++) {
1736 if (attr->setup)
1737 attr->setup(mod, get_modinfo(info, tag: attr->attr.name));
1738 }
1739
1740 for_each_modinfo_entry(imported_namespace, info, "import_ns") {
1741 /*
1742 * 'module:' prefixed namespaces are implicit, disallow
1743 * explicit imports.
1744 */
1745 if (strstarts(str: imported_namespace, prefix: "module:")) {
1746 pr_err("%s: module tries to import module namespace: %s\n",
1747 mod->name, imported_namespace);
1748 return -EPERM;
1749 }
1750 }
1751
1752 return 0;
1753}
1754
1755static void free_modinfo(struct module *mod)
1756{
1757 const struct module_attribute *attr;
1758 int i;
1759
1760 for (i = 0; (attr = modinfo_attrs[i]); i++) {
1761 if (attr->free)
1762 attr->free(mod);
1763 }
1764}
1765
1766bool __weak module_init_section(const char *name)
1767{
1768 return strstarts(str: name, prefix: ".init");
1769}
1770
1771bool __weak module_exit_section(const char *name)
1772{
1773 return strstarts(str: name, prefix: ".exit");
1774}
1775
1776static int validate_section_offset(const struct load_info *info, Elf_Shdr *shdr)
1777{
1778#if defined(CONFIG_64BIT)
1779 unsigned long long secend;
1780#else
1781 unsigned long secend;
1782#endif
1783
1784 /*
1785 * Check for both overflow and offset/size being
1786 * too large.
1787 */
1788 secend = shdr->sh_offset + shdr->sh_size;
1789 if (secend < shdr->sh_offset || secend > info->len)
1790 return -ENOEXEC;
1791
1792 return 0;
1793}
1794
1795/**
1796 * elf_validity_ehdr() - Checks an ELF header for module validity
1797 * @info: Load info containing the ELF header to check
1798 *
1799 * Checks whether an ELF header could belong to a valid module. Checks:
1800 *
1801 * * ELF header is within the data the user provided
1802 * * ELF magic is present
1803 * * It is relocatable (not final linked, not core file, etc.)
1804 * * The header's machine type matches what the architecture expects.
1805 * * Optional arch-specific hook for other properties
1806 * - module_elf_check_arch() is currently only used by PPC to check
1807 * ELF ABI version, but may be used by others in the future.
1808 *
1809 * Return: %0 if valid, %-ENOEXEC on failure.
1810 */
1811static int elf_validity_ehdr(const struct load_info *info)
1812{
1813 if (info->len < sizeof(*(info->hdr))) {
1814 pr_err("Invalid ELF header len %lu\n", info->len);
1815 return -ENOEXEC;
1816 }
1817 if (memcmp(p: info->hdr->e_ident, ELFMAG, SELFMAG) != 0) {
1818 pr_err("Invalid ELF header magic: != %s\n", ELFMAG);
1819 return -ENOEXEC;
1820 }
1821 if (info->hdr->e_type != ET_REL) {
1822 pr_err("Invalid ELF header type: %u != %u\n",
1823 info->hdr->e_type, ET_REL);
1824 return -ENOEXEC;
1825 }
1826 if (!elf_check_arch(info->hdr)) {
1827 pr_err("Invalid architecture in ELF header: %u\n",
1828 info->hdr->e_machine);
1829 return -ENOEXEC;
1830 }
1831 if (!module_elf_check_arch(hdr: info->hdr)) {
1832 pr_err("Invalid module architecture in ELF header: %u\n",
1833 info->hdr->e_machine);
1834 return -ENOEXEC;
1835 }
1836 return 0;
1837}
1838
1839/**
1840 * elf_validity_cache_sechdrs() - Cache section headers if valid
1841 * @info: Load info to compute section headers from
1842 *
1843 * Checks:
1844 *
1845 * * ELF header is valid (see elf_validity_ehdr())
1846 * * Section headers are the size we expect
1847 * * Section array fits in the user provided data
1848 * * Section index 0 is NULL
1849 * * Section contents are inbounds
1850 *
1851 * Then updates @info with a &load_info->sechdrs pointer if valid.
1852 *
1853 * Return: %0 if valid, negative error code if validation failed.
1854 */
1855static int elf_validity_cache_sechdrs(struct load_info *info)
1856{
1857 Elf_Shdr *sechdrs;
1858 Elf_Shdr *shdr;
1859 int i;
1860 int err;
1861
1862 err = elf_validity_ehdr(info);
1863 if (err < 0)
1864 return err;
1865
1866 if (info->hdr->e_shentsize != sizeof(Elf_Shdr)) {
1867 pr_err("Invalid ELF section header size\n");
1868 return -ENOEXEC;
1869 }
1870
1871 /*
1872 * e_shnum is 16 bits, and sizeof(Elf_Shdr) is
1873 * known and small. So e_shnum * sizeof(Elf_Shdr)
1874 * will not overflow unsigned long on any platform.
1875 */
1876 if (info->hdr->e_shoff >= info->len
1877 || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
1878 info->len - info->hdr->e_shoff)) {
1879 pr_err("Invalid ELF section header overflow\n");
1880 return -ENOEXEC;
1881 }
1882
1883 sechdrs = (void *)info->hdr + info->hdr->e_shoff;
1884
1885 /*
1886 * The code assumes that section 0 has a length of zero and
1887 * an addr of zero, so check for it.
1888 */
1889 if (sechdrs[0].sh_type != SHT_NULL
1890 || sechdrs[0].sh_size != 0
1891 || sechdrs[0].sh_addr != 0) {
1892 pr_err("ELF Spec violation: section 0 type(%d)!=SH_NULL or non-zero len or addr\n",
1893 sechdrs[0].sh_type);
1894 return -ENOEXEC;
1895 }
1896
1897 /* Validate contents are inbounds */
1898 for (i = 1; i < info->hdr->e_shnum; i++) {
1899 shdr = &sechdrs[i];
1900 switch (shdr->sh_type) {
1901 case SHT_NULL:
1902 case SHT_NOBITS:
1903 /* No contents, offset/size don't mean anything */
1904 continue;
1905 default:
1906 err = validate_section_offset(info, shdr);
1907 if (err < 0) {
1908 pr_err("Invalid ELF section in module (section %u type %u)\n",
1909 i, shdr->sh_type);
1910 return err;
1911 }
1912 }
1913 }
1914
1915 info->sechdrs = sechdrs;
1916
1917 return 0;
1918}
1919
1920/**
1921 * elf_validity_cache_secstrings() - Caches section names if valid
1922 * @info: Load info to cache section names from. Must have valid sechdrs.
1923 *
1924 * Specifically checks:
1925 *
1926 * * Section name table index is inbounds of section headers
1927 * * Section name table is not empty
1928 * * Section name table is NUL terminated
1929 * * All section name offsets are inbounds of the section
1930 *
1931 * Then updates @info with a &load_info->secstrings pointer if valid.
1932 *
1933 * Return: %0 if valid, negative error code if validation failed.
1934 */
1935static int elf_validity_cache_secstrings(struct load_info *info)
1936{
1937 Elf_Shdr *strhdr, *shdr;
1938 char *secstrings;
1939 int i;
1940
1941 /*
1942 * Verify if the section name table index is valid.
1943 */
1944 if (info->hdr->e_shstrndx == SHN_UNDEF
1945 || info->hdr->e_shstrndx >= info->hdr->e_shnum) {
1946 pr_err("Invalid ELF section name index: %d || e_shstrndx (%d) >= e_shnum (%d)\n",
1947 info->hdr->e_shstrndx, info->hdr->e_shstrndx,
1948 info->hdr->e_shnum);
1949 return -ENOEXEC;
1950 }
1951
1952 strhdr = &info->sechdrs[info->hdr->e_shstrndx];
1953
1954 /*
1955 * The section name table must be NUL-terminated, as required
1956 * by the spec. This makes strcmp and pr_* calls that access
1957 * strings in the section safe.
1958 */
1959 secstrings = (void *)info->hdr + strhdr->sh_offset;
1960 if (strhdr->sh_size == 0) {
1961 pr_err("empty section name table\n");
1962 return -ENOEXEC;
1963 }
1964 if (secstrings[strhdr->sh_size - 1] != '\0') {
1965 pr_err("ELF Spec violation: section name table isn't null terminated\n");
1966 return -ENOEXEC;
1967 }
1968
1969 for (i = 0; i < info->hdr->e_shnum; i++) {
1970 shdr = &info->sechdrs[i];
1971 /* SHT_NULL means sh_name has an undefined value */
1972 if (shdr->sh_type == SHT_NULL)
1973 continue;
1974 if (shdr->sh_name >= strhdr->sh_size) {
1975 pr_err("Invalid ELF section name in module (section %u type %u)\n",
1976 i, shdr->sh_type);
1977 return -ENOEXEC;
1978 }
1979 }
1980
1981 info->secstrings = secstrings;
1982 return 0;
1983}
1984
1985/**
1986 * elf_validity_cache_index_info() - Validate and cache modinfo section
1987 * @info: Load info to populate the modinfo index on.
1988 * Must have &load_info->sechdrs and &load_info->secstrings populated
1989 *
1990 * Checks that if there is a .modinfo section, it is unique.
1991 * Then, it caches its index in &load_info->index.info.
1992 * Finally, it tries to populate the name to improve error messages.
1993 *
1994 * Return: %0 if valid, %-ENOEXEC if multiple modinfo sections were found.
1995 */
1996static int elf_validity_cache_index_info(struct load_info *info)
1997{
1998 int info_idx;
1999
2000 info_idx = find_any_unique_sec(info, name: ".modinfo");
2001
2002 if (info_idx == 0)
2003 /* Early return, no .modinfo */
2004 return 0;
2005
2006 if (info_idx < 0) {
2007 pr_err("Only one .modinfo section must exist.\n");
2008 return -ENOEXEC;
2009 }
2010
2011 info->index.info = info_idx;
2012 /* Try to find a name early so we can log errors with a module name */
2013 info->name = get_modinfo(info, tag: "name");
2014
2015 return 0;
2016}
2017
2018/**
2019 * elf_validity_cache_index_mod() - Validates and caches this_module section
2020 * @info: Load info to cache this_module on.
2021 * Must have &load_info->sechdrs and &load_info->secstrings populated
2022 *
2023 * The ".gnu.linkonce.this_module" ELF section is special. It is what modpost
2024 * uses to refer to __this_module and let's use rely on THIS_MODULE to point
2025 * to &__this_module properly. The kernel's modpost declares it on each
2026 * modules's *.mod.c file. If the struct module of the kernel changes a full
2027 * kernel rebuild is required.
2028 *
2029 * We have a few expectations for this special section, this function
2030 * validates all this for us:
2031 *
2032 * * The section has contents
2033 * * The section is unique
2034 * * We expect the kernel to always have to allocate it: SHF_ALLOC
2035 * * The section size must match the kernel's run time's struct module
2036 * size
2037 *
2038 * If all checks pass, the index will be cached in &load_info->index.mod
2039 *
2040 * Return: %0 on validation success, %-ENOEXEC on failure
2041 */
2042static int elf_validity_cache_index_mod(struct load_info *info)
2043{
2044 Elf_Shdr *shdr;
2045 int mod_idx;
2046
2047 mod_idx = find_any_unique_sec(info, name: ".gnu.linkonce.this_module");
2048 if (mod_idx <= 0) {
2049 pr_err("module %s: Exactly one .gnu.linkonce.this_module section must exist.\n",
2050 info->name ?: "(missing .modinfo section or name field)");
2051 return -ENOEXEC;
2052 }
2053
2054 shdr = &info->sechdrs[mod_idx];
2055
2056 if (shdr->sh_type == SHT_NOBITS) {
2057 pr_err("module %s: .gnu.linkonce.this_module section must have a size set\n",
2058 info->name ?: "(missing .modinfo section or name field)");
2059 return -ENOEXEC;
2060 }
2061
2062 if (!(shdr->sh_flags & SHF_ALLOC)) {
2063 pr_err("module %s: .gnu.linkonce.this_module must occupy memory during process execution\n",
2064 info->name ?: "(missing .modinfo section or name field)");
2065 return -ENOEXEC;
2066 }
2067
2068 if (shdr->sh_size != sizeof(struct module)) {
2069 pr_err("module %s: .gnu.linkonce.this_module section size must match the kernel's built struct module size at run time\n",
2070 info->name ?: "(missing .modinfo section or name field)");
2071 return -ENOEXEC;
2072 }
2073
2074 info->index.mod = mod_idx;
2075
2076 return 0;
2077}
2078
2079/**
2080 * elf_validity_cache_index_sym() - Validate and cache symtab index
2081 * @info: Load info to cache symtab index in.
2082 * Must have &load_info->sechdrs and &load_info->secstrings populated.
2083 *
2084 * Checks that there is exactly one symbol table, then caches its index in
2085 * &load_info->index.sym.
2086 *
2087 * Return: %0 if valid, %-ENOEXEC on failure.
2088 */
2089static int elf_validity_cache_index_sym(struct load_info *info)
2090{
2091 unsigned int sym_idx;
2092 unsigned int num_sym_secs = 0;
2093 int i;
2094
2095 for (i = 1; i < info->hdr->e_shnum; i++) {
2096 if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
2097 num_sym_secs++;
2098 sym_idx = i;
2099 }
2100 }
2101
2102 if (num_sym_secs != 1) {
2103 pr_warn("%s: module has no symbols (stripped?)\n",
2104 info->name ?: "(missing .modinfo section or name field)");
2105 return -ENOEXEC;
2106 }
2107
2108 info->index.sym = sym_idx;
2109
2110 return 0;
2111}
2112
2113/**
2114 * elf_validity_cache_index_str() - Validate and cache strtab index
2115 * @info: Load info to cache strtab index in.
2116 * Must have &load_info->sechdrs and &load_info->secstrings populated.
2117 * Must have &load_info->index.sym populated.
2118 *
2119 * Looks at the symbol table's associated string table, makes sure it is
2120 * in-bounds, and caches it.
2121 *
2122 * Return: %0 if valid, %-ENOEXEC on failure.
2123 */
2124static int elf_validity_cache_index_str(struct load_info *info)
2125{
2126 unsigned int str_idx = info->sechdrs[info->index.sym].sh_link;
2127
2128 if (str_idx == SHN_UNDEF || str_idx >= info->hdr->e_shnum) {
2129 pr_err("Invalid ELF sh_link!=SHN_UNDEF(%d) or (sh_link(%d) >= hdr->e_shnum(%d)\n",
2130 str_idx, str_idx, info->hdr->e_shnum);
2131 return -ENOEXEC;
2132 }
2133
2134 info->index.str = str_idx;
2135 return 0;
2136}
2137
2138/**
2139 * elf_validity_cache_index_versions() - Validate and cache version indices
2140 * @info: Load info to cache version indices in.
2141 * Must have &load_info->sechdrs and &load_info->secstrings populated.
2142 * @flags: Load flags, relevant to suppress version loading, see
2143 * uapi/linux/module.h
2144 *
2145 * If we're ignoring modversions based on @flags, zero all version indices
2146 * and return validity. Othewrise check:
2147 *
2148 * * If "__version_ext_crcs" is present, "__version_ext_names" is present
2149 * * There is a name present for every crc
2150 *
2151 * Then populate:
2152 *
2153 * * &load_info->index.vers
2154 * * &load_info->index.vers_ext_crc
2155 * * &load_info->index.vers_ext_names
2156 *
2157 * if present.
2158 *
2159 * Return: %0 if valid, %-ENOEXEC on failure.
2160 */
2161static int elf_validity_cache_index_versions(struct load_info *info, int flags)
2162{
2163 unsigned int vers_ext_crc;
2164 unsigned int vers_ext_name;
2165 size_t crc_count;
2166 size_t remaining_len;
2167 size_t name_size;
2168 char *name;
2169
2170 /* If modversions were suppressed, pretend we didn't find any */
2171 if (flags & MODULE_INIT_IGNORE_MODVERSIONS) {
2172 info->index.vers = 0;
2173 info->index.vers_ext_crc = 0;
2174 info->index.vers_ext_name = 0;
2175 return 0;
2176 }
2177
2178 vers_ext_crc = find_sec(info, name: "__version_ext_crcs");
2179 vers_ext_name = find_sec(info, name: "__version_ext_names");
2180
2181 /* If we have one field, we must have the other */
2182 if (!!vers_ext_crc != !!vers_ext_name) {
2183 pr_err("extended version crc+name presence does not match");
2184 return -ENOEXEC;
2185 }
2186
2187 /*
2188 * If we have extended version information, we should have the same
2189 * number of entries in every section.
2190 */
2191 if (vers_ext_crc) {
2192 crc_count = info->sechdrs[vers_ext_crc].sh_size / sizeof(u32);
2193 name = (void *)info->hdr +
2194 info->sechdrs[vers_ext_name].sh_offset;
2195 remaining_len = info->sechdrs[vers_ext_name].sh_size;
2196
2197 while (crc_count--) {
2198 name_size = strnlen(p: name, maxlen: remaining_len) + 1;
2199 if (name_size > remaining_len) {
2200 pr_err("more extended version crcs than names");
2201 return -ENOEXEC;
2202 }
2203 remaining_len -= name_size;
2204 name += name_size;
2205 }
2206 }
2207
2208 info->index.vers = find_sec(info, name: "__versions");
2209 info->index.vers_ext_crc = vers_ext_crc;
2210 info->index.vers_ext_name = vers_ext_name;
2211 return 0;
2212}
2213
2214/**
2215 * elf_validity_cache_index() - Resolve, validate, cache section indices
2216 * @info: Load info to read from and update.
2217 * &load_info->sechdrs and &load_info->secstrings must be populated.
2218 * @flags: Load flags, relevant to suppress version loading, see
2219 * uapi/linux/module.h
2220 *
2221 * Populates &load_info->index, validating as it goes.
2222 * See child functions for per-field validation:
2223 *
2224 * * elf_validity_cache_index_info()
2225 * * elf_validity_cache_index_mod()
2226 * * elf_validity_cache_index_sym()
2227 * * elf_validity_cache_index_str()
2228 * * elf_validity_cache_index_versions()
2229 *
2230 * If CONFIG_SMP is enabled, load the percpu section by name with no
2231 * validation.
2232 *
2233 * Return: 0 on success, negative error code if an index failed validation.
2234 */
2235static int elf_validity_cache_index(struct load_info *info, int flags)
2236{
2237 int err;
2238
2239 err = elf_validity_cache_index_info(info);
2240 if (err < 0)
2241 return err;
2242 err = elf_validity_cache_index_mod(info);
2243 if (err < 0)
2244 return err;
2245 err = elf_validity_cache_index_sym(info);
2246 if (err < 0)
2247 return err;
2248 err = elf_validity_cache_index_str(info);
2249 if (err < 0)
2250 return err;
2251 err = elf_validity_cache_index_versions(info, flags);
2252 if (err < 0)
2253 return err;
2254
2255 info->index.pcpu = find_pcpusec(info);
2256
2257 return 0;
2258}
2259
2260/**
2261 * elf_validity_cache_strtab() - Validate and cache symbol string table
2262 * @info: Load info to read from and update.
2263 * Must have &load_info->sechdrs and &load_info->secstrings populated.
2264 * Must have &load_info->index populated.
2265 *
2266 * Checks:
2267 *
2268 * * The string table is not empty.
2269 * * The string table starts and ends with NUL (required by ELF spec).
2270 * * Every &Elf_Sym->st_name offset in the symbol table is inbounds of the
2271 * string table.
2272 *
2273 * And caches the pointer as &load_info->strtab in @info.
2274 *
2275 * Return: 0 on success, negative error code if a check failed.
2276 */
2277static int elf_validity_cache_strtab(struct load_info *info)
2278{
2279 Elf_Shdr *str_shdr = &info->sechdrs[info->index.str];
2280 Elf_Shdr *sym_shdr = &info->sechdrs[info->index.sym];
2281 char *strtab = (char *)info->hdr + str_shdr->sh_offset;
2282 Elf_Sym *syms = (void *)info->hdr + sym_shdr->sh_offset;
2283 int i;
2284
2285 if (str_shdr->sh_size == 0) {
2286 pr_err("empty symbol string table\n");
2287 return -ENOEXEC;
2288 }
2289 if (strtab[0] != '\0') {
2290 pr_err("symbol string table missing leading NUL\n");
2291 return -ENOEXEC;
2292 }
2293 if (strtab[str_shdr->sh_size - 1] != '\0') {
2294 pr_err("symbol string table isn't NUL terminated\n");
2295 return -ENOEXEC;
2296 }
2297
2298 /*
2299 * Now that we know strtab is correctly structured, check symbol
2300 * starts are inbounds before they're used later.
2301 */
2302 for (i = 0; i < sym_shdr->sh_size / sizeof(*syms); i++) {
2303 if (syms[i].st_name >= str_shdr->sh_size) {
2304 pr_err("symbol name out of bounds in string table");
2305 return -ENOEXEC;
2306 }
2307 }
2308
2309 info->strtab = strtab;
2310 return 0;
2311}
2312
2313/*
2314 * Check userspace passed ELF module against our expectations, and cache
2315 * useful variables for further processing as we go.
2316 *
2317 * This does basic validity checks against section offsets and sizes, the
2318 * section name string table, and the indices used for it (sh_name).
2319 *
2320 * As a last step, since we're already checking the ELF sections we cache
2321 * useful variables which will be used later for our convenience:
2322 *
2323 * o pointers to section headers
2324 * o cache the modinfo symbol section
2325 * o cache the string symbol section
2326 * o cache the module section
2327 *
2328 * As a last step we set info->mod to the temporary copy of the module in
2329 * info->hdr. The final one will be allocated in move_module(). Any
2330 * modifications we make to our copy of the module will be carried over
2331 * to the final minted module.
2332 */
2333static int elf_validity_cache_copy(struct load_info *info, int flags)
2334{
2335 int err;
2336
2337 err = elf_validity_cache_sechdrs(info);
2338 if (err < 0)
2339 return err;
2340 err = elf_validity_cache_secstrings(info);
2341 if (err < 0)
2342 return err;
2343 err = elf_validity_cache_index(info, flags);
2344 if (err < 0)
2345 return err;
2346 err = elf_validity_cache_strtab(info);
2347 if (err < 0)
2348 return err;
2349
2350 /* This is temporary: point mod into copy of data. */
2351 info->mod = (void *)info->hdr + info->sechdrs[info->index.mod].sh_offset;
2352
2353 /*
2354 * If we didn't load the .modinfo 'name' field earlier, fall back to
2355 * on-disk struct mod 'name' field.
2356 */
2357 if (!info->name)
2358 info->name = info->mod->name;
2359
2360 return 0;
2361}
2362
2363#define COPY_CHUNK_SIZE (16*PAGE_SIZE)
2364
2365static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len)
2366{
2367 do {
2368 unsigned long n = min(len, COPY_CHUNK_SIZE);
2369
2370 if (copy_from_user(to: dst, from: usrc, n) != 0)
2371 return -EFAULT;
2372 cond_resched();
2373 dst += n;
2374 usrc += n;
2375 len -= n;
2376 } while (len);
2377 return 0;
2378}
2379
2380static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
2381{
2382 if (!get_modinfo(info, tag: "livepatch"))
2383 /* Nothing more to do */
2384 return 0;
2385
2386 if (set_livepatch_module(mod))
2387 return 0;
2388
2389 pr_err("%s: module is marked as livepatch module, but livepatch support is disabled",
2390 mod->name);
2391 return -ENOEXEC;
2392}
2393
2394static void check_modinfo_retpoline(struct module *mod, struct load_info *info)
2395{
2396 if (retpoline_module_ok(has_retpoline: get_modinfo(info, tag: "retpoline")))
2397 return;
2398
2399 pr_warn("%s: loading module not compiled with retpoline compiler.\n",
2400 mod->name);
2401}
2402
2403/* Sets info->hdr and info->len. */
2404static int copy_module_from_user(const void __user *umod, unsigned long len,
2405 struct load_info *info)
2406{
2407 int err;
2408
2409 info->len = len;
2410 if (info->len < sizeof(*(info->hdr)))
2411 return -ENOEXEC;
2412
2413 err = security_kernel_load_data(id: LOADING_MODULE, contents: true);
2414 if (err)
2415 return err;
2416
2417 /* Suck in entire file: we'll want most of it. */
2418 info->hdr = __vmalloc(info->len, GFP_KERNEL | __GFP_NOWARN);
2419 if (!info->hdr)
2420 return -ENOMEM;
2421
2422 if (copy_chunked_from_user(dst: info->hdr, usrc: umod, len: info->len) != 0) {
2423 err = -EFAULT;
2424 goto out;
2425 }
2426
2427 err = security_kernel_post_load_data(buf: (char *)info->hdr, size: info->len,
2428 id: LOADING_MODULE, description: "init_module");
2429out:
2430 if (err)
2431 vfree(addr: info->hdr);
2432
2433 return err;
2434}
2435
2436static void free_copy(struct load_info *info, int flags)
2437{
2438 if (flags & MODULE_INIT_COMPRESSED_FILE)
2439 module_decompress_cleanup(info);
2440 else
2441 vfree(addr: info->hdr);
2442}
2443
2444static int rewrite_section_headers(struct load_info *info, int flags)
2445{
2446 unsigned int i;
2447
2448 /* This should always be true, but let's be sure. */
2449 info->sechdrs[0].sh_addr = 0;
2450
2451 for (i = 1; i < info->hdr->e_shnum; i++) {
2452 Elf_Shdr *shdr = &info->sechdrs[i];
2453
2454 /*
2455 * Mark all sections sh_addr with their address in the
2456 * temporary image.
2457 */
2458 shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
2459
2460 }
2461
2462 /* Track but don't keep modinfo and version sections. */
2463 info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
2464 info->sechdrs[info->index.vers_ext_crc].sh_flags &=
2465 ~(unsigned long)SHF_ALLOC;
2466 info->sechdrs[info->index.vers_ext_name].sh_flags &=
2467 ~(unsigned long)SHF_ALLOC;
2468 info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
2469
2470 return 0;
2471}
2472
2473static const char *const module_license_offenders[] = {
2474 /* driverloader was caught wrongly pretending to be under GPL */
2475 "driverloader",
2476
2477 /* lve claims to be GPL but upstream won't provide source */
2478 "lve",
2479};
2480
2481/*
2482 * These calls taint the kernel depending certain module circumstances */
2483static void module_augment_kernel_taints(struct module *mod, struct load_info *info)
2484{
2485 int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE);
2486 size_t i;
2487
2488 if (!get_modinfo(info, tag: "intree")) {
2489 if (!test_taint(TAINT_OOT_MODULE))
2490 pr_warn("%s: loading out-of-tree module taints kernel.\n",
2491 mod->name);
2492 add_taint_module(mod, TAINT_OOT_MODULE, lockdep_ok: LOCKDEP_STILL_OK);
2493 }
2494
2495 check_modinfo_retpoline(mod, info);
2496
2497 if (get_modinfo(info, tag: "staging")) {
2498 add_taint_module(mod, TAINT_CRAP, lockdep_ok: LOCKDEP_STILL_OK);
2499 pr_warn("%s: module is from the staging directory, the quality "
2500 "is unknown, you have been warned.\n", mod->name);
2501 }
2502
2503 if (is_livepatch_module(mod)) {
2504 add_taint_module(mod, TAINT_LIVEPATCH, lockdep_ok: LOCKDEP_STILL_OK);
2505 pr_notice_once("%s: tainting kernel with TAINT_LIVEPATCH\n",
2506 mod->name);
2507 }
2508
2509 module_license_taint_check(mod, license: get_modinfo(info, tag: "license"));
2510
2511 if (get_modinfo(info, tag: "test")) {
2512 if (!test_taint(TAINT_TEST))
2513 pr_warn("%s: loading test module taints kernel.\n",
2514 mod->name);
2515 add_taint_module(mod, TAINT_TEST, lockdep_ok: LOCKDEP_STILL_OK);
2516 }
2517#ifdef CONFIG_MODULE_SIG
2518 mod->sig_ok = info->sig_ok;
2519 if (!mod->sig_ok) {
2520 pr_notice_once("%s: module verification failed: signature "
2521 "and/or required key missing - tainting "
2522 "kernel\n", mod->name);
2523 add_taint_module(mod, TAINT_UNSIGNED_MODULE, lockdep_ok: LOCKDEP_STILL_OK);
2524 }
2525#endif
2526
2527 /*
2528 * ndiswrapper is under GPL by itself, but loads proprietary modules.
2529 * Don't use add_taint_module(), as it would prevent ndiswrapper from
2530 * using GPL-only symbols it needs.
2531 */
2532 if (strcmp(mod->name, "ndiswrapper") == 0)
2533 add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
2534
2535 for (i = 0; i < ARRAY_SIZE(module_license_offenders); ++i) {
2536 if (strcmp(mod->name, module_license_offenders[i]) == 0)
2537 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2538 lockdep_ok: LOCKDEP_NOW_UNRELIABLE);
2539 }
2540
2541 if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE))
2542 pr_warn("%s: module license taints kernel.\n", mod->name);
2543
2544}
2545
2546static int check_modinfo(struct module *mod, struct load_info *info, int flags)
2547{
2548 const char *modmagic = get_modinfo(info, tag: "vermagic");
2549 int err;
2550
2551 if (flags & MODULE_INIT_IGNORE_VERMAGIC)
2552 modmagic = NULL;
2553
2554 /* This is allowed: modprobe --force will invalidate it. */
2555 if (!modmagic) {
2556 err = try_to_force_load(mod, reason: "bad vermagic");
2557 if (err)
2558 return err;
2559 } else if (!same_magic(amagic: modmagic, bmagic: vermagic, has_crcs: info->index.vers)) {
2560 pr_err("%s: version magic '%s' should be '%s'\n",
2561 info->name, modmagic, vermagic);
2562 return -ENOEXEC;
2563 }
2564
2565 err = check_modinfo_livepatch(mod, info);
2566 if (err)
2567 return err;
2568
2569 return 0;
2570}
2571
2572static int find_module_sections(struct module *mod, struct load_info *info)
2573{
2574 mod->kp = section_objs(info, name: "__param",
2575 object_size: sizeof(*mod->kp), num: &mod->num_kp);
2576 mod->syms = section_objs(info, name: "__ksymtab",
2577 object_size: sizeof(*mod->syms), num: &mod->num_syms);
2578 mod->crcs = section_addr(info, name: "__kcrctab");
2579 mod->gpl_syms = section_objs(info, name: "__ksymtab_gpl",
2580 object_size: sizeof(*mod->gpl_syms),
2581 num: &mod->num_gpl_syms);
2582 mod->gpl_crcs = section_addr(info, name: "__kcrctab_gpl");
2583
2584#ifdef CONFIG_CONSTRUCTORS
2585 mod->ctors = section_objs(info, name: ".ctors",
2586 object_size: sizeof(*mod->ctors), num: &mod->num_ctors);
2587 if (!mod->ctors)
2588 mod->ctors = section_objs(info, name: ".init_array",
2589 object_size: sizeof(*mod->ctors), num: &mod->num_ctors);
2590 else if (find_sec(info, name: ".init_array")) {
2591 /*
2592 * This shouldn't happen with same compiler and binutils
2593 * building all parts of the module.
2594 */
2595 pr_warn("%s: has both .ctors and .init_array.\n",
2596 mod->name);
2597 return -EINVAL;
2598 }
2599#endif
2600
2601 mod->noinstr_text_start = section_objs(info, name: ".noinstr.text", object_size: 1,
2602 num: &mod->noinstr_text_size);
2603
2604#ifdef CONFIG_TRACEPOINTS
2605 mod->tracepoints_ptrs = section_objs(info, name: "__tracepoints_ptrs",
2606 object_size: sizeof(*mod->tracepoints_ptrs),
2607 num: &mod->num_tracepoints);
2608#endif
2609#ifdef CONFIG_TREE_SRCU
2610 mod->srcu_struct_ptrs = section_objs(info, name: "___srcu_struct_ptrs",
2611 object_size: sizeof(*mod->srcu_struct_ptrs),
2612 num: &mod->num_srcu_structs);
2613#endif
2614#ifdef CONFIG_BPF_EVENTS
2615 mod->bpf_raw_events = section_objs(info, name: "__bpf_raw_tp_map",
2616 object_size: sizeof(*mod->bpf_raw_events),
2617 num: &mod->num_bpf_raw_events);
2618#endif
2619#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
2620 mod->btf_data = any_section_objs(info, ".BTF", 1, &mod->btf_data_size);
2621 mod->btf_base_data = any_section_objs(info, ".BTF.base", 1,
2622 &mod->btf_base_data_size);
2623#endif
2624#ifdef CONFIG_JUMP_LABEL
2625 mod->jump_entries = section_objs(info, name: "__jump_table",
2626 object_size: sizeof(*mod->jump_entries),
2627 num: &mod->num_jump_entries);
2628#endif
2629#ifdef CONFIG_EVENT_TRACING
2630 mod->trace_events = section_objs(info, name: "_ftrace_events",
2631 object_size: sizeof(*mod->trace_events),
2632 num: &mod->num_trace_events);
2633 mod->trace_evals = section_objs(info, name: "_ftrace_eval_map",
2634 object_size: sizeof(*mod->trace_evals),
2635 num: &mod->num_trace_evals);
2636#endif
2637#ifdef CONFIG_TRACING
2638 mod->trace_bprintk_fmt_start = section_objs(info, name: "__trace_printk_fmt",
2639 object_size: sizeof(*mod->trace_bprintk_fmt_start),
2640 num: &mod->num_trace_bprintk_fmt);
2641#endif
2642#ifdef CONFIG_FTRACE_MCOUNT_RECORD
2643 /* sechdrs[0].sh_size is always zero */
2644 mod->ftrace_callsites = section_objs(info, FTRACE_CALLSITE_SECTION,
2645 object_size: sizeof(*mod->ftrace_callsites),
2646 num: &mod->num_ftrace_callsites);
2647#endif
2648#ifdef CONFIG_FUNCTION_ERROR_INJECTION
2649 mod->ei_funcs = section_objs(info, name: "_error_injection_whitelist",
2650 object_size: sizeof(*mod->ei_funcs),
2651 num: &mod->num_ei_funcs);
2652#endif
2653#ifdef CONFIG_KPROBES
2654 mod->kprobes_text_start = section_objs(info, name: ".kprobes.text", object_size: 1,
2655 num: &mod->kprobes_text_size);
2656 mod->kprobe_blacklist = section_objs(info, name: "_kprobe_blacklist",
2657 object_size: sizeof(unsigned long),
2658 num: &mod->num_kprobe_blacklist);
2659#endif
2660#ifdef CONFIG_PRINTK_INDEX
2661 mod->printk_index_start = section_objs(info, name: ".printk_index",
2662 object_size: sizeof(*mod->printk_index_start),
2663 num: &mod->printk_index_size);
2664#endif
2665#ifdef CONFIG_HAVE_STATIC_CALL_INLINE
2666 mod->static_call_sites = section_objs(info, name: ".static_call_sites",
2667 object_size: sizeof(*mod->static_call_sites),
2668 num: &mod->num_static_call_sites);
2669#endif
2670#if IS_ENABLED(CONFIG_KUNIT)
2671 mod->kunit_suites = section_objs(info, name: ".kunit_test_suites",
2672 object_size: sizeof(*mod->kunit_suites),
2673 num: &mod->num_kunit_suites);
2674 mod->kunit_init_suites = section_objs(info, name: ".kunit_init_test_suites",
2675 object_size: sizeof(*mod->kunit_init_suites),
2676 num: &mod->num_kunit_init_suites);
2677#endif
2678
2679 mod->extable = section_objs(info, name: "__ex_table",
2680 object_size: sizeof(*mod->extable), num: &mod->num_exentries);
2681
2682 if (section_addr(info, name: "__obsparm"))
2683 pr_warn("%s: Ignoring obsolete parameters\n", mod->name);
2684
2685#ifdef CONFIG_DYNAMIC_DEBUG_CORE
2686 mod->dyndbg_info.descs = section_objs(info, name: "__dyndbg",
2687 object_size: sizeof(*mod->dyndbg_info.descs),
2688 num: &mod->dyndbg_info.num_descs);
2689 mod->dyndbg_info.classes = section_objs(info, name: "__dyndbg_classes",
2690 object_size: sizeof(*mod->dyndbg_info.classes),
2691 num: &mod->dyndbg_info.num_classes);
2692#endif
2693
2694 return 0;
2695}
2696
2697static int move_module(struct module *mod, struct load_info *info)
2698{
2699 int i;
2700 enum mod_mem_type t = 0;
2701 int ret = -ENOMEM;
2702 bool codetag_section_found = false;
2703
2704 for_each_mod_mem_type(type) {
2705 if (!mod->mem[type].size) {
2706 mod->mem[type].base = NULL;
2707 continue;
2708 }
2709
2710 ret = module_memory_alloc(mod, type);
2711 if (ret) {
2712 t = type;
2713 goto out_err;
2714 }
2715 }
2716
2717 /* Transfer each section which specifies SHF_ALLOC */
2718 pr_debug("Final section addresses for %s:\n", mod->name);
2719 for (i = 0; i < info->hdr->e_shnum; i++) {
2720 void *dest;
2721 Elf_Shdr *shdr = &info->sechdrs[i];
2722 const char *sname;
2723
2724 if (!(shdr->sh_flags & SHF_ALLOC))
2725 continue;
2726
2727 sname = info->secstrings + shdr->sh_name;
2728 /*
2729 * Load codetag sections separately as they might still be used
2730 * after module unload.
2731 */
2732 if (codetag_needs_module_section(mod, name: sname, size: shdr->sh_size)) {
2733 dest = codetag_alloc_module_section(mod, name: sname, size: shdr->sh_size,
2734 prepend: arch_mod_section_prepend(mod, section: i), align: shdr->sh_addralign);
2735 if (WARN_ON(!dest)) {
2736 ret = -EINVAL;
2737 goto out_err;
2738 }
2739 if (IS_ERR(ptr: dest)) {
2740 ret = PTR_ERR(ptr: dest);
2741 goto out_err;
2742 }
2743 codetag_section_found = true;
2744 } else {
2745 enum mod_mem_type type = shdr->sh_entsize >> SH_ENTSIZE_TYPE_SHIFT;
2746 unsigned long offset = shdr->sh_entsize & SH_ENTSIZE_OFFSET_MASK;
2747
2748 dest = mod->mem[type].base + offset;
2749 }
2750
2751 if (shdr->sh_type != SHT_NOBITS) {
2752 /*
2753 * Our ELF checker already validated this, but let's
2754 * be pedantic and make the goal clearer. We actually
2755 * end up copying over all modifications made to the
2756 * userspace copy of the entire struct module.
2757 */
2758 if (i == info->index.mod &&
2759 (WARN_ON_ONCE(shdr->sh_size != sizeof(struct module)))) {
2760 ret = -ENOEXEC;
2761 goto out_err;
2762 }
2763 memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
2764 }
2765 /*
2766 * Update the userspace copy's ELF section address to point to
2767 * our newly allocated memory as a pure convenience so that
2768 * users of info can keep taking advantage and using the newly
2769 * minted official memory area.
2770 */
2771 shdr->sh_addr = (unsigned long)dest;
2772 pr_debug("\t0x%lx 0x%.8lx %s\n", (long)shdr->sh_addr,
2773 (long)shdr->sh_size, info->secstrings + shdr->sh_name);
2774 }
2775
2776 return 0;
2777out_err:
2778 module_memory_restore_rox(mod);
2779 for (t--; t >= 0; t--)
2780 module_memory_free(mod, type: t);
2781 if (codetag_section_found)
2782 codetag_free_module_sections(mod);
2783
2784 return ret;
2785}
2786
2787static int check_export_symbol_versions(struct module *mod)
2788{
2789#ifdef CONFIG_MODVERSIONS
2790 if ((mod->num_syms && !mod->crcs) ||
2791 (mod->num_gpl_syms && !mod->gpl_crcs)) {
2792 return try_to_force_load(mod,
2793 "no versions for exported symbols");
2794 }
2795#endif
2796 return 0;
2797}
2798
2799static void flush_module_icache(const struct module *mod)
2800{
2801 /*
2802 * Flush the instruction cache, since we've played with text.
2803 * Do it before processing of module parameters, so the module
2804 * can provide parameter accessor functions of its own.
2805 */
2806 for_each_mod_mem_type(type) {
2807 const struct module_memory *mod_mem = &mod->mem[type];
2808
2809 if (mod_mem->size) {
2810 flush_icache_range(start: (unsigned long)mod_mem->base,
2811 end: (unsigned long)mod_mem->base + mod_mem->size);
2812 }
2813 }
2814}
2815
2816bool __weak module_elf_check_arch(Elf_Ehdr *hdr)
2817{
2818 return true;
2819}
2820
2821int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
2822 Elf_Shdr *sechdrs,
2823 char *secstrings,
2824 struct module *mod)
2825{
2826 return 0;
2827}
2828
2829/* module_blacklist is a comma-separated list of module names */
2830static char *module_blacklist;
2831static bool blacklisted(const char *module_name)
2832{
2833 const char *p;
2834 size_t len;
2835
2836 if (!module_blacklist)
2837 return false;
2838
2839 for (p = module_blacklist; *p; p += len) {
2840 len = strcspn(p, ",");
2841 if (strlen(module_name) == len && !memcmp(p: module_name, q: p, size: len))
2842 return true;
2843 if (p[len] == ',')
2844 len++;
2845 }
2846 return false;
2847}
2848core_param(module_blacklist, module_blacklist, charp, 0400);
2849
2850static struct module *layout_and_allocate(struct load_info *info, int flags)
2851{
2852 struct module *mod;
2853 int err;
2854
2855 /* Allow arches to frob section contents and sizes. */
2856 err = module_frob_arch_sections(hdr: info->hdr, sechdrs: info->sechdrs,
2857 secstrings: info->secstrings, mod: info->mod);
2858 if (err < 0)
2859 return ERR_PTR(error: err);
2860
2861 err = module_enforce_rwx_sections(hdr: info->hdr, sechdrs: info->sechdrs,
2862 secstrings: info->secstrings, mod: info->mod);
2863 if (err < 0)
2864 return ERR_PTR(error: err);
2865
2866 /* We will do a special allocation for per-cpu sections later. */
2867 info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
2868
2869 /*
2870 * Mark relevant sections as SHF_RO_AFTER_INIT so layout_sections() can
2871 * put them in the right place.
2872 * Note: ro_after_init sections also have SHF_{WRITE,ALLOC} set.
2873 */
2874 module_mark_ro_after_init(hdr: info->hdr, sechdrs: info->sechdrs, secstrings: info->secstrings);
2875
2876 /*
2877 * Determine total sizes, and put offsets in sh_entsize. For now
2878 * this is done generically; there doesn't appear to be any
2879 * special cases for the architectures.
2880 */
2881 layout_sections(mod: info->mod, info);
2882 layout_symtab(mod: info->mod, info);
2883
2884 /* Allocate and move to the final place */
2885 err = move_module(mod: info->mod, info);
2886 if (err)
2887 return ERR_PTR(error: err);
2888
2889 /* Module has been copied to its final place now: return it. */
2890 mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2891 kmemleak_load_module(mod, info);
2892 codetag_module_replaced(mod: info->mod, new_mod: mod);
2893
2894 return mod;
2895}
2896
2897/* mod is no longer valid after this! */
2898static void module_deallocate(struct module *mod, struct load_info *info)
2899{
2900 percpu_modfree(mod);
2901 module_arch_freeing_init(mod);
2902 codetag_free_module_sections(mod);
2903
2904 free_mod_mem(mod);
2905}
2906
2907int __weak module_finalize(const Elf_Ehdr *hdr,
2908 const Elf_Shdr *sechdrs,
2909 struct module *me)
2910{
2911 return 0;
2912}
2913
2914static int post_relocation(struct module *mod, const struct load_info *info)
2915{
2916 /* Sort exception table now relocations are done. */
2917 sort_extable(start: mod->extable, finish: mod->extable + mod->num_exentries);
2918
2919 /* Copy relocated percpu area over. */
2920 percpu_modcopy(mod, from: (void *)info->sechdrs[info->index.pcpu].sh_addr,
2921 size: info->sechdrs[info->index.pcpu].sh_size);
2922
2923 /* Setup kallsyms-specific fields. */
2924 add_kallsyms(mod, info);
2925
2926 /* Arch-specific module finalizing. */
2927 return module_finalize(hdr: info->hdr, sechdrs: info->sechdrs, me: mod);
2928}
2929
2930/* Call module constructors. */
2931static void do_mod_ctors(struct module *mod)
2932{
2933#ifdef CONFIG_CONSTRUCTORS
2934 unsigned long i;
2935
2936 for (i = 0; i < mod->num_ctors; i++)
2937 mod->ctors[i]();
2938#endif
2939}
2940
2941/* For freeing module_init on success, in case kallsyms traversing */
2942struct mod_initfree {
2943 struct llist_node node;
2944 void *init_text;
2945 void *init_data;
2946 void *init_rodata;
2947};
2948
2949static void do_free_init(struct work_struct *w)
2950{
2951 struct llist_node *pos, *n, *list;
2952 struct mod_initfree *initfree;
2953
2954 list = llist_del_all(head: &init_free_list);
2955
2956 synchronize_rcu();
2957
2958 llist_for_each_safe(pos, n, list) {
2959 initfree = container_of(pos, struct mod_initfree, node);
2960 execmem_free(ptr: initfree->init_text);
2961 execmem_free(ptr: initfree->init_data);
2962 execmem_free(ptr: initfree->init_rodata);
2963 kfree(objp: initfree);
2964 }
2965}
2966
2967void flush_module_init_free_work(void)
2968{
2969 flush_work(work: &init_free_wq);
2970}
2971
2972#undef MODULE_PARAM_PREFIX
2973#define MODULE_PARAM_PREFIX "module."
2974/* Default value for module->async_probe_requested */
2975static bool async_probe;
2976module_param(async_probe, bool, 0644);
2977
2978/*
2979 * This is where the real work happens.
2980 *
2981 * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb
2982 * helper command 'lx-symbols'.
2983 */
2984static noinline int do_init_module(struct module *mod)
2985{
2986 int ret = 0;
2987 struct mod_initfree *freeinit;
2988#if defined(CONFIG_MODULE_STATS)
2989 unsigned int text_size = 0, total_size = 0;
2990
2991 for_each_mod_mem_type(type) {
2992 const struct module_memory *mod_mem = &mod->mem[type];
2993 if (mod_mem->size) {
2994 total_size += mod_mem->size;
2995 if (type == MOD_TEXT || type == MOD_INIT_TEXT)
2996 text_size += mod_mem->size;
2997 }
2998 }
2999#endif
3000
3001 freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL);
3002 if (!freeinit) {
3003 ret = -ENOMEM;
3004 goto fail;
3005 }
3006 freeinit->init_text = mod->mem[MOD_INIT_TEXT].base;
3007 freeinit->init_data = mod->mem[MOD_INIT_DATA].base;
3008 freeinit->init_rodata = mod->mem[MOD_INIT_RODATA].base;
3009
3010 do_mod_ctors(mod);
3011 /* Start the module */
3012 if (mod->init != NULL)
3013 ret = do_one_initcall(fn: mod->init);
3014 if (ret < 0) {
3015 goto fail_free_freeinit;
3016 }
3017 if (ret > 0) {
3018 pr_warn("%s: '%s'->init suspiciously returned %d, it should "
3019 "follow 0/-E convention\n"
3020 "%s: loading module anyway...\n",
3021 __func__, mod->name, ret, __func__);
3022 dump_stack();
3023 }
3024
3025 /* Now it's a first class citizen! */
3026 mod->state = MODULE_STATE_LIVE;
3027 blocking_notifier_call_chain(nh: &module_notify_list,
3028 val: MODULE_STATE_LIVE, v: mod);
3029
3030 /* Delay uevent until module has finished its init routine */
3031 kobject_uevent(kobj: &mod->mkobj.kobj, action: KOBJ_ADD);
3032
3033 /*
3034 * We need to finish all async code before the module init sequence
3035 * is done. This has potential to deadlock if synchronous module
3036 * loading is requested from async (which is not allowed!).
3037 *
3038 * See commit 0fdff3ec6d87 ("async, kmod: warn on synchronous
3039 * request_module() from async workers") for more details.
3040 */
3041 if (!mod->async_probe_requested)
3042 async_synchronize_full();
3043
3044 ftrace_free_mem(mod, start: mod->mem[MOD_INIT_TEXT].base,
3045 end: mod->mem[MOD_INIT_TEXT].base + mod->mem[MOD_INIT_TEXT].size);
3046 mutex_lock(&module_mutex);
3047 /* Drop initial reference. */
3048 module_put(mod);
3049 trim_init_extable(m: mod);
3050#ifdef CONFIG_KALLSYMS
3051 /* Switch to core kallsyms now init is done: kallsyms may be walking! */
3052 rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms);
3053#endif
3054 ret = module_enable_rodata_ro_after_init(mod);
3055 if (ret)
3056 pr_warn("%s: module_enable_rodata_ro_after_init() returned %d, "
3057 "ro_after_init data might still be writable\n",
3058 mod->name, ret);
3059
3060 mod_tree_remove_init(mod);
3061 module_arch_freeing_init(mod);
3062 for_class_mod_mem_type(type, init) {
3063 mod->mem[type].base = NULL;
3064 mod->mem[type].size = 0;
3065 }
3066
3067#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
3068 /* .BTF is not SHF_ALLOC and will get removed, so sanitize pointers */
3069 mod->btf_data = NULL;
3070 mod->btf_base_data = NULL;
3071#endif
3072 /*
3073 * We want to free module_init, but be aware that kallsyms may be
3074 * walking this within an RCU read section. In all the failure paths, we
3075 * call synchronize_rcu(), but we don't want to slow down the success
3076 * path. execmem_free() cannot be called in an interrupt, so do the
3077 * work and call synchronize_rcu() in a work queue.
3078 *
3079 * Note that execmem_alloc() on most architectures creates W+X page
3080 * mappings which won't be cleaned up until do_free_init() runs. Any
3081 * code such as mark_rodata_ro() which depends on those mappings to
3082 * be cleaned up needs to sync with the queued work by invoking
3083 * flush_module_init_free_work().
3084 */
3085 if (llist_add(new: &freeinit->node, head: &init_free_list))
3086 schedule_work(work: &init_free_wq);
3087
3088 mutex_unlock(lock: &module_mutex);
3089 wake_up_all(&module_wq);
3090
3091 mod_stat_add_long(text_size, &total_text_size);
3092 mod_stat_add_long(total_size, &total_mod_size);
3093
3094 mod_stat_inc(&modcount);
3095
3096 return 0;
3097
3098fail_free_freeinit:
3099 kfree(objp: freeinit);
3100fail:
3101 /* Try to protect us from buggy refcounters. */
3102 mod->state = MODULE_STATE_GOING;
3103 synchronize_rcu();
3104 module_put(mod);
3105 blocking_notifier_call_chain(nh: &module_notify_list,
3106 val: MODULE_STATE_GOING, v: mod);
3107 klp_module_going(mod);
3108 ftrace_release_mod(mod);
3109 free_module(mod);
3110 wake_up_all(&module_wq);
3111
3112 return ret;
3113}
3114
3115static int may_init_module(void)
3116{
3117 if (!capable(CAP_SYS_MODULE) || modules_disabled)
3118 return -EPERM;
3119
3120 return 0;
3121}
3122
3123/* Is this module of this name done loading? No locks held. */
3124static bool finished_loading(const char *name)
3125{
3126 struct module *mod;
3127 bool ret;
3128
3129 /*
3130 * The module_mutex should not be a heavily contended lock;
3131 * if we get the occasional sleep here, we'll go an extra iteration
3132 * in the wait_event_interruptible(), which is harmless.
3133 */
3134 sched_annotate_sleep();
3135 mutex_lock(&module_mutex);
3136 mod = find_module_all(name, strlen(name), even_unformed: true);
3137 ret = !mod || mod->state == MODULE_STATE_LIVE
3138 || mod->state == MODULE_STATE_GOING;
3139 mutex_unlock(lock: &module_mutex);
3140
3141 return ret;
3142}
3143
3144/* Must be called with module_mutex held */
3145static int module_patient_check_exists(const char *name,
3146 enum fail_dup_mod_reason reason)
3147{
3148 struct module *old;
3149 int err = 0;
3150
3151 old = find_module_all(name, strlen(name), even_unformed: true);
3152 if (old == NULL)
3153 return 0;
3154
3155 if (old->state == MODULE_STATE_COMING ||
3156 old->state == MODULE_STATE_UNFORMED) {
3157 /* Wait in case it fails to load. */
3158 mutex_unlock(lock: &module_mutex);
3159 err = wait_event_interruptible(module_wq,
3160 finished_loading(name));
3161 mutex_lock(&module_mutex);
3162 if (err)
3163 return err;
3164
3165 /* The module might have gone in the meantime. */
3166 old = find_module_all(name, strlen(name), even_unformed: true);
3167 }
3168
3169 if (try_add_failed_module(name, reason))
3170 pr_warn("Could not add fail-tracking for module: %s\n", name);
3171
3172 /*
3173 * We are here only when the same module was being loaded. Do
3174 * not try to load it again right now. It prevents long delays
3175 * caused by serialized module load failures. It might happen
3176 * when more devices of the same type trigger load of
3177 * a particular module.
3178 */
3179 if (old && old->state == MODULE_STATE_LIVE)
3180 return -EEXIST;
3181 return -EBUSY;
3182}
3183
3184/*
3185 * We try to place it in the list now to make sure it's unique before
3186 * we dedicate too many resources. In particular, temporary percpu
3187 * memory exhaustion.
3188 */
3189static int add_unformed_module(struct module *mod)
3190{
3191 int err;
3192
3193 mod->state = MODULE_STATE_UNFORMED;
3194
3195 mutex_lock(&module_mutex);
3196 err = module_patient_check_exists(name: mod->name, reason: FAIL_DUP_MOD_LOAD);
3197 if (err)
3198 goto out;
3199
3200 mod_update_bounds(mod);
3201 list_add_rcu(new: &mod->list, head: &modules);
3202 mod_tree_insert(mod);
3203 err = 0;
3204
3205out:
3206 mutex_unlock(lock: &module_mutex);
3207 return err;
3208}
3209
3210static int complete_formation(struct module *mod, struct load_info *info)
3211{
3212 int err;
3213
3214 mutex_lock(&module_mutex);
3215
3216 /* Find duplicate symbols (must be called under lock). */
3217 err = verify_exported_symbols(mod);
3218 if (err < 0)
3219 goto out;
3220
3221 /* These rely on module_mutex for list integrity. */
3222 module_bug_finalize(info->hdr, info->sechdrs, mod);
3223 module_cfi_finalize(hdr: info->hdr, sechdrs: info->sechdrs, mod);
3224
3225 err = module_enable_rodata_ro(mod);
3226 if (err)
3227 goto out_strict_rwx;
3228 err = module_enable_data_nx(mod);
3229 if (err)
3230 goto out_strict_rwx;
3231 err = module_enable_text_rox(mod);
3232 if (err)
3233 goto out_strict_rwx;
3234
3235 /*
3236 * Mark state as coming so strong_try_module_get() ignores us,
3237 * but kallsyms etc. can see us.
3238 */
3239 mod->state = MODULE_STATE_COMING;
3240 mutex_unlock(lock: &module_mutex);
3241
3242 return 0;
3243
3244out_strict_rwx:
3245 module_bug_cleanup(mod);
3246out:
3247 mutex_unlock(lock: &module_mutex);
3248 return err;
3249}
3250
3251static int prepare_coming_module(struct module *mod)
3252{
3253 int err;
3254
3255 ftrace_module_enable(mod);
3256 err = klp_module_coming(mod);
3257 if (err)
3258 return err;
3259
3260 err = blocking_notifier_call_chain_robust(nh: &module_notify_list,
3261 val_up: MODULE_STATE_COMING, val_down: MODULE_STATE_GOING, v: mod);
3262 err = notifier_to_errno(ret: err);
3263 if (err)
3264 klp_module_going(mod);
3265
3266 return err;
3267}
3268
3269static int unknown_module_param_cb(char *param, char *val, const char *modname,
3270 void *arg)
3271{
3272 struct module *mod = arg;
3273 int ret;
3274
3275 if (strcmp(param, "async_probe") == 0) {
3276 if (kstrtobool(s: val, res: &mod->async_probe_requested))
3277 mod->async_probe_requested = true;
3278 return 0;
3279 }
3280
3281 /* Check for magic 'dyndbg' arg */
3282 ret = ddebug_dyndbg_module_param_cb(param, val, modname);
3283 if (ret != 0)
3284 pr_warn("%s: unknown parameter '%s' ignored\n", modname, param);
3285 return 0;
3286}
3287
3288/* Module within temporary copy, this doesn't do any allocation */
3289static int early_mod_check(struct load_info *info, int flags)
3290{
3291 int err;
3292
3293 /*
3294 * Now that we know we have the correct module name, check
3295 * if it's blacklisted.
3296 */
3297 if (blacklisted(module_name: info->name)) {
3298 pr_err("Module %s is blacklisted\n", info->name);
3299 return -EPERM;
3300 }
3301
3302 err = rewrite_section_headers(info, flags);
3303 if (err)
3304 return err;
3305
3306 /* Check module struct version now, before we try to use module. */
3307 if (!check_modstruct_version(info, mod: info->mod))
3308 return -ENOEXEC;
3309
3310 err = check_modinfo(mod: info->mod, info, flags);
3311 if (err)
3312 return err;
3313
3314 mutex_lock(&module_mutex);
3315 err = module_patient_check_exists(name: info->mod->name, reason: FAIL_DUP_MOD_BECOMING);
3316 mutex_unlock(lock: &module_mutex);
3317
3318 return err;
3319}
3320
3321/*
3322 * Allocate and load the module: note that size of section 0 is always
3323 * zero, and we rely on this for optional sections.
3324 */
3325static int load_module(struct load_info *info, const char __user *uargs,
3326 int flags)
3327{
3328 struct module *mod;
3329 bool module_allocated = false;
3330 long err = 0;
3331 char *after_dashes;
3332
3333 /*
3334 * Do the signature check (if any) first. All that
3335 * the signature check needs is info->len, it does
3336 * not need any of the section info. That can be
3337 * set up later. This will minimize the chances
3338 * of a corrupt module causing problems before
3339 * we even get to the signature check.
3340 *
3341 * The check will also adjust info->len by stripping
3342 * off the sig length at the end of the module, making
3343 * checks against info->len more correct.
3344 */
3345 err = module_sig_check(info, flags);
3346 if (err)
3347 goto free_copy;
3348
3349 /*
3350 * Do basic sanity checks against the ELF header and
3351 * sections. Cache useful sections and set the
3352 * info->mod to the userspace passed struct module.
3353 */
3354 err = elf_validity_cache_copy(info, flags);
3355 if (err)
3356 goto free_copy;
3357
3358 err = early_mod_check(info, flags);
3359 if (err)
3360 goto free_copy;
3361
3362 /* Figure out module layout, and allocate all the memory. */
3363 mod = layout_and_allocate(info, flags);
3364 if (IS_ERR(ptr: mod)) {
3365 err = PTR_ERR(ptr: mod);
3366 goto free_copy;
3367 }
3368
3369 module_allocated = true;
3370
3371 audit_log_kern_module(name: mod->name);
3372
3373 /* Reserve our place in the list. */
3374 err = add_unformed_module(mod);
3375 if (err)
3376 goto free_module;
3377
3378 /*
3379 * We are tainting your kernel if your module gets into
3380 * the modules linked list somehow.
3381 */
3382 module_augment_kernel_taints(mod, info);
3383
3384 /* To avoid stressing percpu allocator, do this once we're unique. */
3385 err = percpu_modalloc(mod, info);
3386 if (err)
3387 goto unlink_mod;
3388
3389 /* Now module is in final location, initialize linked lists, etc. */
3390 err = module_unload_init(mod);
3391 if (err)
3392 goto unlink_mod;
3393
3394 init_param_lock(mod);
3395
3396 /*
3397 * Now we've got everything in the final locations, we can
3398 * find optional sections.
3399 */
3400 err = find_module_sections(mod, info);
3401 if (err)
3402 goto free_unload;
3403
3404 err = check_export_symbol_versions(mod);
3405 if (err)
3406 goto free_unload;
3407
3408 /* Set up MODINFO_ATTR fields */
3409 err = setup_modinfo(mod, info);
3410 if (err)
3411 goto free_modinfo;
3412
3413 /* Fix up syms, so that st_value is a pointer to location. */
3414 err = simplify_symbols(mod, info);
3415 if (err < 0)
3416 goto free_modinfo;
3417
3418 err = apply_relocations(mod, info);
3419 if (err < 0)
3420 goto free_modinfo;
3421
3422 err = post_relocation(mod, info);
3423 if (err < 0)
3424 goto free_modinfo;
3425
3426 flush_module_icache(mod);
3427
3428 /* Now copy in args */
3429 mod->args = strndup_user(uargs, ~0UL >> 1);
3430 if (IS_ERR(ptr: mod->args)) {
3431 err = PTR_ERR(ptr: mod->args);
3432 goto free_arch_cleanup;
3433 }
3434
3435 init_build_id(mod, info);
3436
3437 /* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
3438 ftrace_module_init(mod);
3439
3440 /* Finally it's fully formed, ready to start executing. */
3441 err = complete_formation(mod, info);
3442 if (err)
3443 goto ddebug_cleanup;
3444
3445 err = prepare_coming_module(mod);
3446 if (err)
3447 goto bug_cleanup;
3448
3449 mod->async_probe_requested = async_probe;
3450
3451 /* Module is ready to execute: parsing args may do that. */
3452 after_dashes = parse_args(name: mod->name, args: mod->args, params: mod->kp, num: mod->num_kp,
3453 level_min: -32768, level_max: 32767, arg: mod,
3454 unknown: unknown_module_param_cb);
3455 if (IS_ERR(ptr: after_dashes)) {
3456 err = PTR_ERR(ptr: after_dashes);
3457 goto coming_cleanup;
3458 } else if (after_dashes) {
3459 pr_warn("%s: parameters '%s' after `--' ignored\n",
3460 mod->name, after_dashes);
3461 }
3462
3463 /* Link in to sysfs. */
3464 err = mod_sysfs_setup(mod, info, kparam: mod->kp, num_params: mod->num_kp);
3465 if (err < 0)
3466 goto coming_cleanup;
3467
3468 if (is_livepatch_module(mod)) {
3469 err = copy_module_elf(mod, info);
3470 if (err < 0)
3471 goto sysfs_cleanup;
3472 }
3473
3474 if (codetag_load_module(mod))
3475 goto sysfs_cleanup;
3476
3477 /* Get rid of temporary copy. */
3478 free_copy(info, flags);
3479
3480 /* Done! */
3481 trace_module_load(mod);
3482
3483 return do_init_module(mod);
3484
3485 sysfs_cleanup:
3486 mod_sysfs_teardown(mod);
3487 coming_cleanup:
3488 mod->state = MODULE_STATE_GOING;
3489 destroy_params(params: mod->kp, num: mod->num_kp);
3490 blocking_notifier_call_chain(nh: &module_notify_list,
3491 val: MODULE_STATE_GOING, v: mod);
3492 klp_module_going(mod);
3493 bug_cleanup:
3494 mod->state = MODULE_STATE_GOING;
3495 /* module_bug_cleanup needs module_mutex protection */
3496 mutex_lock(&module_mutex);
3497 module_bug_cleanup(mod);
3498 mutex_unlock(lock: &module_mutex);
3499
3500 ddebug_cleanup:
3501 ftrace_release_mod(mod);
3502 synchronize_rcu();
3503 kfree(objp: mod->args);
3504 free_arch_cleanup:
3505 module_arch_cleanup(mod);
3506 free_modinfo:
3507 free_modinfo(mod);
3508 free_unload:
3509 module_unload_free(mod);
3510 unlink_mod:
3511 mutex_lock(&module_mutex);
3512 /* Unlink carefully: kallsyms could be walking list. */
3513 list_del_rcu(entry: &mod->list);
3514 mod_tree_remove(mod);
3515 wake_up_all(&module_wq);
3516 /* Wait for RCU-sched synchronizing before releasing mod->list. */
3517 synchronize_rcu();
3518 mutex_unlock(lock: &module_mutex);
3519 free_module:
3520 mod_stat_bump_invalid(info, flags);
3521 /* Free lock-classes; relies on the preceding sync_rcu() */
3522 for_class_mod_mem_type(type, core_data) {
3523 lockdep_free_key_range(start: mod->mem[type].base,
3524 size: mod->mem[type].size);
3525 }
3526
3527 module_memory_restore_rox(mod);
3528 module_deallocate(mod, info);
3529 free_copy:
3530 /*
3531 * The info->len is always set. We distinguish between
3532 * failures once the proper module was allocated and
3533 * before that.
3534 */
3535 if (!module_allocated)
3536 mod_stat_bump_becoming(info, flags);
3537 free_copy(info, flags);
3538 return err;
3539}
3540
3541SYSCALL_DEFINE3(init_module, void __user *, umod,
3542 unsigned long, len, const char __user *, uargs)
3543{
3544 int err;
3545 struct load_info info = { };
3546
3547 err = may_init_module();
3548 if (err)
3549 return err;
3550
3551 pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
3552 umod, len, uargs);
3553
3554 err = copy_module_from_user(umod, len, info: &info);
3555 if (err) {
3556 mod_stat_inc(&failed_kreads);
3557 mod_stat_add_long(len, &invalid_kread_bytes);
3558 return err;
3559 }
3560
3561 return load_module(info: &info, uargs, flags: 0);
3562}
3563
3564struct idempotent {
3565 const void *cookie;
3566 struct hlist_node entry;
3567 struct completion complete;
3568 int ret;
3569};
3570
3571#define IDEM_HASH_BITS 8
3572static struct hlist_head idem_hash[1 << IDEM_HASH_BITS];
3573static DEFINE_SPINLOCK(idem_lock);
3574
3575static bool idempotent(struct idempotent *u, const void *cookie)
3576{
3577 int hash = hash_ptr(ptr: cookie, IDEM_HASH_BITS);
3578 struct hlist_head *head = idem_hash + hash;
3579 struct idempotent *existing;
3580 bool first;
3581
3582 u->ret = -EINTR;
3583 u->cookie = cookie;
3584 init_completion(x: &u->complete);
3585
3586 spin_lock(lock: &idem_lock);
3587 first = true;
3588 hlist_for_each_entry(existing, head, entry) {
3589 if (existing->cookie != cookie)
3590 continue;
3591 first = false;
3592 break;
3593 }
3594 hlist_add_head(n: &u->entry, h: idem_hash + hash);
3595 spin_unlock(lock: &idem_lock);
3596
3597 return !first;
3598}
3599
3600/*
3601 * We were the first one with 'cookie' on the list, and we ended
3602 * up completing the operation. We now need to walk the list,
3603 * remove everybody - which includes ourselves - fill in the return
3604 * value, and then complete the operation.
3605 */
3606static int idempotent_complete(struct idempotent *u, int ret)
3607{
3608 const void *cookie = u->cookie;
3609 int hash = hash_ptr(ptr: cookie, IDEM_HASH_BITS);
3610 struct hlist_head *head = idem_hash + hash;
3611 struct hlist_node *next;
3612 struct idempotent *pos;
3613
3614 spin_lock(lock: &idem_lock);
3615 hlist_for_each_entry_safe(pos, next, head, entry) {
3616 if (pos->cookie != cookie)
3617 continue;
3618 hlist_del_init(n: &pos->entry);
3619 pos->ret = ret;
3620 complete(&pos->complete);
3621 }
3622 spin_unlock(lock: &idem_lock);
3623 return ret;
3624}
3625
3626/*
3627 * Wait for the idempotent worker.
3628 *
3629 * If we get interrupted, we need to remove ourselves from the
3630 * the idempotent list, and the completion may still come in.
3631 *
3632 * The 'idem_lock' protects against the race, and 'idem.ret' was
3633 * initialized to -EINTR and is thus always the right return
3634 * value even if the idempotent work then completes between
3635 * the wait_for_completion and the cleanup.
3636 */
3637static int idempotent_wait_for_completion(struct idempotent *u)
3638{
3639 if (wait_for_completion_interruptible(x: &u->complete)) {
3640 spin_lock(lock: &idem_lock);
3641 if (!hlist_unhashed(h: &u->entry))
3642 hlist_del(n: &u->entry);
3643 spin_unlock(lock: &idem_lock);
3644 }
3645 return u->ret;
3646}
3647
3648static int init_module_from_file(struct file *f, const char __user * uargs, int flags)
3649{
3650 struct load_info info = { };
3651 void *buf = NULL;
3652 int len;
3653
3654 len = kernel_read_file(file: f, offset: 0, buf: &buf, INT_MAX, NULL, id: READING_MODULE);
3655 if (len < 0) {
3656 mod_stat_inc(&failed_kreads);
3657 return len;
3658 }
3659
3660 if (flags & MODULE_INIT_COMPRESSED_FILE) {
3661 int err = module_decompress(info: &info, buf, size: len);
3662 vfree(addr: buf); /* compressed data is no longer needed */
3663 if (err) {
3664 mod_stat_inc(&failed_decompress);
3665 mod_stat_add_long(len, &invalid_decompress_bytes);
3666 return err;
3667 }
3668 } else {
3669 info.hdr = buf;
3670 info.len = len;
3671 }
3672
3673 return load_module(info: &info, uargs, flags);
3674}
3675
3676static int idempotent_init_module(struct file *f, const char __user * uargs, int flags)
3677{
3678 struct idempotent idem;
3679
3680 if (!(f->f_mode & FMODE_READ))
3681 return -EBADF;
3682
3683 /* Are we the winners of the race and get to do this? */
3684 if (!idempotent(u: &idem, cookie: file_inode(f))) {
3685 int ret = init_module_from_file(f, uargs, flags);
3686 return idempotent_complete(u: &idem, ret);
3687 }
3688
3689 /*
3690 * Somebody else won the race and is loading the module.
3691 */
3692 return idempotent_wait_for_completion(u: &idem);
3693}
3694
3695SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
3696{
3697 int err = may_init_module();
3698 if (err)
3699 return err;
3700
3701 pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
3702
3703 if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
3704 |MODULE_INIT_IGNORE_VERMAGIC
3705 |MODULE_INIT_COMPRESSED_FILE))
3706 return -EINVAL;
3707
3708 CLASS(fd, f)(fd);
3709 if (fd_empty(f))
3710 return -EBADF;
3711 return idempotent_init_module(fd_file(f), uargs, flags);
3712}
3713
3714/* Keep in sync with MODULE_FLAGS_BUF_SIZE !!! */
3715char *module_flags(struct module *mod, char *buf, bool show_state)
3716{
3717 int bx = 0;
3718
3719 BUG_ON(mod->state == MODULE_STATE_UNFORMED);
3720 if (!mod->taints && !show_state)
3721 goto out;
3722 if (mod->taints ||
3723 mod->state == MODULE_STATE_GOING ||
3724 mod->state == MODULE_STATE_COMING) {
3725 buf[bx++] = '(';
3726 bx += module_flags_taint(taints: mod->taints, buf: buf + bx);
3727 /* Show a - for module-is-being-unloaded */
3728 if (mod->state == MODULE_STATE_GOING && show_state)
3729 buf[bx++] = '-';
3730 /* Show a + for module-is-being-loaded */
3731 if (mod->state == MODULE_STATE_COMING && show_state)
3732 buf[bx++] = '+';
3733 buf[bx++] = ')';
3734 }
3735out:
3736 buf[bx] = '\0';
3737
3738 return buf;
3739}
3740
3741/* Given an address, look for it in the module exception tables. */
3742const struct exception_table_entry *search_module_extables(unsigned long addr)
3743{
3744 struct module *mod;
3745
3746 guard(rcu)();
3747 mod = __module_address(addr);
3748 if (!mod)
3749 return NULL;
3750
3751 if (!mod->num_exentries)
3752 return NULL;
3753 /*
3754 * The address passed here belongs to a module that is currently
3755 * invoked (we are running inside it). Therefore its module::refcnt
3756 * needs already be >0 to ensure that it is not removed at this stage.
3757 * All other user need to invoke this function within a RCU read
3758 * section.
3759 */
3760 return search_extable(base: mod->extable, num: mod->num_exentries, value: addr);
3761}
3762
3763/**
3764 * is_module_address() - is this address inside a module?
3765 * @addr: the address to check.
3766 *
3767 * See is_module_text_address() if you simply want to see if the address
3768 * is code (not data).
3769 */
3770bool is_module_address(unsigned long addr)
3771{
3772 guard(rcu)();
3773 return __module_address(addr) != NULL;
3774}
3775
3776/**
3777 * __module_address() - get the module which contains an address.
3778 * @addr: the address.
3779 *
3780 * Must be called within RCU read section or module mutex held so that
3781 * module doesn't get freed during this.
3782 */
3783struct module *__module_address(unsigned long addr)
3784{
3785 struct module *mod;
3786
3787 if (addr >= mod_tree.addr_min && addr <= mod_tree.addr_max)
3788 goto lookup;
3789
3790#ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
3791 if (addr >= mod_tree.data_addr_min && addr <= mod_tree.data_addr_max)
3792 goto lookup;
3793#endif
3794
3795 return NULL;
3796
3797lookup:
3798 mod = mod_find(addr, tree: &mod_tree);
3799 if (mod) {
3800 BUG_ON(!within_module(addr, mod));
3801 if (mod->state == MODULE_STATE_UNFORMED)
3802 mod = NULL;
3803 }
3804 return mod;
3805}
3806
3807/**
3808 * is_module_text_address() - is this address inside module code?
3809 * @addr: the address to check.
3810 *
3811 * See is_module_address() if you simply want to see if the address is
3812 * anywhere in a module. See kernel_text_address() for testing if an
3813 * address corresponds to kernel or module code.
3814 */
3815bool is_module_text_address(unsigned long addr)
3816{
3817 guard(rcu)();
3818 return __module_text_address(addr) != NULL;
3819}
3820
3821void module_for_each_mod(int(*func)(struct module *mod, void *data), void *data)
3822{
3823 struct module *mod;
3824
3825 guard(rcu)();
3826 list_for_each_entry_rcu(mod, &modules, list) {
3827 if (mod->state == MODULE_STATE_UNFORMED)
3828 continue;
3829 if (func(mod, data))
3830 break;
3831 }
3832}
3833
3834/**
3835 * __module_text_address() - get the module whose code contains an address.
3836 * @addr: the address.
3837 *
3838 * Must be called within RCU read section or module mutex held so that
3839 * module doesn't get freed during this.
3840 */
3841struct module *__module_text_address(unsigned long addr)
3842{
3843 struct module *mod = __module_address(addr);
3844 if (mod) {
3845 /* Make sure it's within the text section. */
3846 if (!within_module_mem_type(addr, mod, type: MOD_TEXT) &&
3847 !within_module_mem_type(addr, mod, type: MOD_INIT_TEXT))
3848 mod = NULL;
3849 }
3850 return mod;
3851}
3852
3853/* Don't grab lock, we're oopsing. */
3854void print_modules(void)
3855{
3856 struct module *mod;
3857 char buf[MODULE_FLAGS_BUF_SIZE];
3858
3859 printk(KERN_DEFAULT "Modules linked in:");
3860 /* Most callers should already have preempt disabled, but make sure */
3861 guard(rcu)();
3862 list_for_each_entry_rcu(mod, &modules, list) {
3863 if (mod->state == MODULE_STATE_UNFORMED)
3864 continue;
3865 pr_cont(" %s%s", mod->name, module_flags(mod, buf, true));
3866 }
3867
3868 print_unloaded_tainted_modules();
3869 if (last_unloaded_module.name[0])
3870 pr_cont(" [last unloaded: %s%s]", last_unloaded_module.name,
3871 last_unloaded_module.taints);
3872 pr_cont("\n");
3873}
3874
3875#ifdef CONFIG_MODULE_DEBUGFS
3876struct dentry *mod_debugfs_root;
3877
3878static int module_debugfs_init(void)
3879{
3880 mod_debugfs_root = debugfs_create_dir(name: "modules", NULL);
3881 return 0;
3882}
3883module_init(module_debugfs_init);
3884#endif
3885

source code of linux/kernel/module/main.c

Morty Proxy This is a proxified and sanitized view of the page, visit original site.