| 1 | /* SPDX-License-Identifier: GPL-2.0 */ |
| 2 | #ifndef _LINUX_RMAP_H |
| 3 | #define _LINUX_RMAP_H |
| 4 | /* |
| 5 | * Declarations for Reverse Mapping functions in mm/rmap.c |
| 6 | */ |
| 7 | |
| 8 | #include <linux/list.h> |
| 9 | #include <linux/slab.h> |
| 10 | #include <linux/mm.h> |
| 11 | #include <linux/rwsem.h> |
| 12 | #include <linux/memcontrol.h> |
| 13 | #include <linux/highmem.h> |
| 14 | #include <linux/pagemap.h> |
| 15 | #include <linux/memremap.h> |
| 16 | #include <linux/bit_spinlock.h> |
| 17 | |
| 18 | /* |
| 19 | * The anon_vma heads a list of private "related" vmas, to scan if |
| 20 | * an anonymous page pointing to this anon_vma needs to be unmapped: |
| 21 | * the vmas on the list will be related by forking, or by splitting. |
| 22 | * |
| 23 | * Since vmas come and go as they are split and merged (particularly |
| 24 | * in mprotect), the mapping field of an anonymous page cannot point |
| 25 | * directly to a vma: instead it points to an anon_vma, on whose list |
| 26 | * the related vmas can be easily linked or unlinked. |
| 27 | * |
| 28 | * After unlinking the last vma on the list, we must garbage collect |
| 29 | * the anon_vma object itself: we're guaranteed no page can be |
| 30 | * pointing to this anon_vma once its vma list is empty. |
| 31 | */ |
| 32 | struct anon_vma { |
| 33 | struct anon_vma *root; /* Root of this anon_vma tree */ |
| 34 | struct rw_semaphore rwsem; /* W: modification, R: walking the list */ |
| 35 | /* |
| 36 | * The refcount is taken on an anon_vma when there is no |
| 37 | * guarantee that the vma of page tables will exist for |
| 38 | * the duration of the operation. A caller that takes |
| 39 | * the reference is responsible for clearing up the |
| 40 | * anon_vma if they are the last user on release |
| 41 | */ |
| 42 | atomic_t refcount; |
| 43 | |
| 44 | /* |
| 45 | * Count of child anon_vmas. Equals to the count of all anon_vmas that |
| 46 | * have ->parent pointing to this one, including itself. |
| 47 | * |
| 48 | * This counter is used for making decision about reusing anon_vma |
| 49 | * instead of forking new one. See comments in function anon_vma_clone. |
| 50 | */ |
| 51 | unsigned long num_children; |
| 52 | /* Count of VMAs whose ->anon_vma pointer points to this object. */ |
| 53 | unsigned long num_active_vmas; |
| 54 | |
| 55 | struct anon_vma *parent; /* Parent of this anon_vma */ |
| 56 | |
| 57 | /* |
| 58 | * NOTE: the LSB of the rb_root.rb_node is set by |
| 59 | * mm_take_all_locks() _after_ taking the above lock. So the |
| 60 | * rb_root must only be read/written after taking the above lock |
| 61 | * to be sure to see a valid next pointer. The LSB bit itself |
| 62 | * is serialized by a system wide lock only visible to |
| 63 | * mm_take_all_locks() (mm_all_locks_mutex). |
| 64 | */ |
| 65 | |
| 66 | /* Interval tree of private "related" vmas */ |
| 67 | struct rb_root_cached rb_root; |
| 68 | }; |
| 69 | |
| 70 | /* |
| 71 | * The copy-on-write semantics of fork mean that an anon_vma |
| 72 | * can become associated with multiple processes. Furthermore, |
| 73 | * each child process will have its own anon_vma, where new |
| 74 | * pages for that process are instantiated. |
| 75 | * |
| 76 | * This structure allows us to find the anon_vmas associated |
| 77 | * with a VMA, or the VMAs associated with an anon_vma. |
| 78 | * The "same_vma" list contains the anon_vma_chains linking |
| 79 | * all the anon_vmas associated with this VMA. |
| 80 | * The "rb" field indexes on an interval tree the anon_vma_chains |
| 81 | * which link all the VMAs associated with this anon_vma. |
| 82 | */ |
| 83 | struct anon_vma_chain { |
| 84 | struct vm_area_struct *vma; |
| 85 | struct anon_vma *anon_vma; |
| 86 | struct list_head same_vma; /* locked by mmap_lock & page_table_lock */ |
| 87 | struct rb_node rb; /* locked by anon_vma->rwsem */ |
| 88 | unsigned long rb_subtree_last; |
| 89 | #ifdef CONFIG_DEBUG_VM_RB |
| 90 | unsigned long cached_vma_start, cached_vma_last; |
| 91 | #endif |
| 92 | }; |
| 93 | |
| 94 | enum ttu_flags { |
| 95 | TTU_SPLIT_HUGE_PMD = 0x4, /* split huge PMD if any */ |
| 96 | TTU_IGNORE_MLOCK = 0x8, /* ignore mlock */ |
| 97 | TTU_SYNC = 0x10, /* avoid racy checks with PVMW_SYNC */ |
| 98 | TTU_HWPOISON = 0x20, /* do convert pte to hwpoison entry */ |
| 99 | TTU_BATCH_FLUSH = 0x40, /* Batch TLB flushes where possible |
| 100 | * and caller guarantees they will |
| 101 | * do a final flush if necessary */ |
| 102 | TTU_RMAP_LOCKED = 0x80, /* do not grab rmap lock: |
| 103 | * caller holds it */ |
| 104 | }; |
| 105 | |
| 106 | #ifdef CONFIG_MMU |
| 107 | static inline void get_anon_vma(struct anon_vma *anon_vma) |
| 108 | { |
| 109 | atomic_inc(v: &anon_vma->refcount); |
| 110 | } |
| 111 | |
| 112 | void __put_anon_vma(struct anon_vma *anon_vma); |
| 113 | |
| 114 | static inline void put_anon_vma(struct anon_vma *anon_vma) |
| 115 | { |
| 116 | if (atomic_dec_and_test(v: &anon_vma->refcount)) |
| 117 | __put_anon_vma(anon_vma); |
| 118 | } |
| 119 | |
| 120 | static inline void anon_vma_lock_write(struct anon_vma *anon_vma) |
| 121 | { |
| 122 | down_write(sem: &anon_vma->root->rwsem); |
| 123 | } |
| 124 | |
| 125 | static inline int anon_vma_trylock_write(struct anon_vma *anon_vma) |
| 126 | { |
| 127 | return down_write_trylock(sem: &anon_vma->root->rwsem); |
| 128 | } |
| 129 | |
| 130 | static inline void anon_vma_unlock_write(struct anon_vma *anon_vma) |
| 131 | { |
| 132 | up_write(sem: &anon_vma->root->rwsem); |
| 133 | } |
| 134 | |
| 135 | static inline void anon_vma_lock_read(struct anon_vma *anon_vma) |
| 136 | { |
| 137 | down_read(sem: &anon_vma->root->rwsem); |
| 138 | } |
| 139 | |
| 140 | static inline int anon_vma_trylock_read(struct anon_vma *anon_vma) |
| 141 | { |
| 142 | return down_read_trylock(sem: &anon_vma->root->rwsem); |
| 143 | } |
| 144 | |
| 145 | static inline void anon_vma_unlock_read(struct anon_vma *anon_vma) |
| 146 | { |
| 147 | up_read(sem: &anon_vma->root->rwsem); |
| 148 | } |
| 149 | |
| 150 | |
| 151 | /* |
| 152 | * anon_vma helper functions. |
| 153 | */ |
| 154 | void anon_vma_init(void); /* create anon_vma_cachep */ |
| 155 | int __anon_vma_prepare(struct vm_area_struct *); |
| 156 | void unlink_anon_vmas(struct vm_area_struct *); |
| 157 | int anon_vma_clone(struct vm_area_struct *, struct vm_area_struct *); |
| 158 | int anon_vma_fork(struct vm_area_struct *, struct vm_area_struct *); |
| 159 | |
| 160 | static inline int anon_vma_prepare(struct vm_area_struct *vma) |
| 161 | { |
| 162 | if (likely(vma->anon_vma)) |
| 163 | return 0; |
| 164 | |
| 165 | return __anon_vma_prepare(vma); |
| 166 | } |
| 167 | |
| 168 | static inline void anon_vma_merge(struct vm_area_struct *vma, |
| 169 | struct vm_area_struct *next) |
| 170 | { |
| 171 | VM_BUG_ON_VMA(vma->anon_vma != next->anon_vma, vma); |
| 172 | unlink_anon_vmas(next); |
| 173 | } |
| 174 | |
| 175 | struct anon_vma *folio_get_anon_vma(const struct folio *folio); |
| 176 | |
| 177 | #ifdef CONFIG_MM_ID |
| 178 | static __always_inline void folio_lock_large_mapcount(struct folio *folio) |
| 179 | { |
| 180 | bit_spin_lock(FOLIO_MM_IDS_LOCK_BITNUM, addr: &folio->_mm_ids); |
| 181 | } |
| 182 | |
| 183 | static __always_inline void folio_unlock_large_mapcount(struct folio *folio) |
| 184 | { |
| 185 | __bit_spin_unlock(FOLIO_MM_IDS_LOCK_BITNUM, addr: &folio->_mm_ids); |
| 186 | } |
| 187 | |
| 188 | static inline unsigned int folio_mm_id(const struct folio *folio, int idx) |
| 189 | { |
| 190 | VM_WARN_ON_ONCE(idx != 0 && idx != 1); |
| 191 | return folio->_mm_id[idx] & MM_ID_MASK; |
| 192 | } |
| 193 | |
| 194 | static inline void folio_set_mm_id(struct folio *folio, int idx, mm_id_t id) |
| 195 | { |
| 196 | VM_WARN_ON_ONCE(idx != 0 && idx != 1); |
| 197 | folio->_mm_id[idx] &= ~MM_ID_MASK; |
| 198 | folio->_mm_id[idx] |= id; |
| 199 | } |
| 200 | |
| 201 | static inline void __folio_large_mapcount_sanity_checks(const struct folio *folio, |
| 202 | int diff, mm_id_t mm_id) |
| 203 | { |
| 204 | VM_WARN_ON_ONCE(!folio_test_large(folio) || folio_test_hugetlb(folio)); |
| 205 | VM_WARN_ON_ONCE(diff <= 0); |
| 206 | VM_WARN_ON_ONCE(mm_id < MM_ID_MIN || mm_id > MM_ID_MAX); |
| 207 | |
| 208 | /* |
| 209 | * Make sure we can detect at least one complete PTE mapping of the |
| 210 | * folio in a single MM as "exclusively mapped". This is primarily |
| 211 | * a check on 32bit, where we currently reduce the size of the per-MM |
| 212 | * mapcount to a short. |
| 213 | */ |
| 214 | VM_WARN_ON_ONCE(diff > folio_large_nr_pages(folio)); |
| 215 | VM_WARN_ON_ONCE(folio_large_nr_pages(folio) - 1 > MM_ID_MAPCOUNT_MAX); |
| 216 | |
| 217 | VM_WARN_ON_ONCE(folio_mm_id(folio, 0) == MM_ID_DUMMY && |
| 218 | folio->_mm_id_mapcount[0] != -1); |
| 219 | VM_WARN_ON_ONCE(folio_mm_id(folio, 0) != MM_ID_DUMMY && |
| 220 | folio->_mm_id_mapcount[0] < 0); |
| 221 | VM_WARN_ON_ONCE(folio_mm_id(folio, 1) == MM_ID_DUMMY && |
| 222 | folio->_mm_id_mapcount[1] != -1); |
| 223 | VM_WARN_ON_ONCE(folio_mm_id(folio, 1) != MM_ID_DUMMY && |
| 224 | folio->_mm_id_mapcount[1] < 0); |
| 225 | VM_WARN_ON_ONCE(!folio_mapped(folio) && |
| 226 | test_bit(FOLIO_MM_IDS_SHARED_BITNUM, &folio->_mm_ids)); |
| 227 | } |
| 228 | |
| 229 | static __always_inline void folio_set_large_mapcount(struct folio *folio, |
| 230 | int mapcount, struct vm_area_struct *vma) |
| 231 | { |
| 232 | __folio_large_mapcount_sanity_checks(folio, diff: mapcount, mm_id: vma->vm_mm->mm_id); |
| 233 | |
| 234 | VM_WARN_ON_ONCE(folio_mm_id(folio, 0) != MM_ID_DUMMY); |
| 235 | VM_WARN_ON_ONCE(folio_mm_id(folio, 1) != MM_ID_DUMMY); |
| 236 | |
| 237 | /* Note: mapcounts start at -1. */ |
| 238 | atomic_set(v: &folio->_large_mapcount, i: mapcount - 1); |
| 239 | folio->_mm_id_mapcount[0] = mapcount - 1; |
| 240 | folio_set_mm_id(folio, idx: 0, id: vma->vm_mm->mm_id); |
| 241 | } |
| 242 | |
| 243 | static __always_inline int folio_add_return_large_mapcount(struct folio *folio, |
| 244 | int diff, struct vm_area_struct *vma) |
| 245 | { |
| 246 | const mm_id_t mm_id = vma->vm_mm->mm_id; |
| 247 | int new_mapcount_val; |
| 248 | |
| 249 | folio_lock_large_mapcount(folio); |
| 250 | __folio_large_mapcount_sanity_checks(folio, diff, mm_id); |
| 251 | |
| 252 | new_mapcount_val = atomic_read(v: &folio->_large_mapcount) + diff; |
| 253 | atomic_set(v: &folio->_large_mapcount, i: new_mapcount_val); |
| 254 | |
| 255 | /* |
| 256 | * If a folio is mapped more than once into an MM on 32bit, we |
| 257 | * can in theory overflow the per-MM mapcount (although only for |
| 258 | * fairly large folios), turning it negative. In that case, just |
| 259 | * free up the slot and mark the folio "mapped shared", otherwise |
| 260 | * we might be in trouble when unmapping pages later. |
| 261 | */ |
| 262 | if (folio_mm_id(folio, idx: 0) == mm_id) { |
| 263 | folio->_mm_id_mapcount[0] += diff; |
| 264 | if (!IS_ENABLED(CONFIG_64BIT) && unlikely(folio->_mm_id_mapcount[0] < 0)) { |
| 265 | folio->_mm_id_mapcount[0] = -1; |
| 266 | folio_set_mm_id(folio, idx: 0, MM_ID_DUMMY); |
| 267 | folio->_mm_ids |= FOLIO_MM_IDS_SHARED_BIT; |
| 268 | } |
| 269 | } else if (folio_mm_id(folio, idx: 1) == mm_id) { |
| 270 | folio->_mm_id_mapcount[1] += diff; |
| 271 | if (!IS_ENABLED(CONFIG_64BIT) && unlikely(folio->_mm_id_mapcount[1] < 0)) { |
| 272 | folio->_mm_id_mapcount[1] = -1; |
| 273 | folio_set_mm_id(folio, idx: 1, MM_ID_DUMMY); |
| 274 | folio->_mm_ids |= FOLIO_MM_IDS_SHARED_BIT; |
| 275 | } |
| 276 | } else if (folio_mm_id(folio, idx: 0) == MM_ID_DUMMY) { |
| 277 | folio_set_mm_id(folio, idx: 0, id: mm_id); |
| 278 | folio->_mm_id_mapcount[0] = diff - 1; |
| 279 | /* We might have other mappings already. */ |
| 280 | if (new_mapcount_val != diff - 1) |
| 281 | folio->_mm_ids |= FOLIO_MM_IDS_SHARED_BIT; |
| 282 | } else if (folio_mm_id(folio, idx: 1) == MM_ID_DUMMY) { |
| 283 | folio_set_mm_id(folio, idx: 1, id: mm_id); |
| 284 | folio->_mm_id_mapcount[1] = diff - 1; |
| 285 | /* Slot 0 certainly has mappings as well. */ |
| 286 | folio->_mm_ids |= FOLIO_MM_IDS_SHARED_BIT; |
| 287 | } |
| 288 | folio_unlock_large_mapcount(folio); |
| 289 | return new_mapcount_val + 1; |
| 290 | } |
| 291 | #define folio_add_large_mapcount folio_add_return_large_mapcount |
| 292 | |
| 293 | static __always_inline int folio_sub_return_large_mapcount(struct folio *folio, |
| 294 | int diff, struct vm_area_struct *vma) |
| 295 | { |
| 296 | const mm_id_t mm_id = vma->vm_mm->mm_id; |
| 297 | int new_mapcount_val; |
| 298 | |
| 299 | folio_lock_large_mapcount(folio); |
| 300 | __folio_large_mapcount_sanity_checks(folio, diff, mm_id); |
| 301 | |
| 302 | new_mapcount_val = atomic_read(v: &folio->_large_mapcount) - diff; |
| 303 | atomic_set(v: &folio->_large_mapcount, i: new_mapcount_val); |
| 304 | |
| 305 | /* |
| 306 | * There are valid corner cases where we might underflow a per-MM |
| 307 | * mapcount (some mappings added when no slot was free, some mappings |
| 308 | * added once a slot was free), so we always set it to -1 once we go |
| 309 | * negative. |
| 310 | */ |
| 311 | if (folio_mm_id(folio, idx: 0) == mm_id) { |
| 312 | folio->_mm_id_mapcount[0] -= diff; |
| 313 | if (folio->_mm_id_mapcount[0] >= 0) |
| 314 | goto out; |
| 315 | folio->_mm_id_mapcount[0] = -1; |
| 316 | folio_set_mm_id(folio, idx: 0, MM_ID_DUMMY); |
| 317 | } else if (folio_mm_id(folio, idx: 1) == mm_id) { |
| 318 | folio->_mm_id_mapcount[1] -= diff; |
| 319 | if (folio->_mm_id_mapcount[1] >= 0) |
| 320 | goto out; |
| 321 | folio->_mm_id_mapcount[1] = -1; |
| 322 | folio_set_mm_id(folio, idx: 1, MM_ID_DUMMY); |
| 323 | } |
| 324 | |
| 325 | /* |
| 326 | * If one MM slot owns all mappings, the folio is mapped exclusively. |
| 327 | * Note that if the folio is now unmapped (new_mapcount_val == -1), both |
| 328 | * slots must be free (mapcount == -1), and we'll also mark it as |
| 329 | * exclusive. |
| 330 | */ |
| 331 | if (folio->_mm_id_mapcount[0] == new_mapcount_val || |
| 332 | folio->_mm_id_mapcount[1] == new_mapcount_val) |
| 333 | folio->_mm_ids &= ~FOLIO_MM_IDS_SHARED_BIT; |
| 334 | out: |
| 335 | folio_unlock_large_mapcount(folio); |
| 336 | return new_mapcount_val + 1; |
| 337 | } |
| 338 | #define folio_sub_large_mapcount folio_sub_return_large_mapcount |
| 339 | #else /* !CONFIG_MM_ID */ |
| 340 | /* |
| 341 | * See __folio_rmap_sanity_checks(), we might map large folios even without |
| 342 | * CONFIG_TRANSPARENT_HUGEPAGE. We'll keep that working for now. |
| 343 | */ |
| 344 | static inline void folio_set_large_mapcount(struct folio *folio, int mapcount, |
| 345 | struct vm_area_struct *vma) |
| 346 | { |
| 347 | /* Note: mapcounts start at -1. */ |
| 348 | atomic_set(&folio->_large_mapcount, mapcount - 1); |
| 349 | } |
| 350 | |
| 351 | static inline void folio_add_large_mapcount(struct folio *folio, |
| 352 | int diff, struct vm_area_struct *vma) |
| 353 | { |
| 354 | atomic_add(diff, &folio->_large_mapcount); |
| 355 | } |
| 356 | |
| 357 | static inline int folio_add_return_large_mapcount(struct folio *folio, |
| 358 | int diff, struct vm_area_struct *vma) |
| 359 | { |
| 360 | BUILD_BUG(); |
| 361 | } |
| 362 | |
| 363 | static inline void folio_sub_large_mapcount(struct folio *folio, |
| 364 | int diff, struct vm_area_struct *vma) |
| 365 | { |
| 366 | atomic_sub(diff, &folio->_large_mapcount); |
| 367 | } |
| 368 | |
| 369 | static inline int folio_sub_return_large_mapcount(struct folio *folio, |
| 370 | int diff, struct vm_area_struct *vma) |
| 371 | { |
| 372 | BUILD_BUG(); |
| 373 | } |
| 374 | #endif /* CONFIG_MM_ID */ |
| 375 | |
| 376 | #define folio_inc_large_mapcount(folio, vma) \ |
| 377 | folio_add_large_mapcount(folio, 1, vma) |
| 378 | #define folio_inc_return_large_mapcount(folio, vma) \ |
| 379 | folio_add_return_large_mapcount(folio, 1, vma) |
| 380 | #define folio_dec_large_mapcount(folio, vma) \ |
| 381 | folio_sub_large_mapcount(folio, 1, vma) |
| 382 | #define folio_dec_return_large_mapcount(folio, vma) \ |
| 383 | folio_sub_return_large_mapcount(folio, 1, vma) |
| 384 | |
| 385 | /* RMAP flags, currently only relevant for some anon rmap operations. */ |
| 386 | typedef int __bitwise rmap_t; |
| 387 | |
| 388 | /* |
| 389 | * No special request: A mapped anonymous (sub)page is possibly shared between |
| 390 | * processes. |
| 391 | */ |
| 392 | #define RMAP_NONE ((__force rmap_t)0) |
| 393 | |
| 394 | /* The anonymous (sub)page is exclusive to a single process. */ |
| 395 | #define RMAP_EXCLUSIVE ((__force rmap_t)BIT(0)) |
| 396 | |
| 397 | /* |
| 398 | * Internally, we're using an enum to specify the granularity. We make the |
| 399 | * compiler emit specialized code for each granularity. |
| 400 | */ |
| 401 | enum rmap_level { |
| 402 | RMAP_LEVEL_PTE = 0, |
| 403 | RMAP_LEVEL_PMD, |
| 404 | RMAP_LEVEL_PUD, |
| 405 | }; |
| 406 | |
| 407 | static inline void __folio_rmap_sanity_checks(const struct folio *folio, |
| 408 | const struct page *page, int nr_pages, enum rmap_level level) |
| 409 | { |
| 410 | /* hugetlb folios are handled separately. */ |
| 411 | VM_WARN_ON_FOLIO(folio_test_hugetlb(folio), folio); |
| 412 | |
| 413 | /* When (un)mapping zeropages, we should never touch ref+mapcount. */ |
| 414 | VM_WARN_ON_FOLIO(is_zero_folio(folio), folio); |
| 415 | |
| 416 | /* |
| 417 | * TODO: we get driver-allocated folios that have nothing to do with |
| 418 | * the rmap using vm_insert_page(); therefore, we cannot assume that |
| 419 | * folio_test_large_rmappable() holds for large folios. We should |
| 420 | * handle any desired mapcount+stats accounting for these folios in |
| 421 | * VM_MIXEDMAP VMAs separately, and then sanity-check here that |
| 422 | * we really only get rmappable folios. |
| 423 | */ |
| 424 | |
| 425 | VM_WARN_ON_ONCE(nr_pages <= 0); |
| 426 | VM_WARN_ON_FOLIO(page_folio(page) != folio, folio); |
| 427 | VM_WARN_ON_FOLIO(page_folio(page + nr_pages - 1) != folio, folio); |
| 428 | |
| 429 | switch (level) { |
| 430 | case RMAP_LEVEL_PTE: |
| 431 | break; |
| 432 | case RMAP_LEVEL_PMD: |
| 433 | /* |
| 434 | * We don't support folios larger than a single PMD yet. So |
| 435 | * when RMAP_LEVEL_PMD is set, we assume that we are creating |
| 436 | * a single "entire" mapping of the folio. |
| 437 | */ |
| 438 | VM_WARN_ON_FOLIO(folio_nr_pages(folio) != HPAGE_PMD_NR, folio); |
| 439 | VM_WARN_ON_FOLIO(nr_pages != HPAGE_PMD_NR, folio); |
| 440 | break; |
| 441 | case RMAP_LEVEL_PUD: |
| 442 | /* |
| 443 | * Assume that we are creating a single "entire" mapping of the |
| 444 | * folio. |
| 445 | */ |
| 446 | VM_WARN_ON_FOLIO(folio_nr_pages(folio) != HPAGE_PUD_NR, folio); |
| 447 | VM_WARN_ON_FOLIO(nr_pages != HPAGE_PUD_NR, folio); |
| 448 | break; |
| 449 | default: |
| 450 | VM_WARN_ON_ONCE(true); |
| 451 | } |
| 452 | } |
| 453 | |
| 454 | /* |
| 455 | * rmap interfaces called when adding or removing pte of page |
| 456 | */ |
| 457 | void folio_move_anon_rmap(struct folio *, struct vm_area_struct *); |
| 458 | void folio_add_anon_rmap_ptes(struct folio *, struct page *, int nr_pages, |
| 459 | struct vm_area_struct *, unsigned long address, rmap_t flags); |
| 460 | #define folio_add_anon_rmap_pte(folio, page, vma, address, flags) \ |
| 461 | folio_add_anon_rmap_ptes(folio, page, 1, vma, address, flags) |
| 462 | void folio_add_anon_rmap_pmd(struct folio *, struct page *, |
| 463 | struct vm_area_struct *, unsigned long address, rmap_t flags); |
| 464 | void folio_add_new_anon_rmap(struct folio *, struct vm_area_struct *, |
| 465 | unsigned long address, rmap_t flags); |
| 466 | void folio_add_file_rmap_ptes(struct folio *, struct page *, int nr_pages, |
| 467 | struct vm_area_struct *); |
| 468 | #define folio_add_file_rmap_pte(folio, page, vma) \ |
| 469 | folio_add_file_rmap_ptes(folio, page, 1, vma) |
| 470 | void folio_add_file_rmap_pmd(struct folio *, struct page *, |
| 471 | struct vm_area_struct *); |
| 472 | void folio_add_file_rmap_pud(struct folio *, struct page *, |
| 473 | struct vm_area_struct *); |
| 474 | void folio_remove_rmap_ptes(struct folio *, struct page *, int nr_pages, |
| 475 | struct vm_area_struct *); |
| 476 | #define folio_remove_rmap_pte(folio, page, vma) \ |
| 477 | folio_remove_rmap_ptes(folio, page, 1, vma) |
| 478 | void folio_remove_rmap_pmd(struct folio *, struct page *, |
| 479 | struct vm_area_struct *); |
| 480 | void folio_remove_rmap_pud(struct folio *, struct page *, |
| 481 | struct vm_area_struct *); |
| 482 | |
| 483 | void hugetlb_add_anon_rmap(struct folio *, struct vm_area_struct *, |
| 484 | unsigned long address, rmap_t flags); |
| 485 | void hugetlb_add_new_anon_rmap(struct folio *, struct vm_area_struct *, |
| 486 | unsigned long address); |
| 487 | |
| 488 | /* See folio_try_dup_anon_rmap_*() */ |
| 489 | static inline int hugetlb_try_dup_anon_rmap(struct folio *folio, |
| 490 | struct vm_area_struct *vma) |
| 491 | { |
| 492 | VM_WARN_ON_FOLIO(!folio_test_hugetlb(folio), folio); |
| 493 | VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio); |
| 494 | |
| 495 | if (PageAnonExclusive(page: &folio->page)) { |
| 496 | if (unlikely(folio_needs_cow_for_dma(vma, folio))) |
| 497 | return -EBUSY; |
| 498 | ClearPageAnonExclusive(page: &folio->page); |
| 499 | } |
| 500 | atomic_inc(v: &folio->_entire_mapcount); |
| 501 | atomic_inc(v: &folio->_large_mapcount); |
| 502 | return 0; |
| 503 | } |
| 504 | |
| 505 | /* See folio_try_share_anon_rmap_*() */ |
| 506 | static inline int hugetlb_try_share_anon_rmap(struct folio *folio) |
| 507 | { |
| 508 | VM_WARN_ON_FOLIO(!folio_test_hugetlb(folio), folio); |
| 509 | VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio); |
| 510 | VM_WARN_ON_FOLIO(!PageAnonExclusive(&folio->page), folio); |
| 511 | |
| 512 | /* Paired with the memory barrier in try_grab_folio(). */ |
| 513 | if (IS_ENABLED(CONFIG_HAVE_GUP_FAST)) |
| 514 | smp_mb(); |
| 515 | |
| 516 | if (unlikely(folio_maybe_dma_pinned(folio))) |
| 517 | return -EBUSY; |
| 518 | ClearPageAnonExclusive(page: &folio->page); |
| 519 | |
| 520 | /* |
| 521 | * This is conceptually a smp_wmb() paired with the smp_rmb() in |
| 522 | * gup_must_unshare(). |
| 523 | */ |
| 524 | if (IS_ENABLED(CONFIG_HAVE_GUP_FAST)) |
| 525 | smp_mb__after_atomic(); |
| 526 | return 0; |
| 527 | } |
| 528 | |
| 529 | static inline void hugetlb_add_file_rmap(struct folio *folio) |
| 530 | { |
| 531 | VM_WARN_ON_FOLIO(!folio_test_hugetlb(folio), folio); |
| 532 | VM_WARN_ON_FOLIO(folio_test_anon(folio), folio); |
| 533 | |
| 534 | atomic_inc(v: &folio->_entire_mapcount); |
| 535 | atomic_inc(v: &folio->_large_mapcount); |
| 536 | } |
| 537 | |
| 538 | static inline void hugetlb_remove_rmap(struct folio *folio) |
| 539 | { |
| 540 | VM_WARN_ON_FOLIO(!folio_test_hugetlb(folio), folio); |
| 541 | |
| 542 | atomic_dec(v: &folio->_entire_mapcount); |
| 543 | atomic_dec(v: &folio->_large_mapcount); |
| 544 | } |
| 545 | |
| 546 | static __always_inline void __folio_dup_file_rmap(struct folio *folio, |
| 547 | struct page *page, int nr_pages, struct vm_area_struct *dst_vma, |
| 548 | enum rmap_level level) |
| 549 | { |
| 550 | const int orig_nr_pages = nr_pages; |
| 551 | |
| 552 | __folio_rmap_sanity_checks(folio, page, nr_pages, level); |
| 553 | |
| 554 | switch (level) { |
| 555 | case RMAP_LEVEL_PTE: |
| 556 | if (!folio_test_large(folio)) { |
| 557 | atomic_inc(v: &folio->_mapcount); |
| 558 | break; |
| 559 | } |
| 560 | |
| 561 | if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT)) { |
| 562 | do { |
| 563 | atomic_inc(v: &page->_mapcount); |
| 564 | } while (page++, --nr_pages > 0); |
| 565 | } |
| 566 | folio_add_large_mapcount(folio, diff: orig_nr_pages, vma: dst_vma); |
| 567 | break; |
| 568 | case RMAP_LEVEL_PMD: |
| 569 | case RMAP_LEVEL_PUD: |
| 570 | atomic_inc(v: &folio->_entire_mapcount); |
| 571 | folio_inc_large_mapcount(folio, dst_vma); |
| 572 | break; |
| 573 | } |
| 574 | } |
| 575 | |
| 576 | /** |
| 577 | * folio_dup_file_rmap_ptes - duplicate PTE mappings of a page range of a folio |
| 578 | * @folio: The folio to duplicate the mappings of |
| 579 | * @page: The first page to duplicate the mappings of |
| 580 | * @nr_pages: The number of pages of which the mapping will be duplicated |
| 581 | * @dst_vma: The destination vm area |
| 582 | * |
| 583 | * The page range of the folio is defined by [page, page + nr_pages) |
| 584 | * |
| 585 | * The caller needs to hold the page table lock. |
| 586 | */ |
| 587 | static inline void folio_dup_file_rmap_ptes(struct folio *folio, |
| 588 | struct page *page, int nr_pages, struct vm_area_struct *dst_vma) |
| 589 | { |
| 590 | __folio_dup_file_rmap(folio, page, nr_pages, dst_vma, level: RMAP_LEVEL_PTE); |
| 591 | } |
| 592 | |
| 593 | static __always_inline void folio_dup_file_rmap_pte(struct folio *folio, |
| 594 | struct page *page, struct vm_area_struct *dst_vma) |
| 595 | { |
| 596 | __folio_dup_file_rmap(folio, page, nr_pages: 1, dst_vma, level: RMAP_LEVEL_PTE); |
| 597 | } |
| 598 | |
| 599 | /** |
| 600 | * folio_dup_file_rmap_pmd - duplicate a PMD mapping of a page range of a folio |
| 601 | * @folio: The folio to duplicate the mapping of |
| 602 | * @page: The first page to duplicate the mapping of |
| 603 | * @dst_vma: The destination vm area |
| 604 | * |
| 605 | * The page range of the folio is defined by [page, page + HPAGE_PMD_NR) |
| 606 | * |
| 607 | * The caller needs to hold the page table lock. |
| 608 | */ |
| 609 | static inline void folio_dup_file_rmap_pmd(struct folio *folio, |
| 610 | struct page *page, struct vm_area_struct *dst_vma) |
| 611 | { |
| 612 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| 613 | __folio_dup_file_rmap(folio, page, HPAGE_PMD_NR, dst_vma, level: RMAP_LEVEL_PTE); |
| 614 | #else |
| 615 | WARN_ON_ONCE(true); |
| 616 | #endif |
| 617 | } |
| 618 | |
| 619 | static __always_inline int __folio_try_dup_anon_rmap(struct folio *folio, |
| 620 | struct page *page, int nr_pages, struct vm_area_struct *dst_vma, |
| 621 | struct vm_area_struct *src_vma, enum rmap_level level) |
| 622 | { |
| 623 | const int orig_nr_pages = nr_pages; |
| 624 | bool maybe_pinned; |
| 625 | int i; |
| 626 | |
| 627 | VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio); |
| 628 | __folio_rmap_sanity_checks(folio, page, nr_pages, level); |
| 629 | |
| 630 | /* |
| 631 | * If this folio may have been pinned by the parent process, |
| 632 | * don't allow to duplicate the mappings but instead require to e.g., |
| 633 | * copy the subpage immediately for the child so that we'll always |
| 634 | * guarantee the pinned folio won't be randomly replaced in the |
| 635 | * future on write faults. |
| 636 | */ |
| 637 | maybe_pinned = likely(!folio_is_device_private(folio)) && |
| 638 | unlikely(folio_needs_cow_for_dma(src_vma, folio)); |
| 639 | |
| 640 | /* |
| 641 | * No need to check+clear for already shared PTEs/PMDs of the |
| 642 | * folio. But if any page is PageAnonExclusive, we must fallback to |
| 643 | * copying if the folio maybe pinned. |
| 644 | */ |
| 645 | switch (level) { |
| 646 | case RMAP_LEVEL_PTE: |
| 647 | if (unlikely(maybe_pinned)) { |
| 648 | for (i = 0; i < nr_pages; i++) |
| 649 | if (PageAnonExclusive(page: page + i)) |
| 650 | return -EBUSY; |
| 651 | } |
| 652 | |
| 653 | if (!folio_test_large(folio)) { |
| 654 | if (PageAnonExclusive(page)) |
| 655 | ClearPageAnonExclusive(page); |
| 656 | atomic_inc(v: &folio->_mapcount); |
| 657 | break; |
| 658 | } |
| 659 | |
| 660 | do { |
| 661 | if (PageAnonExclusive(page)) |
| 662 | ClearPageAnonExclusive(page); |
| 663 | if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT)) |
| 664 | atomic_inc(v: &page->_mapcount); |
| 665 | } while (page++, --nr_pages > 0); |
| 666 | folio_add_large_mapcount(folio, diff: orig_nr_pages, vma: dst_vma); |
| 667 | break; |
| 668 | case RMAP_LEVEL_PMD: |
| 669 | case RMAP_LEVEL_PUD: |
| 670 | if (PageAnonExclusive(page)) { |
| 671 | if (unlikely(maybe_pinned)) |
| 672 | return -EBUSY; |
| 673 | ClearPageAnonExclusive(page); |
| 674 | } |
| 675 | atomic_inc(v: &folio->_entire_mapcount); |
| 676 | folio_inc_large_mapcount(folio, dst_vma); |
| 677 | break; |
| 678 | } |
| 679 | return 0; |
| 680 | } |
| 681 | |
| 682 | /** |
| 683 | * folio_try_dup_anon_rmap_ptes - try duplicating PTE mappings of a page range |
| 684 | * of a folio |
| 685 | * @folio: The folio to duplicate the mappings of |
| 686 | * @page: The first page to duplicate the mappings of |
| 687 | * @nr_pages: The number of pages of which the mapping will be duplicated |
| 688 | * @dst_vma: The destination vm area |
| 689 | * @src_vma: The vm area from which the mappings are duplicated |
| 690 | * |
| 691 | * The page range of the folio is defined by [page, page + nr_pages) |
| 692 | * |
| 693 | * The caller needs to hold the page table lock and the |
| 694 | * vma->vma_mm->write_protect_seq. |
| 695 | * |
| 696 | * Duplicating the mappings can only fail if the folio may be pinned; device |
| 697 | * private folios cannot get pinned and consequently this function cannot fail |
| 698 | * for them. |
| 699 | * |
| 700 | * If duplicating the mappings succeeded, the duplicated PTEs have to be R/O in |
| 701 | * the parent and the child. They must *not* be writable after this call |
| 702 | * succeeded. |
| 703 | * |
| 704 | * Returns 0 if duplicating the mappings succeeded. Returns -EBUSY otherwise. |
| 705 | */ |
| 706 | static inline int folio_try_dup_anon_rmap_ptes(struct folio *folio, |
| 707 | struct page *page, int nr_pages, struct vm_area_struct *dst_vma, |
| 708 | struct vm_area_struct *src_vma) |
| 709 | { |
| 710 | return __folio_try_dup_anon_rmap(folio, page, nr_pages, dst_vma, |
| 711 | src_vma, level: RMAP_LEVEL_PTE); |
| 712 | } |
| 713 | |
| 714 | static __always_inline int folio_try_dup_anon_rmap_pte(struct folio *folio, |
| 715 | struct page *page, struct vm_area_struct *dst_vma, |
| 716 | struct vm_area_struct *src_vma) |
| 717 | { |
| 718 | return __folio_try_dup_anon_rmap(folio, page, nr_pages: 1, dst_vma, src_vma, |
| 719 | level: RMAP_LEVEL_PTE); |
| 720 | } |
| 721 | |
| 722 | /** |
| 723 | * folio_try_dup_anon_rmap_pmd - try duplicating a PMD mapping of a page range |
| 724 | * of a folio |
| 725 | * @folio: The folio to duplicate the mapping of |
| 726 | * @page: The first page to duplicate the mapping of |
| 727 | * @dst_vma: The destination vm area |
| 728 | * @src_vma: The vm area from which the mapping is duplicated |
| 729 | * |
| 730 | * The page range of the folio is defined by [page, page + HPAGE_PMD_NR) |
| 731 | * |
| 732 | * The caller needs to hold the page table lock and the |
| 733 | * vma->vma_mm->write_protect_seq. |
| 734 | * |
| 735 | * Duplicating the mapping can only fail if the folio may be pinned; device |
| 736 | * private folios cannot get pinned and consequently this function cannot fail |
| 737 | * for them. |
| 738 | * |
| 739 | * If duplicating the mapping succeeds, the duplicated PMD has to be R/O in |
| 740 | * the parent and the child. They must *not* be writable after this call |
| 741 | * succeeded. |
| 742 | * |
| 743 | * Returns 0 if duplicating the mapping succeeded. Returns -EBUSY otherwise. |
| 744 | */ |
| 745 | static inline int folio_try_dup_anon_rmap_pmd(struct folio *folio, |
| 746 | struct page *page, struct vm_area_struct *dst_vma, |
| 747 | struct vm_area_struct *src_vma) |
| 748 | { |
| 749 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| 750 | return __folio_try_dup_anon_rmap(folio, page, HPAGE_PMD_NR, dst_vma, |
| 751 | src_vma, level: RMAP_LEVEL_PMD); |
| 752 | #else |
| 753 | WARN_ON_ONCE(true); |
| 754 | return -EBUSY; |
| 755 | #endif |
| 756 | } |
| 757 | |
| 758 | static __always_inline int __folio_try_share_anon_rmap(struct folio *folio, |
| 759 | struct page *page, int nr_pages, enum rmap_level level) |
| 760 | { |
| 761 | VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio); |
| 762 | VM_WARN_ON_FOLIO(!PageAnonExclusive(page), folio); |
| 763 | __folio_rmap_sanity_checks(folio, page, nr_pages, level); |
| 764 | |
| 765 | /* device private folios cannot get pinned via GUP. */ |
| 766 | if (unlikely(folio_is_device_private(folio))) { |
| 767 | ClearPageAnonExclusive(page); |
| 768 | return 0; |
| 769 | } |
| 770 | |
| 771 | /* |
| 772 | * We have to make sure that when we clear PageAnonExclusive, that |
| 773 | * the page is not pinned and that concurrent GUP-fast won't succeed in |
| 774 | * concurrently pinning the page. |
| 775 | * |
| 776 | * Conceptually, PageAnonExclusive clearing consists of: |
| 777 | * (A1) Clear PTE |
| 778 | * (A2) Check if the page is pinned; back off if so. |
| 779 | * (A3) Clear PageAnonExclusive |
| 780 | * (A4) Restore PTE (optional, but certainly not writable) |
| 781 | * |
| 782 | * When clearing PageAnonExclusive, we cannot possibly map the page |
| 783 | * writable again, because anon pages that may be shared must never |
| 784 | * be writable. So in any case, if the PTE was writable it cannot |
| 785 | * be writable anymore afterwards and there would be a PTE change. Only |
| 786 | * if the PTE wasn't writable, there might not be a PTE change. |
| 787 | * |
| 788 | * Conceptually, GUP-fast pinning of an anon page consists of: |
| 789 | * (B1) Read the PTE |
| 790 | * (B2) FOLL_WRITE: check if the PTE is not writable; back off if so. |
| 791 | * (B3) Pin the mapped page |
| 792 | * (B4) Check if the PTE changed by re-reading it; back off if so. |
| 793 | * (B5) If the original PTE is not writable, check if |
| 794 | * PageAnonExclusive is not set; back off if so. |
| 795 | * |
| 796 | * If the PTE was writable, we only have to make sure that GUP-fast |
| 797 | * observes a PTE change and properly backs off. |
| 798 | * |
| 799 | * If the PTE was not writable, we have to make sure that GUP-fast either |
| 800 | * detects a (temporary) PTE change or that PageAnonExclusive is cleared |
| 801 | * and properly backs off. |
| 802 | * |
| 803 | * Consequently, when clearing PageAnonExclusive(), we have to make |
| 804 | * sure that (A1), (A2)/(A3) and (A4) happen in the right memory |
| 805 | * order. In GUP-fast pinning code, we have to make sure that (B3),(B4) |
| 806 | * and (B5) happen in the right memory order. |
| 807 | * |
| 808 | * We assume that there might not be a memory barrier after |
| 809 | * clearing/invalidating the PTE (A1) and before restoring the PTE (A4), |
| 810 | * so we use explicit ones here. |
| 811 | */ |
| 812 | |
| 813 | /* Paired with the memory barrier in try_grab_folio(). */ |
| 814 | if (IS_ENABLED(CONFIG_HAVE_GUP_FAST)) |
| 815 | smp_mb(); |
| 816 | |
| 817 | if (unlikely(folio_maybe_dma_pinned(folio))) |
| 818 | return -EBUSY; |
| 819 | ClearPageAnonExclusive(page); |
| 820 | |
| 821 | /* |
| 822 | * This is conceptually a smp_wmb() paired with the smp_rmb() in |
| 823 | * gup_must_unshare(). |
| 824 | */ |
| 825 | if (IS_ENABLED(CONFIG_HAVE_GUP_FAST)) |
| 826 | smp_mb__after_atomic(); |
| 827 | return 0; |
| 828 | } |
| 829 | |
| 830 | /** |
| 831 | * folio_try_share_anon_rmap_pte - try marking an exclusive anonymous page |
| 832 | * mapped by a PTE possibly shared to prepare |
| 833 | * for KSM or temporary unmapping |
| 834 | * @folio: The folio to share a mapping of |
| 835 | * @page: The mapped exclusive page |
| 836 | * |
| 837 | * The caller needs to hold the page table lock and has to have the page table |
| 838 | * entries cleared/invalidated. |
| 839 | * |
| 840 | * This is similar to folio_try_dup_anon_rmap_pte(), however, not used during |
| 841 | * fork() to duplicate mappings, but instead to prepare for KSM or temporarily |
| 842 | * unmapping parts of a folio (swap, migration) via folio_remove_rmap_pte(). |
| 843 | * |
| 844 | * Marking the mapped page shared can only fail if the folio maybe pinned; |
| 845 | * device private folios cannot get pinned and consequently this function cannot |
| 846 | * fail. |
| 847 | * |
| 848 | * Returns 0 if marking the mapped page possibly shared succeeded. Returns |
| 849 | * -EBUSY otherwise. |
| 850 | */ |
| 851 | static inline int folio_try_share_anon_rmap_pte(struct folio *folio, |
| 852 | struct page *page) |
| 853 | { |
| 854 | return __folio_try_share_anon_rmap(folio, page, nr_pages: 1, level: RMAP_LEVEL_PTE); |
| 855 | } |
| 856 | |
| 857 | /** |
| 858 | * folio_try_share_anon_rmap_pmd - try marking an exclusive anonymous page |
| 859 | * range mapped by a PMD possibly shared to |
| 860 | * prepare for temporary unmapping |
| 861 | * @folio: The folio to share the mapping of |
| 862 | * @page: The first page to share the mapping of |
| 863 | * |
| 864 | * The page range of the folio is defined by [page, page + HPAGE_PMD_NR) |
| 865 | * |
| 866 | * The caller needs to hold the page table lock and has to have the page table |
| 867 | * entries cleared/invalidated. |
| 868 | * |
| 869 | * This is similar to folio_try_dup_anon_rmap_pmd(), however, not used during |
| 870 | * fork() to duplicate a mapping, but instead to prepare for temporarily |
| 871 | * unmapping parts of a folio (swap, migration) via folio_remove_rmap_pmd(). |
| 872 | * |
| 873 | * Marking the mapped pages shared can only fail if the folio maybe pinned; |
| 874 | * device private folios cannot get pinned and consequently this function cannot |
| 875 | * fail. |
| 876 | * |
| 877 | * Returns 0 if marking the mapped pages possibly shared succeeded. Returns |
| 878 | * -EBUSY otherwise. |
| 879 | */ |
| 880 | static inline int folio_try_share_anon_rmap_pmd(struct folio *folio, |
| 881 | struct page *page) |
| 882 | { |
| 883 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| 884 | return __folio_try_share_anon_rmap(folio, page, HPAGE_PMD_NR, |
| 885 | level: RMAP_LEVEL_PMD); |
| 886 | #else |
| 887 | WARN_ON_ONCE(true); |
| 888 | return -EBUSY; |
| 889 | #endif |
| 890 | } |
| 891 | |
| 892 | /* |
| 893 | * Called from mm/vmscan.c to handle paging out |
| 894 | */ |
| 895 | int folio_referenced(struct folio *, int is_locked, |
| 896 | struct mem_cgroup *memcg, unsigned long *vm_flags); |
| 897 | |
| 898 | void try_to_migrate(struct folio *folio, enum ttu_flags flags); |
| 899 | void try_to_unmap(struct folio *, enum ttu_flags flags); |
| 900 | |
| 901 | struct page *make_device_exclusive(struct mm_struct *mm, unsigned long addr, |
| 902 | void *owner, struct folio **foliop); |
| 903 | |
| 904 | /* Avoid racy checks */ |
| 905 | #define PVMW_SYNC (1 << 0) |
| 906 | /* Look for migration entries rather than present PTEs */ |
| 907 | #define PVMW_MIGRATION (1 << 1) |
| 908 | |
| 909 | struct page_vma_mapped_walk { |
| 910 | unsigned long pfn; |
| 911 | unsigned long nr_pages; |
| 912 | pgoff_t pgoff; |
| 913 | struct vm_area_struct *vma; |
| 914 | unsigned long address; |
| 915 | pmd_t *pmd; |
| 916 | pte_t *pte; |
| 917 | spinlock_t *ptl; |
| 918 | unsigned int flags; |
| 919 | }; |
| 920 | |
| 921 | #define DEFINE_FOLIO_VMA_WALK(name, _folio, _vma, _address, _flags) \ |
| 922 | struct page_vma_mapped_walk name = { \ |
| 923 | .pfn = folio_pfn(_folio), \ |
| 924 | .nr_pages = folio_nr_pages(_folio), \ |
| 925 | .pgoff = folio_pgoff(_folio), \ |
| 926 | .vma = _vma, \ |
| 927 | .address = _address, \ |
| 928 | .flags = _flags, \ |
| 929 | } |
| 930 | |
| 931 | static inline void page_vma_mapped_walk_done(struct page_vma_mapped_walk *pvmw) |
| 932 | { |
| 933 | /* HugeTLB pte is set to the relevant page table entry without pte_mapped. */ |
| 934 | if (pvmw->pte && !is_vm_hugetlb_page(vma: pvmw->vma)) |
| 935 | pte_unmap(pte: pvmw->pte); |
| 936 | if (pvmw->ptl) |
| 937 | spin_unlock(lock: pvmw->ptl); |
| 938 | } |
| 939 | |
| 940 | /** |
| 941 | * page_vma_mapped_walk_restart - Restart the page table walk. |
| 942 | * @pvmw: Pointer to struct page_vma_mapped_walk. |
| 943 | * |
| 944 | * It restarts the page table walk when changes occur in the page |
| 945 | * table, such as splitting a PMD. Ensures that the PTL held during |
| 946 | * the previous walk is released and resets the state to allow for |
| 947 | * a new walk starting at the current address stored in pvmw->address. |
| 948 | */ |
| 949 | static inline void |
| 950 | page_vma_mapped_walk_restart(struct page_vma_mapped_walk *pvmw) |
| 951 | { |
| 952 | WARN_ON_ONCE(!pvmw->pmd && !pvmw->pte); |
| 953 | |
| 954 | if (likely(pvmw->ptl)) |
| 955 | spin_unlock(lock: pvmw->ptl); |
| 956 | else |
| 957 | WARN_ON_ONCE(1); |
| 958 | |
| 959 | pvmw->ptl = NULL; |
| 960 | pvmw->pmd = NULL; |
| 961 | pvmw->pte = NULL; |
| 962 | } |
| 963 | |
| 964 | bool page_vma_mapped_walk(struct page_vma_mapped_walk *pvmw); |
| 965 | unsigned long page_address_in_vma(const struct folio *folio, |
| 966 | const struct page *, const struct vm_area_struct *); |
| 967 | |
| 968 | /* |
| 969 | * Cleans the PTEs of shared mappings. |
| 970 | * (and since clean PTEs should also be readonly, write protects them too) |
| 971 | * |
| 972 | * returns the number of cleaned PTEs. |
| 973 | */ |
| 974 | int folio_mkclean(struct folio *); |
| 975 | |
| 976 | int mapping_wrprotect_range(struct address_space *mapping, pgoff_t pgoff, |
| 977 | unsigned long pfn, unsigned long nr_pages); |
| 978 | |
| 979 | int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff, |
| 980 | struct vm_area_struct *vma); |
| 981 | |
| 982 | enum rmp_flags { |
| 983 | RMP_LOCKED = 1 << 0, |
| 984 | RMP_USE_SHARED_ZEROPAGE = 1 << 1, |
| 985 | }; |
| 986 | |
| 987 | void remove_migration_ptes(struct folio *src, struct folio *dst, int flags); |
| 988 | |
| 989 | /* |
| 990 | * rmap_walk_control: To control rmap traversing for specific needs |
| 991 | * |
| 992 | * arg: passed to rmap_one() and invalid_vma() |
| 993 | * try_lock: bail out if the rmap lock is contended |
| 994 | * contended: indicate the rmap traversal bailed out due to lock contention |
| 995 | * rmap_one: executed on each vma where page is mapped |
| 996 | * done: for checking traversing termination condition |
| 997 | * anon_lock: for getting anon_lock by optimized way rather than default |
| 998 | * invalid_vma: for skipping uninterested vma |
| 999 | */ |
| 1000 | struct rmap_walk_control { |
| 1001 | void *arg; |
| 1002 | bool try_lock; |
| 1003 | bool contended; |
| 1004 | /* |
| 1005 | * Return false if page table scanning in rmap_walk should be stopped. |
| 1006 | * Otherwise, return true. |
| 1007 | */ |
| 1008 | bool (*rmap_one)(struct folio *folio, struct vm_area_struct *vma, |
| 1009 | unsigned long addr, void *arg); |
| 1010 | int (*done)(struct folio *folio); |
| 1011 | struct anon_vma *(*anon_lock)(const struct folio *folio, |
| 1012 | struct rmap_walk_control *rwc); |
| 1013 | bool (*invalid_vma)(struct vm_area_struct *vma, void *arg); |
| 1014 | }; |
| 1015 | |
| 1016 | void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc); |
| 1017 | void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc); |
| 1018 | struct anon_vma *folio_lock_anon_vma_read(const struct folio *folio, |
| 1019 | struct rmap_walk_control *rwc); |
| 1020 | |
| 1021 | #else /* !CONFIG_MMU */ |
| 1022 | |
| 1023 | #define anon_vma_init() do {} while (0) |
| 1024 | #define anon_vma_prepare(vma) (0) |
| 1025 | |
| 1026 | static inline int folio_referenced(struct folio *folio, int is_locked, |
| 1027 | struct mem_cgroup *memcg, |
| 1028 | unsigned long *vm_flags) |
| 1029 | { |
| 1030 | *vm_flags = 0; |
| 1031 | return 0; |
| 1032 | } |
| 1033 | |
| 1034 | static inline void try_to_unmap(struct folio *folio, enum ttu_flags flags) |
| 1035 | { |
| 1036 | } |
| 1037 | |
| 1038 | static inline int folio_mkclean(struct folio *folio) |
| 1039 | { |
| 1040 | return 0; |
| 1041 | } |
| 1042 | #endif /* CONFIG_MMU */ |
| 1043 | |
| 1044 | #endif /* _LINUX_RMAP_H */ |
| 1045 | |