| 1 | /* SPDX-License-Identifier: GPL-2.0 */ |
| 2 | #ifndef _LINUX_PGTABLE_H |
| 3 | #define _LINUX_PGTABLE_H |
| 4 | |
| 5 | #include <linux/pfn.h> |
| 6 | #include <asm/pgtable.h> |
| 7 | |
| 8 | #define PMD_ORDER (PMD_SHIFT - PAGE_SHIFT) |
| 9 | #define PUD_ORDER (PUD_SHIFT - PAGE_SHIFT) |
| 10 | |
| 11 | #ifndef __ASSEMBLY__ |
| 12 | #ifdef CONFIG_MMU |
| 13 | |
| 14 | #include <linux/mm_types.h> |
| 15 | #include <linux/bug.h> |
| 16 | #include <linux/errno.h> |
| 17 | #include <asm-generic/pgtable_uffd.h> |
| 18 | #include <linux/page_table_check.h> |
| 19 | |
| 20 | #if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \ |
| 21 | defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS |
| 22 | #error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED |
| 23 | #endif |
| 24 | |
| 25 | /* |
| 26 | * On almost all architectures and configurations, 0 can be used as the |
| 27 | * upper ceiling to free_pgtables(): on many architectures it has the same |
| 28 | * effect as using TASK_SIZE. However, there is one configuration which |
| 29 | * must impose a more careful limit, to avoid freeing kernel pgtables. |
| 30 | */ |
| 31 | #ifndef USER_PGTABLES_CEILING |
| 32 | #define USER_PGTABLES_CEILING 0UL |
| 33 | #endif |
| 34 | |
| 35 | /* |
| 36 | * This defines the first usable user address. Platforms |
| 37 | * can override its value with custom FIRST_USER_ADDRESS |
| 38 | * defined in their respective <asm/pgtable.h>. |
| 39 | */ |
| 40 | #ifndef FIRST_USER_ADDRESS |
| 41 | #define FIRST_USER_ADDRESS 0UL |
| 42 | #endif |
| 43 | |
| 44 | /* |
| 45 | * This defines the generic helper for accessing PMD page |
| 46 | * table page. Although platforms can still override this |
| 47 | * via their respective <asm/pgtable.h>. |
| 48 | */ |
| 49 | #ifndef pmd_pgtable |
| 50 | #define pmd_pgtable(pmd) pmd_page(pmd) |
| 51 | #endif |
| 52 | |
| 53 | #define pmd_folio(pmd) page_folio(pmd_page(pmd)) |
| 54 | |
| 55 | /* |
| 56 | * A page table page can be thought of an array like this: pXd_t[PTRS_PER_PxD] |
| 57 | * |
| 58 | * The pXx_index() functions return the index of the entry in the page |
| 59 | * table page which would control the given virtual address |
| 60 | * |
| 61 | * As these functions may be used by the same code for different levels of |
| 62 | * the page table folding, they are always available, regardless of |
| 63 | * CONFIG_PGTABLE_LEVELS value. For the folded levels they simply return 0 |
| 64 | * because in such cases PTRS_PER_PxD equals 1. |
| 65 | */ |
| 66 | |
| 67 | static inline unsigned long pte_index(unsigned long address) |
| 68 | { |
| 69 | return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); |
| 70 | } |
| 71 | |
| 72 | #ifndef pmd_index |
| 73 | static inline unsigned long pmd_index(unsigned long address) |
| 74 | { |
| 75 | return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1); |
| 76 | } |
| 77 | #define pmd_index pmd_index |
| 78 | #endif |
| 79 | |
| 80 | #ifndef pud_index |
| 81 | static inline unsigned long pud_index(unsigned long address) |
| 82 | { |
| 83 | return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1); |
| 84 | } |
| 85 | #define pud_index pud_index |
| 86 | #endif |
| 87 | |
| 88 | #ifndef pgd_index |
| 89 | /* Must be a compile-time constant, so implement it as a macro */ |
| 90 | #define pgd_index(a) (((a) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1)) |
| 91 | #endif |
| 92 | |
| 93 | #ifndef kernel_pte_init |
| 94 | static inline void kernel_pte_init(void *addr) |
| 95 | { |
| 96 | } |
| 97 | #define kernel_pte_init kernel_pte_init |
| 98 | #endif |
| 99 | |
| 100 | #ifndef pmd_init |
| 101 | static inline void pmd_init(void *addr) |
| 102 | { |
| 103 | } |
| 104 | #define pmd_init pmd_init |
| 105 | #endif |
| 106 | |
| 107 | #ifndef pud_init |
| 108 | static inline void pud_init(void *addr) |
| 109 | { |
| 110 | } |
| 111 | #define pud_init pud_init |
| 112 | #endif |
| 113 | |
| 114 | #ifndef pte_offset_kernel |
| 115 | static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address) |
| 116 | { |
| 117 | return (pte_t *)pmd_page_vaddr(pmd: *pmd) + pte_index(address); |
| 118 | } |
| 119 | #define pte_offset_kernel pte_offset_kernel |
| 120 | #endif |
| 121 | |
| 122 | #ifdef CONFIG_HIGHPTE |
| 123 | #define __pte_map(pmd, address) \ |
| 124 | ((pte_t *)kmap_local_page(pmd_page(*(pmd))) + pte_index((address))) |
| 125 | #define pte_unmap(pte) do { \ |
| 126 | kunmap_local((pte)); \ |
| 127 | rcu_read_unlock(); \ |
| 128 | } while (0) |
| 129 | #else |
| 130 | static inline pte_t *__pte_map(pmd_t *pmd, unsigned long address) |
| 131 | { |
| 132 | return pte_offset_kernel(pmd, address); |
| 133 | } |
| 134 | static inline void pte_unmap(pte_t *pte) |
| 135 | { |
| 136 | rcu_read_unlock(); |
| 137 | } |
| 138 | #endif |
| 139 | |
| 140 | void pte_free_defer(struct mm_struct *mm, pgtable_t pgtable); |
| 141 | |
| 142 | /* Find an entry in the second-level page table.. */ |
| 143 | #ifndef pmd_offset |
| 144 | static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address) |
| 145 | { |
| 146 | return pud_pgtable(pud: *pud) + pmd_index(address); |
| 147 | } |
| 148 | #define pmd_offset pmd_offset |
| 149 | #endif |
| 150 | |
| 151 | #ifndef pud_offset |
| 152 | static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address) |
| 153 | { |
| 154 | return p4d_pgtable(p4d: *p4d) + pud_index(address); |
| 155 | } |
| 156 | #define pud_offset pud_offset |
| 157 | #endif |
| 158 | |
| 159 | static inline pgd_t *pgd_offset_pgd(pgd_t *pgd, unsigned long address) |
| 160 | { |
| 161 | return (pgd + pgd_index(address)); |
| 162 | }; |
| 163 | |
| 164 | /* |
| 165 | * a shortcut to get a pgd_t in a given mm |
| 166 | */ |
| 167 | #ifndef pgd_offset |
| 168 | #define pgd_offset(mm, address) pgd_offset_pgd((mm)->pgd, (address)) |
| 169 | #endif |
| 170 | |
| 171 | /* |
| 172 | * a shortcut which implies the use of the kernel's pgd, instead |
| 173 | * of a process's |
| 174 | */ |
| 175 | #define pgd_offset_k(address) pgd_offset(&init_mm, (address)) |
| 176 | |
| 177 | /* |
| 178 | * In many cases it is known that a virtual address is mapped at PMD or PTE |
| 179 | * level, so instead of traversing all the page table levels, we can get a |
| 180 | * pointer to the PMD entry in user or kernel page table or translate a virtual |
| 181 | * address to the pointer in the PTE in the kernel page tables with simple |
| 182 | * helpers. |
| 183 | */ |
| 184 | static inline pmd_t *pmd_off(struct mm_struct *mm, unsigned long va) |
| 185 | { |
| 186 | return pmd_offset(pud_offset(p4d: p4d_offset(pgd_offset(mm, va), address: va), address: va), address: va); |
| 187 | } |
| 188 | |
| 189 | static inline pmd_t *pmd_off_k(unsigned long va) |
| 190 | { |
| 191 | return pmd_offset(pud_offset(p4d: p4d_offset(pgd_offset_k(va), address: va), address: va), address: va); |
| 192 | } |
| 193 | |
| 194 | static inline pte_t *virt_to_kpte(unsigned long vaddr) |
| 195 | { |
| 196 | pmd_t *pmd = pmd_off_k(va: vaddr); |
| 197 | |
| 198 | return pmd_none(pmd: *pmd) ? NULL : pte_offset_kernel(pmd, address: vaddr); |
| 199 | } |
| 200 | |
| 201 | #ifndef pmd_young |
| 202 | static inline int pmd_young(pmd_t pmd) |
| 203 | { |
| 204 | return 0; |
| 205 | } |
| 206 | #endif |
| 207 | |
| 208 | #ifndef pmd_dirty |
| 209 | static inline int pmd_dirty(pmd_t pmd) |
| 210 | { |
| 211 | return 0; |
| 212 | } |
| 213 | #endif |
| 214 | |
| 215 | /* |
| 216 | * A facility to provide lazy MMU batching. This allows PTE updates and |
| 217 | * page invalidations to be delayed until a call to leave lazy MMU mode |
| 218 | * is issued. Some architectures may benefit from doing this, and it is |
| 219 | * beneficial for both shadow and direct mode hypervisors, which may batch |
| 220 | * the PTE updates which happen during this window. Note that using this |
| 221 | * interface requires that read hazards be removed from the code. A read |
| 222 | * hazard could result in the direct mode hypervisor case, since the actual |
| 223 | * write to the page tables may not yet have taken place, so reads though |
| 224 | * a raw PTE pointer after it has been modified are not guaranteed to be |
| 225 | * up to date. |
| 226 | * |
| 227 | * In the general case, no lock is guaranteed to be held between entry and exit |
| 228 | * of the lazy mode. So the implementation must assume preemption may be enabled |
| 229 | * and cpu migration is possible; it must take steps to be robust against this. |
| 230 | * (In practice, for user PTE updates, the appropriate page table lock(s) are |
| 231 | * held, but for kernel PTE updates, no lock is held). Nesting is not permitted |
| 232 | * and the mode cannot be used in interrupt context. |
| 233 | */ |
| 234 | #ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE |
| 235 | #define arch_enter_lazy_mmu_mode() do {} while (0) |
| 236 | #define arch_leave_lazy_mmu_mode() do {} while (0) |
| 237 | #define arch_flush_lazy_mmu_mode() do {} while (0) |
| 238 | #endif |
| 239 | |
| 240 | #ifndef pte_batch_hint |
| 241 | /** |
| 242 | * pte_batch_hint - Number of pages that can be added to batch without scanning. |
| 243 | * @ptep: Page table pointer for the entry. |
| 244 | * @pte: Page table entry. |
| 245 | * |
| 246 | * Some architectures know that a set of contiguous ptes all map the same |
| 247 | * contiguous memory with the same permissions. In this case, it can provide a |
| 248 | * hint to aid pte batching without the core code needing to scan every pte. |
| 249 | * |
| 250 | * An architecture implementation may ignore the PTE accessed state. Further, |
| 251 | * the dirty state must apply atomically to all the PTEs described by the hint. |
| 252 | * |
| 253 | * May be overridden by the architecture, else pte_batch_hint is always 1. |
| 254 | */ |
| 255 | static inline unsigned int pte_batch_hint(pte_t *ptep, pte_t pte) |
| 256 | { |
| 257 | return 1; |
| 258 | } |
| 259 | #endif |
| 260 | |
| 261 | #ifndef pte_advance_pfn |
| 262 | static inline pte_t pte_advance_pfn(pte_t pte, unsigned long nr) |
| 263 | { |
| 264 | return __pte(pte_val(pte) + (nr << PFN_PTE_SHIFT)); |
| 265 | } |
| 266 | #endif |
| 267 | |
| 268 | #define pte_next_pfn(pte) pte_advance_pfn(pte, 1) |
| 269 | |
| 270 | #ifndef set_ptes |
| 271 | /** |
| 272 | * set_ptes - Map consecutive pages to a contiguous range of addresses. |
| 273 | * @mm: Address space to map the pages into. |
| 274 | * @addr: Address to map the first page at. |
| 275 | * @ptep: Page table pointer for the first entry. |
| 276 | * @pte: Page table entry for the first page. |
| 277 | * @nr: Number of pages to map. |
| 278 | * |
| 279 | * When nr==1, initial state of pte may be present or not present, and new state |
| 280 | * may be present or not present. When nr>1, initial state of all ptes must be |
| 281 | * not present, and new state must be present. |
| 282 | * |
| 283 | * May be overridden by the architecture, or the architecture can define |
| 284 | * set_pte() and PFN_PTE_SHIFT. |
| 285 | * |
| 286 | * Context: The caller holds the page table lock. The pages all belong |
| 287 | * to the same folio. The PTEs are all in the same PMD. |
| 288 | */ |
| 289 | static inline void set_ptes(struct mm_struct *mm, unsigned long addr, |
| 290 | pte_t *ptep, pte_t pte, unsigned int nr) |
| 291 | { |
| 292 | page_table_check_ptes_set(mm, ptep, pte, nr); |
| 293 | |
| 294 | for (;;) { |
| 295 | set_pte(ptep, pte); |
| 296 | if (--nr == 0) |
| 297 | break; |
| 298 | ptep++; |
| 299 | pte = pte_next_pfn(pte); |
| 300 | } |
| 301 | } |
| 302 | #endif |
| 303 | #define set_pte_at(mm, addr, ptep, pte) set_ptes(mm, addr, ptep, pte, 1) |
| 304 | |
| 305 | #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS |
| 306 | extern int ptep_set_access_flags(struct vm_area_struct *vma, |
| 307 | unsigned long address, pte_t *ptep, |
| 308 | pte_t entry, int dirty); |
| 309 | #endif |
| 310 | |
| 311 | #ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS |
| 312 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| 313 | extern int pmdp_set_access_flags(struct vm_area_struct *vma, |
| 314 | unsigned long address, pmd_t *pmdp, |
| 315 | pmd_t entry, int dirty); |
| 316 | extern int pudp_set_access_flags(struct vm_area_struct *vma, |
| 317 | unsigned long address, pud_t *pudp, |
| 318 | pud_t entry, int dirty); |
| 319 | #else |
| 320 | static inline int pmdp_set_access_flags(struct vm_area_struct *vma, |
| 321 | unsigned long address, pmd_t *pmdp, |
| 322 | pmd_t entry, int dirty) |
| 323 | { |
| 324 | BUILD_BUG(); |
| 325 | return 0; |
| 326 | } |
| 327 | static inline int pudp_set_access_flags(struct vm_area_struct *vma, |
| 328 | unsigned long address, pud_t *pudp, |
| 329 | pud_t entry, int dirty) |
| 330 | { |
| 331 | BUILD_BUG(); |
| 332 | return 0; |
| 333 | } |
| 334 | #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ |
| 335 | #endif |
| 336 | |
| 337 | #ifndef ptep_get |
| 338 | static inline pte_t ptep_get(pte_t *ptep) |
| 339 | { |
| 340 | return READ_ONCE(*ptep); |
| 341 | } |
| 342 | #endif |
| 343 | |
| 344 | #ifndef pmdp_get |
| 345 | static inline pmd_t pmdp_get(pmd_t *pmdp) |
| 346 | { |
| 347 | return READ_ONCE(*pmdp); |
| 348 | } |
| 349 | #endif |
| 350 | |
| 351 | #ifndef pudp_get |
| 352 | static inline pud_t pudp_get(pud_t *pudp) |
| 353 | { |
| 354 | return READ_ONCE(*pudp); |
| 355 | } |
| 356 | #endif |
| 357 | |
| 358 | #ifndef p4dp_get |
| 359 | static inline p4d_t p4dp_get(p4d_t *p4dp) |
| 360 | { |
| 361 | return READ_ONCE(*p4dp); |
| 362 | } |
| 363 | #endif |
| 364 | |
| 365 | #ifndef pgdp_get |
| 366 | static inline pgd_t pgdp_get(pgd_t *pgdp) |
| 367 | { |
| 368 | return READ_ONCE(*pgdp); |
| 369 | } |
| 370 | #endif |
| 371 | |
| 372 | #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG |
| 373 | static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, |
| 374 | unsigned long address, |
| 375 | pte_t *ptep) |
| 376 | { |
| 377 | pte_t pte = ptep_get(ptep); |
| 378 | int r = 1; |
| 379 | if (!pte_young(pte)) |
| 380 | r = 0; |
| 381 | else |
| 382 | set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte)); |
| 383 | return r; |
| 384 | } |
| 385 | #endif |
| 386 | |
| 387 | #ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG |
| 388 | #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG) |
| 389 | static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, |
| 390 | unsigned long address, |
| 391 | pmd_t *pmdp) |
| 392 | { |
| 393 | pmd_t pmd = *pmdp; |
| 394 | int r = 1; |
| 395 | if (!pmd_young(pmd)) |
| 396 | r = 0; |
| 397 | else |
| 398 | set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd)); |
| 399 | return r; |
| 400 | } |
| 401 | #else |
| 402 | static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, |
| 403 | unsigned long address, |
| 404 | pmd_t *pmdp) |
| 405 | { |
| 406 | BUILD_BUG(); |
| 407 | return 0; |
| 408 | } |
| 409 | #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG */ |
| 410 | #endif |
| 411 | |
| 412 | #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH |
| 413 | int ptep_clear_flush_young(struct vm_area_struct *vma, |
| 414 | unsigned long address, pte_t *ptep); |
| 415 | #endif |
| 416 | |
| 417 | #ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH |
| 418 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| 419 | extern int pmdp_clear_flush_young(struct vm_area_struct *vma, |
| 420 | unsigned long address, pmd_t *pmdp); |
| 421 | #else |
| 422 | /* |
| 423 | * Despite relevant to THP only, this API is called from generic rmap code |
| 424 | * under PageTransHuge(), hence needs a dummy implementation for !THP |
| 425 | */ |
| 426 | static inline int pmdp_clear_flush_young(struct vm_area_struct *vma, |
| 427 | unsigned long address, pmd_t *pmdp) |
| 428 | { |
| 429 | BUILD_BUG(); |
| 430 | return 0; |
| 431 | } |
| 432 | #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ |
| 433 | #endif |
| 434 | |
| 435 | #ifndef arch_has_hw_nonleaf_pmd_young |
| 436 | /* |
| 437 | * Return whether the accessed bit in non-leaf PMD entries is supported on the |
| 438 | * local CPU. |
| 439 | */ |
| 440 | static inline bool arch_has_hw_nonleaf_pmd_young(void) |
| 441 | { |
| 442 | return IS_ENABLED(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG); |
| 443 | } |
| 444 | #endif |
| 445 | |
| 446 | #ifndef arch_has_hw_pte_young |
| 447 | /* |
| 448 | * Return whether the accessed bit is supported on the local CPU. |
| 449 | * |
| 450 | * This stub assumes accessing through an old PTE triggers a page fault. |
| 451 | * Architectures that automatically set the access bit should overwrite it. |
| 452 | */ |
| 453 | static inline bool arch_has_hw_pte_young(void) |
| 454 | { |
| 455 | return IS_ENABLED(CONFIG_ARCH_HAS_HW_PTE_YOUNG); |
| 456 | } |
| 457 | #endif |
| 458 | |
| 459 | #ifndef arch_check_zapped_pte |
| 460 | static inline void arch_check_zapped_pte(struct vm_area_struct *vma, |
| 461 | pte_t pte) |
| 462 | { |
| 463 | } |
| 464 | #endif |
| 465 | |
| 466 | #ifndef arch_check_zapped_pmd |
| 467 | static inline void arch_check_zapped_pmd(struct vm_area_struct *vma, |
| 468 | pmd_t pmd) |
| 469 | { |
| 470 | } |
| 471 | #endif |
| 472 | |
| 473 | #ifndef arch_check_zapped_pud |
| 474 | static inline void arch_check_zapped_pud(struct vm_area_struct *vma, pud_t pud) |
| 475 | { |
| 476 | } |
| 477 | #endif |
| 478 | |
| 479 | #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR |
| 480 | static inline pte_t ptep_get_and_clear(struct mm_struct *mm, |
| 481 | unsigned long address, |
| 482 | pte_t *ptep) |
| 483 | { |
| 484 | pte_t pte = ptep_get(ptep); |
| 485 | pte_clear(mm, address, ptep); |
| 486 | page_table_check_pte_clear(mm, pte); |
| 487 | return pte; |
| 488 | } |
| 489 | #endif |
| 490 | |
| 491 | #ifndef clear_young_dirty_ptes |
| 492 | /** |
| 493 | * clear_young_dirty_ptes - Mark PTEs that map consecutive pages of the |
| 494 | * same folio as old/clean. |
| 495 | * @mm: Address space the pages are mapped into. |
| 496 | * @addr: Address the first page is mapped at. |
| 497 | * @ptep: Page table pointer for the first entry. |
| 498 | * @nr: Number of entries to mark old/clean. |
| 499 | * @flags: Flags to modify the PTE batch semantics. |
| 500 | * |
| 501 | * May be overridden by the architecture; otherwise, implemented by |
| 502 | * get_and_clear/modify/set for each pte in the range. |
| 503 | * |
| 504 | * Note that PTE bits in the PTE range besides the PFN can differ. For example, |
| 505 | * some PTEs might be write-protected. |
| 506 | * |
| 507 | * Context: The caller holds the page table lock. The PTEs map consecutive |
| 508 | * pages that belong to the same folio. The PTEs are all in the same PMD. |
| 509 | */ |
| 510 | static inline void clear_young_dirty_ptes(struct vm_area_struct *vma, |
| 511 | unsigned long addr, pte_t *ptep, |
| 512 | unsigned int nr, cydp_t flags) |
| 513 | { |
| 514 | pte_t pte; |
| 515 | |
| 516 | for (;;) { |
| 517 | if (flags == CYDP_CLEAR_YOUNG) |
| 518 | ptep_test_and_clear_young(vma, addr, ptep); |
| 519 | else { |
| 520 | pte = ptep_get_and_clear(mm: vma->vm_mm, addr, ptep); |
| 521 | if (flags & CYDP_CLEAR_YOUNG) |
| 522 | pte = pte_mkold(pte); |
| 523 | if (flags & CYDP_CLEAR_DIRTY) |
| 524 | pte = pte_mkclean(pte); |
| 525 | set_pte_at(vma->vm_mm, addr, ptep, pte); |
| 526 | } |
| 527 | if (--nr == 0) |
| 528 | break; |
| 529 | ptep++; |
| 530 | addr += PAGE_SIZE; |
| 531 | } |
| 532 | } |
| 533 | #endif |
| 534 | |
| 535 | static inline void ptep_clear(struct mm_struct *mm, unsigned long addr, |
| 536 | pte_t *ptep) |
| 537 | { |
| 538 | pte_t pte = ptep_get(ptep); |
| 539 | |
| 540 | pte_clear(mm, addr, ptep); |
| 541 | /* |
| 542 | * No need for ptep_get_and_clear(): page table check doesn't care about |
| 543 | * any bits that could have been set by HW concurrently. |
| 544 | */ |
| 545 | page_table_check_pte_clear(mm, pte); |
| 546 | } |
| 547 | |
| 548 | #ifdef CONFIG_GUP_GET_PXX_LOW_HIGH |
| 549 | /* |
| 550 | * For walking the pagetables without holding any locks. Some architectures |
| 551 | * (eg x86-32 PAE) cannot load the entries atomically without using expensive |
| 552 | * instructions. We are guaranteed that a PTE will only either go from not |
| 553 | * present to present, or present to not present -- it will not switch to a |
| 554 | * completely different present page without a TLB flush inbetween; which we |
| 555 | * are blocking by holding interrupts off. |
| 556 | * |
| 557 | * Setting ptes from not present to present goes: |
| 558 | * |
| 559 | * ptep->pte_high = h; |
| 560 | * smp_wmb(); |
| 561 | * ptep->pte_low = l; |
| 562 | * |
| 563 | * And present to not present goes: |
| 564 | * |
| 565 | * ptep->pte_low = 0; |
| 566 | * smp_wmb(); |
| 567 | * ptep->pte_high = 0; |
| 568 | * |
| 569 | * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'. |
| 570 | * We load pte_high *after* loading pte_low, which ensures we don't see an older |
| 571 | * value of pte_high. *Then* we recheck pte_low, which ensures that we haven't |
| 572 | * picked up a changed pte high. We might have gotten rubbish values from |
| 573 | * pte_low and pte_high, but we are guaranteed that pte_low will not have the |
| 574 | * present bit set *unless* it is 'l'. Because get_user_pages_fast() only |
| 575 | * operates on present ptes we're safe. |
| 576 | */ |
| 577 | static inline pte_t ptep_get_lockless(pte_t *ptep) |
| 578 | { |
| 579 | pte_t pte; |
| 580 | |
| 581 | do { |
| 582 | pte.pte_low = ptep->pte_low; |
| 583 | smp_rmb(); |
| 584 | pte.pte_high = ptep->pte_high; |
| 585 | smp_rmb(); |
| 586 | } while (unlikely(pte.pte_low != ptep->pte_low)); |
| 587 | |
| 588 | return pte; |
| 589 | } |
| 590 | #define ptep_get_lockless ptep_get_lockless |
| 591 | |
| 592 | #if CONFIG_PGTABLE_LEVELS > 2 |
| 593 | static inline pmd_t pmdp_get_lockless(pmd_t *pmdp) |
| 594 | { |
| 595 | pmd_t pmd; |
| 596 | |
| 597 | do { |
| 598 | pmd.pmd_low = pmdp->pmd_low; |
| 599 | smp_rmb(); |
| 600 | pmd.pmd_high = pmdp->pmd_high; |
| 601 | smp_rmb(); |
| 602 | } while (unlikely(pmd.pmd_low != pmdp->pmd_low)); |
| 603 | |
| 604 | return pmd; |
| 605 | } |
| 606 | #define pmdp_get_lockless pmdp_get_lockless |
| 607 | #define pmdp_get_lockless_sync() tlb_remove_table_sync_one() |
| 608 | #endif /* CONFIG_PGTABLE_LEVELS > 2 */ |
| 609 | #endif /* CONFIG_GUP_GET_PXX_LOW_HIGH */ |
| 610 | |
| 611 | /* |
| 612 | * We require that the PTE can be read atomically. |
| 613 | */ |
| 614 | #ifndef ptep_get_lockless |
| 615 | static inline pte_t ptep_get_lockless(pte_t *ptep) |
| 616 | { |
| 617 | return ptep_get(ptep); |
| 618 | } |
| 619 | #endif |
| 620 | |
| 621 | #ifndef pmdp_get_lockless |
| 622 | static inline pmd_t pmdp_get_lockless(pmd_t *pmdp) |
| 623 | { |
| 624 | return pmdp_get(pmdp); |
| 625 | } |
| 626 | static inline void pmdp_get_lockless_sync(void) |
| 627 | { |
| 628 | } |
| 629 | #endif |
| 630 | |
| 631 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| 632 | #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR |
| 633 | static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, |
| 634 | unsigned long address, |
| 635 | pmd_t *pmdp) |
| 636 | { |
| 637 | pmd_t pmd = *pmdp; |
| 638 | |
| 639 | pmd_clear(pmdp); |
| 640 | page_table_check_pmd_clear(mm, pmd); |
| 641 | |
| 642 | return pmd; |
| 643 | } |
| 644 | #endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */ |
| 645 | #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR |
| 646 | static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm, |
| 647 | unsigned long address, |
| 648 | pud_t *pudp) |
| 649 | { |
| 650 | pud_t pud = *pudp; |
| 651 | |
| 652 | pud_clear(pudp); |
| 653 | page_table_check_pud_clear(mm, pud); |
| 654 | |
| 655 | return pud; |
| 656 | } |
| 657 | #endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */ |
| 658 | #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ |
| 659 | |
| 660 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| 661 | #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL |
| 662 | static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma, |
| 663 | unsigned long address, pmd_t *pmdp, |
| 664 | int full) |
| 665 | { |
| 666 | return pmdp_huge_get_and_clear(mm: vma->vm_mm, addr: address, pmdp); |
| 667 | } |
| 668 | #endif |
| 669 | |
| 670 | #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL |
| 671 | static inline pud_t pudp_huge_get_and_clear_full(struct vm_area_struct *vma, |
| 672 | unsigned long address, pud_t *pudp, |
| 673 | int full) |
| 674 | { |
| 675 | return pudp_huge_get_and_clear(mm: vma->vm_mm, addr: address, pudp); |
| 676 | } |
| 677 | #endif |
| 678 | #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ |
| 679 | |
| 680 | #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL |
| 681 | static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, |
| 682 | unsigned long address, pte_t *ptep, |
| 683 | int full) |
| 684 | { |
| 685 | return ptep_get_and_clear(mm, address, ptep); |
| 686 | } |
| 687 | #endif |
| 688 | |
| 689 | #ifndef get_and_clear_full_ptes |
| 690 | /** |
| 691 | * get_and_clear_full_ptes - Clear present PTEs that map consecutive pages of |
| 692 | * the same folio, collecting dirty/accessed bits. |
| 693 | * @mm: Address space the pages are mapped into. |
| 694 | * @addr: Address the first page is mapped at. |
| 695 | * @ptep: Page table pointer for the first entry. |
| 696 | * @nr: Number of entries to clear. |
| 697 | * @full: Whether we are clearing a full mm. |
| 698 | * |
| 699 | * May be overridden by the architecture; otherwise, implemented as a simple |
| 700 | * loop over ptep_get_and_clear_full(), merging dirty/accessed bits into the |
| 701 | * returned PTE. |
| 702 | * |
| 703 | * Note that PTE bits in the PTE range besides the PFN can differ. For example, |
| 704 | * some PTEs might be write-protected. |
| 705 | * |
| 706 | * Context: The caller holds the page table lock. The PTEs map consecutive |
| 707 | * pages that belong to the same folio. The PTEs are all in the same PMD. |
| 708 | */ |
| 709 | static inline pte_t get_and_clear_full_ptes(struct mm_struct *mm, |
| 710 | unsigned long addr, pte_t *ptep, unsigned int nr, int full) |
| 711 | { |
| 712 | pte_t pte, tmp_pte; |
| 713 | |
| 714 | pte = ptep_get_and_clear_full(mm, addr, ptep, full); |
| 715 | while (--nr) { |
| 716 | ptep++; |
| 717 | addr += PAGE_SIZE; |
| 718 | tmp_pte = ptep_get_and_clear_full(mm, addr, ptep, full); |
| 719 | if (pte_dirty(pte: tmp_pte)) |
| 720 | pte = pte_mkdirty(pte); |
| 721 | if (pte_young(pte: tmp_pte)) |
| 722 | pte = pte_mkyoung(pte); |
| 723 | } |
| 724 | return pte; |
| 725 | } |
| 726 | #endif |
| 727 | |
| 728 | #ifndef clear_full_ptes |
| 729 | /** |
| 730 | * clear_full_ptes - Clear present PTEs that map consecutive pages of the same |
| 731 | * folio. |
| 732 | * @mm: Address space the pages are mapped into. |
| 733 | * @addr: Address the first page is mapped at. |
| 734 | * @ptep: Page table pointer for the first entry. |
| 735 | * @nr: Number of entries to clear. |
| 736 | * @full: Whether we are clearing a full mm. |
| 737 | * |
| 738 | * May be overridden by the architecture; otherwise, implemented as a simple |
| 739 | * loop over ptep_get_and_clear_full(). |
| 740 | * |
| 741 | * Note that PTE bits in the PTE range besides the PFN can differ. For example, |
| 742 | * some PTEs might be write-protected. |
| 743 | * |
| 744 | * Context: The caller holds the page table lock. The PTEs map consecutive |
| 745 | * pages that belong to the same folio. The PTEs are all in the same PMD. |
| 746 | */ |
| 747 | static inline void clear_full_ptes(struct mm_struct *mm, unsigned long addr, |
| 748 | pte_t *ptep, unsigned int nr, int full) |
| 749 | { |
| 750 | for (;;) { |
| 751 | ptep_get_and_clear_full(mm, addr, ptep, full); |
| 752 | if (--nr == 0) |
| 753 | break; |
| 754 | ptep++; |
| 755 | addr += PAGE_SIZE; |
| 756 | } |
| 757 | } |
| 758 | #endif |
| 759 | |
| 760 | /* |
| 761 | * If two threads concurrently fault at the same page, the thread that |
| 762 | * won the race updates the PTE and its local TLB/Cache. The other thread |
| 763 | * gives up, simply does nothing, and continues; on architectures where |
| 764 | * software can update TLB, local TLB can be updated here to avoid next page |
| 765 | * fault. This function updates TLB only, do nothing with cache or others. |
| 766 | * It is the difference with function update_mmu_cache. |
| 767 | */ |
| 768 | #ifndef update_mmu_tlb_range |
| 769 | static inline void update_mmu_tlb_range(struct vm_area_struct *vma, |
| 770 | unsigned long address, pte_t *ptep, unsigned int nr) |
| 771 | { |
| 772 | } |
| 773 | #endif |
| 774 | |
| 775 | static inline void update_mmu_tlb(struct vm_area_struct *vma, |
| 776 | unsigned long address, pte_t *ptep) |
| 777 | { |
| 778 | update_mmu_tlb_range(vma, address, ptep, nr: 1); |
| 779 | } |
| 780 | |
| 781 | /* |
| 782 | * Some architectures may be able to avoid expensive synchronization |
| 783 | * primitives when modifications are made to PTE's which are already |
| 784 | * not present, or in the process of an address space destruction. |
| 785 | */ |
| 786 | #ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL |
| 787 | static inline void pte_clear_not_present_full(struct mm_struct *mm, |
| 788 | unsigned long address, |
| 789 | pte_t *ptep, |
| 790 | int full) |
| 791 | { |
| 792 | pte_clear(mm, addr: address, ptep); |
| 793 | } |
| 794 | #endif |
| 795 | |
| 796 | #ifndef clear_not_present_full_ptes |
| 797 | /** |
| 798 | * clear_not_present_full_ptes - Clear multiple not present PTEs which are |
| 799 | * consecutive in the pgtable. |
| 800 | * @mm: Address space the ptes represent. |
| 801 | * @addr: Address of the first pte. |
| 802 | * @ptep: Page table pointer for the first entry. |
| 803 | * @nr: Number of entries to clear. |
| 804 | * @full: Whether we are clearing a full mm. |
| 805 | * |
| 806 | * May be overridden by the architecture; otherwise, implemented as a simple |
| 807 | * loop over pte_clear_not_present_full(). |
| 808 | * |
| 809 | * Context: The caller holds the page table lock. The PTEs are all not present. |
| 810 | * The PTEs are all in the same PMD. |
| 811 | */ |
| 812 | static inline void clear_not_present_full_ptes(struct mm_struct *mm, |
| 813 | unsigned long addr, pte_t *ptep, unsigned int nr, int full) |
| 814 | { |
| 815 | for (;;) { |
| 816 | pte_clear_not_present_full(mm, address: addr, ptep, full); |
| 817 | if (--nr == 0) |
| 818 | break; |
| 819 | ptep++; |
| 820 | addr += PAGE_SIZE; |
| 821 | } |
| 822 | } |
| 823 | #endif |
| 824 | |
| 825 | #ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH |
| 826 | extern pte_t ptep_clear_flush(struct vm_area_struct *vma, |
| 827 | unsigned long address, |
| 828 | pte_t *ptep); |
| 829 | #endif |
| 830 | |
| 831 | #ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH |
| 832 | extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma, |
| 833 | unsigned long address, |
| 834 | pmd_t *pmdp); |
| 835 | extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma, |
| 836 | unsigned long address, |
| 837 | pud_t *pudp); |
| 838 | #endif |
| 839 | |
| 840 | #ifndef pte_mkwrite |
| 841 | static inline pte_t pte_mkwrite(pte_t pte, struct vm_area_struct *vma) |
| 842 | { |
| 843 | return pte_mkwrite_novma(pte); |
| 844 | } |
| 845 | #endif |
| 846 | |
| 847 | #if defined(CONFIG_ARCH_WANT_PMD_MKWRITE) && !defined(pmd_mkwrite) |
| 848 | static inline pmd_t pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma) |
| 849 | { |
| 850 | return pmd_mkwrite_novma(pmd); |
| 851 | } |
| 852 | #endif |
| 853 | |
| 854 | #ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT |
| 855 | struct mm_struct; |
| 856 | static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep) |
| 857 | { |
| 858 | pte_t old_pte = ptep_get(ptep); |
| 859 | set_pte_at(mm, address, ptep, pte_wrprotect(old_pte)); |
| 860 | } |
| 861 | #endif |
| 862 | |
| 863 | #ifndef wrprotect_ptes |
| 864 | /** |
| 865 | * wrprotect_ptes - Write-protect PTEs that map consecutive pages of the same |
| 866 | * folio. |
| 867 | * @mm: Address space the pages are mapped into. |
| 868 | * @addr: Address the first page is mapped at. |
| 869 | * @ptep: Page table pointer for the first entry. |
| 870 | * @nr: Number of entries to write-protect. |
| 871 | * |
| 872 | * May be overridden by the architecture; otherwise, implemented as a simple |
| 873 | * loop over ptep_set_wrprotect(). |
| 874 | * |
| 875 | * Note that PTE bits in the PTE range besides the PFN can differ. For example, |
| 876 | * some PTEs might be write-protected. |
| 877 | * |
| 878 | * Context: The caller holds the page table lock. The PTEs map consecutive |
| 879 | * pages that belong to the same folio. The PTEs are all in the same PMD. |
| 880 | */ |
| 881 | static inline void wrprotect_ptes(struct mm_struct *mm, unsigned long addr, |
| 882 | pte_t *ptep, unsigned int nr) |
| 883 | { |
| 884 | for (;;) { |
| 885 | ptep_set_wrprotect(mm, addr, ptep); |
| 886 | if (--nr == 0) |
| 887 | break; |
| 888 | ptep++; |
| 889 | addr += PAGE_SIZE; |
| 890 | } |
| 891 | } |
| 892 | #endif |
| 893 | |
| 894 | /* |
| 895 | * On some architectures hardware does not set page access bit when accessing |
| 896 | * memory page, it is responsibility of software setting this bit. It brings |
| 897 | * out extra page fault penalty to track page access bit. For optimization page |
| 898 | * access bit can be set during all page fault flow on these arches. |
| 899 | * To be differentiate with macro pte_mkyoung, this macro is used on platforms |
| 900 | * where software maintains page access bit. |
| 901 | */ |
| 902 | #ifndef pte_sw_mkyoung |
| 903 | static inline pte_t pte_sw_mkyoung(pte_t pte) |
| 904 | { |
| 905 | return pte; |
| 906 | } |
| 907 | #define pte_sw_mkyoung pte_sw_mkyoung |
| 908 | #endif |
| 909 | |
| 910 | #ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT |
| 911 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| 912 | static inline void pmdp_set_wrprotect(struct mm_struct *mm, |
| 913 | unsigned long address, pmd_t *pmdp) |
| 914 | { |
| 915 | pmd_t old_pmd = *pmdp; |
| 916 | set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd)); |
| 917 | } |
| 918 | #else |
| 919 | static inline void pmdp_set_wrprotect(struct mm_struct *mm, |
| 920 | unsigned long address, pmd_t *pmdp) |
| 921 | { |
| 922 | BUILD_BUG(); |
| 923 | } |
| 924 | #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ |
| 925 | #endif |
| 926 | #ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT |
| 927 | #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD |
| 928 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| 929 | static inline void pudp_set_wrprotect(struct mm_struct *mm, |
| 930 | unsigned long address, pud_t *pudp) |
| 931 | { |
| 932 | pud_t old_pud = *pudp; |
| 933 | |
| 934 | set_pud_at(mm, addr: address, pudp, pud: pud_wrprotect(pud: old_pud)); |
| 935 | } |
| 936 | #else |
| 937 | static inline void pudp_set_wrprotect(struct mm_struct *mm, |
| 938 | unsigned long address, pud_t *pudp) |
| 939 | { |
| 940 | BUILD_BUG(); |
| 941 | } |
| 942 | #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ |
| 943 | #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ |
| 944 | #endif |
| 945 | |
| 946 | #ifndef pmdp_collapse_flush |
| 947 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| 948 | extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, |
| 949 | unsigned long address, pmd_t *pmdp); |
| 950 | #else |
| 951 | static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, |
| 952 | unsigned long address, |
| 953 | pmd_t *pmdp) |
| 954 | { |
| 955 | BUILD_BUG(); |
| 956 | return *pmdp; |
| 957 | } |
| 958 | #define pmdp_collapse_flush pmdp_collapse_flush |
| 959 | #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ |
| 960 | #endif |
| 961 | |
| 962 | #ifndef __HAVE_ARCH_PGTABLE_DEPOSIT |
| 963 | extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, |
| 964 | pgtable_t pgtable); |
| 965 | #endif |
| 966 | |
| 967 | #ifndef __HAVE_ARCH_PGTABLE_WITHDRAW |
| 968 | extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp); |
| 969 | #endif |
| 970 | |
| 971 | #ifndef arch_needs_pgtable_deposit |
| 972 | #define arch_needs_pgtable_deposit() (false) |
| 973 | #endif |
| 974 | |
| 975 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| 976 | /* |
| 977 | * This is an implementation of pmdp_establish() that is only suitable for an |
| 978 | * architecture that doesn't have hardware dirty/accessed bits. In this case we |
| 979 | * can't race with CPU which sets these bits and non-atomic approach is fine. |
| 980 | */ |
| 981 | static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma, |
| 982 | unsigned long address, pmd_t *pmdp, pmd_t pmd) |
| 983 | { |
| 984 | pmd_t old_pmd = *pmdp; |
| 985 | set_pmd_at(mm: vma->vm_mm, addr: address, pmdp, pmd); |
| 986 | return old_pmd; |
| 987 | } |
| 988 | #endif |
| 989 | |
| 990 | #ifndef __HAVE_ARCH_PMDP_INVALIDATE |
| 991 | extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address, |
| 992 | pmd_t *pmdp); |
| 993 | #endif |
| 994 | |
| 995 | #ifndef __HAVE_ARCH_PMDP_INVALIDATE_AD |
| 996 | |
| 997 | /* |
| 998 | * pmdp_invalidate_ad() invalidates the PMD while changing a transparent |
| 999 | * hugepage mapping in the page tables. This function is similar to |
| 1000 | * pmdp_invalidate(), but should only be used if the access and dirty bits would |
| 1001 | * not be cleared by the software in the new PMD value. The function ensures |
| 1002 | * that hardware changes of the access and dirty bits updates would not be lost. |
| 1003 | * |
| 1004 | * Doing so can allow in certain architectures to avoid a TLB flush in most |
| 1005 | * cases. Yet, another TLB flush might be necessary later if the PMD update |
| 1006 | * itself requires such flush (e.g., if protection was set to be stricter). Yet, |
| 1007 | * even when a TLB flush is needed because of the update, the caller may be able |
| 1008 | * to batch these TLB flushing operations, so fewer TLB flush operations are |
| 1009 | * needed. |
| 1010 | */ |
| 1011 | extern pmd_t pmdp_invalidate_ad(struct vm_area_struct *vma, |
| 1012 | unsigned long address, pmd_t *pmdp); |
| 1013 | #endif |
| 1014 | |
| 1015 | #ifndef __HAVE_ARCH_PTE_SAME |
| 1016 | static inline int pte_same(pte_t pte_a, pte_t pte_b) |
| 1017 | { |
| 1018 | return pte_val(pte_a) == pte_val(pte_b); |
| 1019 | } |
| 1020 | #endif |
| 1021 | |
| 1022 | #ifndef __HAVE_ARCH_PTE_UNUSED |
| 1023 | /* |
| 1024 | * Some architectures provide facilities to virtualization guests |
| 1025 | * so that they can flag allocated pages as unused. This allows the |
| 1026 | * host to transparently reclaim unused pages. This function returns |
| 1027 | * whether the pte's page is unused. |
| 1028 | */ |
| 1029 | static inline int pte_unused(pte_t pte) |
| 1030 | { |
| 1031 | return 0; |
| 1032 | } |
| 1033 | #endif |
| 1034 | |
| 1035 | #ifndef pte_access_permitted |
| 1036 | #define pte_access_permitted(pte, write) \ |
| 1037 | (pte_present(pte) && (!(write) || pte_write(pte))) |
| 1038 | #endif |
| 1039 | |
| 1040 | #ifndef pmd_access_permitted |
| 1041 | #define pmd_access_permitted(pmd, write) \ |
| 1042 | (pmd_present(pmd) && (!(write) || pmd_write(pmd))) |
| 1043 | #endif |
| 1044 | |
| 1045 | #ifndef pud_access_permitted |
| 1046 | #define pud_access_permitted(pud, write) \ |
| 1047 | (pud_present(pud) && (!(write) || pud_write(pud))) |
| 1048 | #endif |
| 1049 | |
| 1050 | #ifndef p4d_access_permitted |
| 1051 | #define p4d_access_permitted(p4d, write) \ |
| 1052 | (p4d_present(p4d) && (!(write) || p4d_write(p4d))) |
| 1053 | #endif |
| 1054 | |
| 1055 | #ifndef pgd_access_permitted |
| 1056 | #define pgd_access_permitted(pgd, write) \ |
| 1057 | (pgd_present(pgd) && (!(write) || pgd_write(pgd))) |
| 1058 | #endif |
| 1059 | |
| 1060 | #ifndef __HAVE_ARCH_PMD_SAME |
| 1061 | static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b) |
| 1062 | { |
| 1063 | return pmd_val(pmd: pmd_a) == pmd_val(pmd: pmd_b); |
| 1064 | } |
| 1065 | #endif |
| 1066 | |
| 1067 | #ifndef pud_same |
| 1068 | static inline int pud_same(pud_t pud_a, pud_t pud_b) |
| 1069 | { |
| 1070 | return pud_val(pud: pud_a) == pud_val(pud: pud_b); |
| 1071 | } |
| 1072 | #define pud_same pud_same |
| 1073 | #endif |
| 1074 | |
| 1075 | #ifndef __HAVE_ARCH_P4D_SAME |
| 1076 | static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b) |
| 1077 | { |
| 1078 | return p4d_val(p4d: p4d_a) == p4d_val(p4d: p4d_b); |
| 1079 | } |
| 1080 | #endif |
| 1081 | |
| 1082 | #ifndef __HAVE_ARCH_PGD_SAME |
| 1083 | static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b) |
| 1084 | { |
| 1085 | return pgd_val(pgd: pgd_a) == pgd_val(pgd: pgd_b); |
| 1086 | } |
| 1087 | #endif |
| 1088 | |
| 1089 | #ifndef __HAVE_ARCH_DO_SWAP_PAGE |
| 1090 | static inline void arch_do_swap_page_nr(struct mm_struct *mm, |
| 1091 | struct vm_area_struct *vma, |
| 1092 | unsigned long addr, |
| 1093 | pte_t pte, pte_t oldpte, |
| 1094 | int nr) |
| 1095 | { |
| 1096 | |
| 1097 | } |
| 1098 | #else |
| 1099 | /* |
| 1100 | * Some architectures support metadata associated with a page. When a |
| 1101 | * page is being swapped out, this metadata must be saved so it can be |
| 1102 | * restored when the page is swapped back in. SPARC M7 and newer |
| 1103 | * processors support an ADI (Application Data Integrity) tag for the |
| 1104 | * page as metadata for the page. arch_do_swap_page() can restore this |
| 1105 | * metadata when a page is swapped back in. |
| 1106 | */ |
| 1107 | static inline void arch_do_swap_page_nr(struct mm_struct *mm, |
| 1108 | struct vm_area_struct *vma, |
| 1109 | unsigned long addr, |
| 1110 | pte_t pte, pte_t oldpte, |
| 1111 | int nr) |
| 1112 | { |
| 1113 | for (int i = 0; i < nr; i++) { |
| 1114 | arch_do_swap_page(vma->vm_mm, vma, addr + i * PAGE_SIZE, |
| 1115 | pte_advance_pfn(pte, i), |
| 1116 | pte_advance_pfn(oldpte, i)); |
| 1117 | } |
| 1118 | } |
| 1119 | #endif |
| 1120 | |
| 1121 | #ifndef __HAVE_ARCH_UNMAP_ONE |
| 1122 | /* |
| 1123 | * Some architectures support metadata associated with a page. When a |
| 1124 | * page is being swapped out, this metadata must be saved so it can be |
| 1125 | * restored when the page is swapped back in. SPARC M7 and newer |
| 1126 | * processors support an ADI (Application Data Integrity) tag for the |
| 1127 | * page as metadata for the page. arch_unmap_one() can save this |
| 1128 | * metadata on a swap-out of a page. |
| 1129 | */ |
| 1130 | static inline int arch_unmap_one(struct mm_struct *mm, |
| 1131 | struct vm_area_struct *vma, |
| 1132 | unsigned long addr, |
| 1133 | pte_t orig_pte) |
| 1134 | { |
| 1135 | return 0; |
| 1136 | } |
| 1137 | #endif |
| 1138 | |
| 1139 | /* |
| 1140 | * Allow architectures to preserve additional metadata associated with |
| 1141 | * swapped-out pages. The corresponding __HAVE_ARCH_SWAP_* macros and function |
| 1142 | * prototypes must be defined in the arch-specific asm/pgtable.h file. |
| 1143 | */ |
| 1144 | #ifndef __HAVE_ARCH_PREPARE_TO_SWAP |
| 1145 | static inline int arch_prepare_to_swap(struct folio *folio) |
| 1146 | { |
| 1147 | return 0; |
| 1148 | } |
| 1149 | #endif |
| 1150 | |
| 1151 | #ifndef __HAVE_ARCH_SWAP_INVALIDATE |
| 1152 | static inline void arch_swap_invalidate_page(int type, pgoff_t offset) |
| 1153 | { |
| 1154 | } |
| 1155 | |
| 1156 | static inline void arch_swap_invalidate_area(int type) |
| 1157 | { |
| 1158 | } |
| 1159 | #endif |
| 1160 | |
| 1161 | #ifndef __HAVE_ARCH_SWAP_RESTORE |
| 1162 | static inline void arch_swap_restore(swp_entry_t entry, struct folio *folio) |
| 1163 | { |
| 1164 | } |
| 1165 | #endif |
| 1166 | |
| 1167 | #ifndef __HAVE_ARCH_MOVE_PTE |
| 1168 | #define move_pte(pte, old_addr, new_addr) (pte) |
| 1169 | #endif |
| 1170 | |
| 1171 | #ifndef pte_accessible |
| 1172 | # define pte_accessible(mm, pte) ((void)(pte), 1) |
| 1173 | #endif |
| 1174 | |
| 1175 | #ifndef flush_tlb_fix_spurious_fault |
| 1176 | #define flush_tlb_fix_spurious_fault(vma, address, ptep) flush_tlb_page(vma, address) |
| 1177 | #endif |
| 1178 | |
| 1179 | /* |
| 1180 | * When walking page tables, get the address of the next boundary, |
| 1181 | * or the end address of the range if that comes earlier. Although no |
| 1182 | * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout. |
| 1183 | */ |
| 1184 | |
| 1185 | #define pgd_addr_end(addr, end) \ |
| 1186 | ({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \ |
| 1187 | (__boundary - 1 < (end) - 1)? __boundary: (end); \ |
| 1188 | }) |
| 1189 | |
| 1190 | #ifndef p4d_addr_end |
| 1191 | #define p4d_addr_end(addr, end) \ |
| 1192 | ({ unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK; \ |
| 1193 | (__boundary - 1 < (end) - 1)? __boundary: (end); \ |
| 1194 | }) |
| 1195 | #endif |
| 1196 | |
| 1197 | #ifndef pud_addr_end |
| 1198 | #define pud_addr_end(addr, end) \ |
| 1199 | ({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \ |
| 1200 | (__boundary - 1 < (end) - 1)? __boundary: (end); \ |
| 1201 | }) |
| 1202 | #endif |
| 1203 | |
| 1204 | #ifndef pmd_addr_end |
| 1205 | #define pmd_addr_end(addr, end) \ |
| 1206 | ({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \ |
| 1207 | (__boundary - 1 < (end) - 1)? __boundary: (end); \ |
| 1208 | }) |
| 1209 | #endif |
| 1210 | |
| 1211 | /* |
| 1212 | * When walking page tables, we usually want to skip any p?d_none entries; |
| 1213 | * and any p?d_bad entries - reporting the error before resetting to none. |
| 1214 | * Do the tests inline, but report and clear the bad entry in mm/memory.c. |
| 1215 | */ |
| 1216 | void pgd_clear_bad(pgd_t *); |
| 1217 | |
| 1218 | #ifndef __PAGETABLE_P4D_FOLDED |
| 1219 | void p4d_clear_bad(p4d_t *); |
| 1220 | #else |
| 1221 | #define p4d_clear_bad(p4d) do { } while (0) |
| 1222 | #endif |
| 1223 | |
| 1224 | #ifndef __PAGETABLE_PUD_FOLDED |
| 1225 | void pud_clear_bad(pud_t *); |
| 1226 | #else |
| 1227 | #define pud_clear_bad(p4d) do { } while (0) |
| 1228 | #endif |
| 1229 | |
| 1230 | void pmd_clear_bad(pmd_t *); |
| 1231 | |
| 1232 | static inline int pgd_none_or_clear_bad(pgd_t *pgd) |
| 1233 | { |
| 1234 | if (pgd_none(pgd: *pgd)) |
| 1235 | return 1; |
| 1236 | if (unlikely(pgd_bad(*pgd))) { |
| 1237 | pgd_clear_bad(pgd); |
| 1238 | return 1; |
| 1239 | } |
| 1240 | return 0; |
| 1241 | } |
| 1242 | |
| 1243 | static inline int p4d_none_or_clear_bad(p4d_t *p4d) |
| 1244 | { |
| 1245 | if (p4d_none(p4d: *p4d)) |
| 1246 | return 1; |
| 1247 | if (unlikely(p4d_bad(*p4d))) { |
| 1248 | p4d_clear_bad(p4d); |
| 1249 | return 1; |
| 1250 | } |
| 1251 | return 0; |
| 1252 | } |
| 1253 | |
| 1254 | static inline int pud_none_or_clear_bad(pud_t *pud) |
| 1255 | { |
| 1256 | if (pud_none(pud: *pud)) |
| 1257 | return 1; |
| 1258 | if (unlikely(pud_bad(*pud))) { |
| 1259 | pud_clear_bad(pud); |
| 1260 | return 1; |
| 1261 | } |
| 1262 | return 0; |
| 1263 | } |
| 1264 | |
| 1265 | static inline int pmd_none_or_clear_bad(pmd_t *pmd) |
| 1266 | { |
| 1267 | if (pmd_none(pmd: *pmd)) |
| 1268 | return 1; |
| 1269 | if (unlikely(pmd_bad(*pmd))) { |
| 1270 | pmd_clear_bad(pmd); |
| 1271 | return 1; |
| 1272 | } |
| 1273 | return 0; |
| 1274 | } |
| 1275 | |
| 1276 | static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma, |
| 1277 | unsigned long addr, |
| 1278 | pte_t *ptep) |
| 1279 | { |
| 1280 | /* |
| 1281 | * Get the current pte state, but zero it out to make it |
| 1282 | * non-present, preventing the hardware from asynchronously |
| 1283 | * updating it. |
| 1284 | */ |
| 1285 | return ptep_get_and_clear(mm: vma->vm_mm, addr, ptep); |
| 1286 | } |
| 1287 | |
| 1288 | static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma, |
| 1289 | unsigned long addr, |
| 1290 | pte_t *ptep, pte_t pte) |
| 1291 | { |
| 1292 | /* |
| 1293 | * The pte is non-present, so there's no hardware state to |
| 1294 | * preserve. |
| 1295 | */ |
| 1296 | set_pte_at(vma->vm_mm, addr, ptep, pte); |
| 1297 | } |
| 1298 | |
| 1299 | #ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION |
| 1300 | /* |
| 1301 | * Start a pte protection read-modify-write transaction, which |
| 1302 | * protects against asynchronous hardware modifications to the pte. |
| 1303 | * The intention is not to prevent the hardware from making pte |
| 1304 | * updates, but to prevent any updates it may make from being lost. |
| 1305 | * |
| 1306 | * This does not protect against other software modifications of the |
| 1307 | * pte; the appropriate pte lock must be held over the transaction. |
| 1308 | * |
| 1309 | * Note that this interface is intended to be batchable, meaning that |
| 1310 | * ptep_modify_prot_commit may not actually update the pte, but merely |
| 1311 | * queue the update to be done at some later time. The update must be |
| 1312 | * actually committed before the pte lock is released, however. |
| 1313 | */ |
| 1314 | static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma, |
| 1315 | unsigned long addr, |
| 1316 | pte_t *ptep) |
| 1317 | { |
| 1318 | return __ptep_modify_prot_start(vma, addr, ptep); |
| 1319 | } |
| 1320 | |
| 1321 | /* |
| 1322 | * Commit an update to a pte, leaving any hardware-controlled bits in |
| 1323 | * the PTE unmodified. |
| 1324 | */ |
| 1325 | static inline void ptep_modify_prot_commit(struct vm_area_struct *vma, |
| 1326 | unsigned long addr, |
| 1327 | pte_t *ptep, pte_t old_pte, pte_t pte) |
| 1328 | { |
| 1329 | __ptep_modify_prot_commit(vma, addr, ptep, pte); |
| 1330 | } |
| 1331 | #endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */ |
| 1332 | #endif /* CONFIG_MMU */ |
| 1333 | |
| 1334 | /* |
| 1335 | * No-op macros that just return the current protection value. Defined here |
| 1336 | * because these macros can be used even if CONFIG_MMU is not defined. |
| 1337 | */ |
| 1338 | |
| 1339 | #ifndef pgprot_nx |
| 1340 | #define pgprot_nx(prot) (prot) |
| 1341 | #endif |
| 1342 | |
| 1343 | #ifndef pgprot_noncached |
| 1344 | #define pgprot_noncached(prot) (prot) |
| 1345 | #endif |
| 1346 | |
| 1347 | #ifndef pgprot_writecombine |
| 1348 | #define pgprot_writecombine pgprot_noncached |
| 1349 | #endif |
| 1350 | |
| 1351 | #ifndef pgprot_writethrough |
| 1352 | #define pgprot_writethrough pgprot_noncached |
| 1353 | #endif |
| 1354 | |
| 1355 | #ifndef pgprot_device |
| 1356 | #define pgprot_device pgprot_noncached |
| 1357 | #endif |
| 1358 | |
| 1359 | #ifndef pgprot_mhp |
| 1360 | #define pgprot_mhp(prot) (prot) |
| 1361 | #endif |
| 1362 | |
| 1363 | #ifdef CONFIG_MMU |
| 1364 | #ifndef pgprot_modify |
| 1365 | #define pgprot_modify pgprot_modify |
| 1366 | static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot) |
| 1367 | { |
| 1368 | if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot))) |
| 1369 | newprot = pgprot_noncached(newprot); |
| 1370 | if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot))) |
| 1371 | newprot = pgprot_writecombine(newprot); |
| 1372 | if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot))) |
| 1373 | newprot = pgprot_device(newprot); |
| 1374 | return newprot; |
| 1375 | } |
| 1376 | #endif |
| 1377 | #endif /* CONFIG_MMU */ |
| 1378 | |
| 1379 | #ifndef pgprot_encrypted |
| 1380 | #define pgprot_encrypted(prot) (prot) |
| 1381 | #endif |
| 1382 | |
| 1383 | #ifndef pgprot_decrypted |
| 1384 | #define pgprot_decrypted(prot) (prot) |
| 1385 | #endif |
| 1386 | |
| 1387 | /* |
| 1388 | * A facility to provide batching of the reload of page tables and |
| 1389 | * other process state with the actual context switch code for |
| 1390 | * paravirtualized guests. By convention, only one of the batched |
| 1391 | * update (lazy) modes (CPU, MMU) should be active at any given time, |
| 1392 | * entry should never be nested, and entry and exits should always be |
| 1393 | * paired. This is for sanity of maintaining and reasoning about the |
| 1394 | * kernel code. In this case, the exit (end of the context switch) is |
| 1395 | * in architecture-specific code, and so doesn't need a generic |
| 1396 | * definition. |
| 1397 | */ |
| 1398 | #ifndef __HAVE_ARCH_START_CONTEXT_SWITCH |
| 1399 | #define arch_start_context_switch(prev) do {} while (0) |
| 1400 | #endif |
| 1401 | |
| 1402 | #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY |
| 1403 | #ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION |
| 1404 | static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd) |
| 1405 | { |
| 1406 | return pmd; |
| 1407 | } |
| 1408 | |
| 1409 | static inline int pmd_swp_soft_dirty(pmd_t pmd) |
| 1410 | { |
| 1411 | return 0; |
| 1412 | } |
| 1413 | |
| 1414 | static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd) |
| 1415 | { |
| 1416 | return pmd; |
| 1417 | } |
| 1418 | #endif |
| 1419 | #else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */ |
| 1420 | static inline int pte_soft_dirty(pte_t pte) |
| 1421 | { |
| 1422 | return 0; |
| 1423 | } |
| 1424 | |
| 1425 | static inline int pmd_soft_dirty(pmd_t pmd) |
| 1426 | { |
| 1427 | return 0; |
| 1428 | } |
| 1429 | |
| 1430 | static inline pte_t pte_mksoft_dirty(pte_t pte) |
| 1431 | { |
| 1432 | return pte; |
| 1433 | } |
| 1434 | |
| 1435 | static inline pmd_t pmd_mksoft_dirty(pmd_t pmd) |
| 1436 | { |
| 1437 | return pmd; |
| 1438 | } |
| 1439 | |
| 1440 | static inline pte_t pte_clear_soft_dirty(pte_t pte) |
| 1441 | { |
| 1442 | return pte; |
| 1443 | } |
| 1444 | |
| 1445 | static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd) |
| 1446 | { |
| 1447 | return pmd; |
| 1448 | } |
| 1449 | |
| 1450 | static inline pte_t pte_swp_mksoft_dirty(pte_t pte) |
| 1451 | { |
| 1452 | return pte; |
| 1453 | } |
| 1454 | |
| 1455 | static inline int pte_swp_soft_dirty(pte_t pte) |
| 1456 | { |
| 1457 | return 0; |
| 1458 | } |
| 1459 | |
| 1460 | static inline pte_t pte_swp_clear_soft_dirty(pte_t pte) |
| 1461 | { |
| 1462 | return pte; |
| 1463 | } |
| 1464 | |
| 1465 | static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd) |
| 1466 | { |
| 1467 | return pmd; |
| 1468 | } |
| 1469 | |
| 1470 | static inline int pmd_swp_soft_dirty(pmd_t pmd) |
| 1471 | { |
| 1472 | return 0; |
| 1473 | } |
| 1474 | |
| 1475 | static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd) |
| 1476 | { |
| 1477 | return pmd; |
| 1478 | } |
| 1479 | #endif |
| 1480 | |
| 1481 | #ifndef __HAVE_PFNMAP_TRACKING |
| 1482 | /* |
| 1483 | * Interfaces that can be used by architecture code to keep track of |
| 1484 | * memory type of pfn mappings specified by the remap_pfn_range, |
| 1485 | * vmf_insert_pfn. |
| 1486 | */ |
| 1487 | |
| 1488 | static inline int pfnmap_setup_cachemode(unsigned long pfn, unsigned long size, |
| 1489 | pgprot_t *prot) |
| 1490 | { |
| 1491 | return 0; |
| 1492 | } |
| 1493 | |
| 1494 | static inline int pfnmap_track(unsigned long pfn, unsigned long size, |
| 1495 | pgprot_t *prot) |
| 1496 | { |
| 1497 | return 0; |
| 1498 | } |
| 1499 | |
| 1500 | static inline void pfnmap_untrack(unsigned long pfn, unsigned long size) |
| 1501 | { |
| 1502 | } |
| 1503 | #else |
| 1504 | /** |
| 1505 | * pfnmap_setup_cachemode - setup the cachemode in the pgprot for a pfn range |
| 1506 | * @pfn: the start of the pfn range |
| 1507 | * @size: the size of the pfn range in bytes |
| 1508 | * @prot: the pgprot to modify |
| 1509 | * |
| 1510 | * Lookup the cachemode for the pfn range starting at @pfn with the size |
| 1511 | * @size and store it in @prot, leaving other data in @prot unchanged. |
| 1512 | * |
| 1513 | * This allows for a hardware implementation to have fine-grained control of |
| 1514 | * memory cache behavior at page level granularity. Without a hardware |
| 1515 | * implementation, this function does nothing. |
| 1516 | * |
| 1517 | * Currently there is only one implementation for this - x86 Page Attribute |
| 1518 | * Table (PAT). See Documentation/arch/x86/pat.rst for more details. |
| 1519 | * |
| 1520 | * This function can fail if the pfn range spans pfns that require differing |
| 1521 | * cachemodes. If the pfn range was previously verified to have a single |
| 1522 | * cachemode, it is sufficient to query only a single pfn. The assumption is |
| 1523 | * that this is the case for drivers using the vmf_insert_pfn*() interface. |
| 1524 | * |
| 1525 | * Returns 0 on success and -EINVAL on error. |
| 1526 | */ |
| 1527 | int pfnmap_setup_cachemode(unsigned long pfn, unsigned long size, |
| 1528 | pgprot_t *prot); |
| 1529 | |
| 1530 | /** |
| 1531 | * pfnmap_track - track a pfn range |
| 1532 | * @pfn: the start of the pfn range |
| 1533 | * @size: the size of the pfn range in bytes |
| 1534 | * @prot: the pgprot to track |
| 1535 | * |
| 1536 | * Requested the pfn range to be 'tracked' by a hardware implementation and |
| 1537 | * setup the cachemode in @prot similar to pfnmap_setup_cachemode(). |
| 1538 | * |
| 1539 | * This allows for fine-grained control of memory cache behaviour at page |
| 1540 | * level granularity. Tracking memory this way is persisted across VMA splits |
| 1541 | * (VMA merging does not apply for VM_PFNMAP). |
| 1542 | * |
| 1543 | * Currently, there is only one implementation for this - x86 Page Attribute |
| 1544 | * Table (PAT). See Documentation/arch/x86/pat.rst for more details. |
| 1545 | * |
| 1546 | * Returns 0 on success and -EINVAL on error. |
| 1547 | */ |
| 1548 | int pfnmap_track(unsigned long pfn, unsigned long size, pgprot_t *prot); |
| 1549 | |
| 1550 | /** |
| 1551 | * pfnmap_untrack - untrack a pfn range |
| 1552 | * @pfn: the start of the pfn range |
| 1553 | * @size: the size of the pfn range in bytes |
| 1554 | * |
| 1555 | * Untrack a pfn range previously tracked through pfnmap_track(). |
| 1556 | */ |
| 1557 | void pfnmap_untrack(unsigned long pfn, unsigned long size); |
| 1558 | #endif |
| 1559 | |
| 1560 | /** |
| 1561 | * pfnmap_setup_cachemode_pfn - setup the cachemode in the pgprot for a pfn |
| 1562 | * @pfn: the pfn |
| 1563 | * @prot: the pgprot to modify |
| 1564 | * |
| 1565 | * Lookup the cachemode for @pfn and store it in @prot, leaving other |
| 1566 | * data in @prot unchanged. |
| 1567 | * |
| 1568 | * See pfnmap_setup_cachemode() for details. |
| 1569 | */ |
| 1570 | static inline void pfnmap_setup_cachemode_pfn(unsigned long pfn, pgprot_t *prot) |
| 1571 | { |
| 1572 | pfnmap_setup_cachemode(pfn, PAGE_SIZE, prot); |
| 1573 | } |
| 1574 | |
| 1575 | #ifdef CONFIG_MMU |
| 1576 | #ifdef __HAVE_COLOR_ZERO_PAGE |
| 1577 | static inline int is_zero_pfn(unsigned long pfn) |
| 1578 | { |
| 1579 | extern unsigned long zero_pfn; |
| 1580 | unsigned long offset_from_zero_pfn = pfn - zero_pfn; |
| 1581 | return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT); |
| 1582 | } |
| 1583 | |
| 1584 | #define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr)) |
| 1585 | |
| 1586 | #else |
| 1587 | static inline int is_zero_pfn(unsigned long pfn) |
| 1588 | { |
| 1589 | extern unsigned long zero_pfn; |
| 1590 | return pfn == zero_pfn; |
| 1591 | } |
| 1592 | |
| 1593 | static inline unsigned long my_zero_pfn(unsigned long addr) |
| 1594 | { |
| 1595 | extern unsigned long zero_pfn; |
| 1596 | return zero_pfn; |
| 1597 | } |
| 1598 | #endif |
| 1599 | #else |
| 1600 | static inline int is_zero_pfn(unsigned long pfn) |
| 1601 | { |
| 1602 | return 0; |
| 1603 | } |
| 1604 | |
| 1605 | static inline unsigned long my_zero_pfn(unsigned long addr) |
| 1606 | { |
| 1607 | return 0; |
| 1608 | } |
| 1609 | #endif /* CONFIG_MMU */ |
| 1610 | |
| 1611 | #ifdef CONFIG_MMU |
| 1612 | |
| 1613 | #ifndef CONFIG_TRANSPARENT_HUGEPAGE |
| 1614 | static inline int pmd_trans_huge(pmd_t pmd) |
| 1615 | { |
| 1616 | return 0; |
| 1617 | } |
| 1618 | #ifndef pmd_write |
| 1619 | static inline int pmd_write(pmd_t pmd) |
| 1620 | { |
| 1621 | BUG(); |
| 1622 | return 0; |
| 1623 | } |
| 1624 | #endif /* pmd_write */ |
| 1625 | #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ |
| 1626 | |
| 1627 | #ifndef pud_write |
| 1628 | static inline int pud_write(pud_t pud) |
| 1629 | { |
| 1630 | BUG(); |
| 1631 | return 0; |
| 1632 | } |
| 1633 | #endif /* pud_write */ |
| 1634 | |
| 1635 | #if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE) |
| 1636 | static inline int pmd_devmap(pmd_t pmd) |
| 1637 | { |
| 1638 | return 0; |
| 1639 | } |
| 1640 | static inline int pud_devmap(pud_t pud) |
| 1641 | { |
| 1642 | return 0; |
| 1643 | } |
| 1644 | static inline int pgd_devmap(pgd_t pgd) |
| 1645 | { |
| 1646 | return 0; |
| 1647 | } |
| 1648 | #endif |
| 1649 | |
| 1650 | #if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \ |
| 1651 | !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) |
| 1652 | static inline int pud_trans_huge(pud_t pud) |
| 1653 | { |
| 1654 | return 0; |
| 1655 | } |
| 1656 | #endif |
| 1657 | |
| 1658 | static inline int pud_trans_unstable(pud_t *pud) |
| 1659 | { |
| 1660 | #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ |
| 1661 | defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) |
| 1662 | pud_t pudval = READ_ONCE(*pud); |
| 1663 | |
| 1664 | if (pud_none(pud: pudval) || pud_trans_huge(pud: pudval) || pud_devmap(pud: pudval)) |
| 1665 | return 1; |
| 1666 | if (unlikely(pud_bad(pudval))) { |
| 1667 | pud_clear_bad(pud); |
| 1668 | return 1; |
| 1669 | } |
| 1670 | #endif |
| 1671 | return 0; |
| 1672 | } |
| 1673 | |
| 1674 | #ifndef CONFIG_NUMA_BALANCING |
| 1675 | /* |
| 1676 | * In an inaccessible (PROT_NONE) VMA, pte_protnone() may indicate "yes". It is |
| 1677 | * perfectly valid to indicate "no" in that case, which is why our default |
| 1678 | * implementation defaults to "always no". |
| 1679 | * |
| 1680 | * In an accessible VMA, however, pte_protnone() reliably indicates PROT_NONE |
| 1681 | * page protection due to NUMA hinting. NUMA hinting faults only apply in |
| 1682 | * accessible VMAs. |
| 1683 | * |
| 1684 | * So, to reliably identify PROT_NONE PTEs that require a NUMA hinting fault, |
| 1685 | * looking at the VMA accessibility is sufficient. |
| 1686 | */ |
| 1687 | static inline int pte_protnone(pte_t pte) |
| 1688 | { |
| 1689 | return 0; |
| 1690 | } |
| 1691 | |
| 1692 | static inline int pmd_protnone(pmd_t pmd) |
| 1693 | { |
| 1694 | return 0; |
| 1695 | } |
| 1696 | #endif /* CONFIG_NUMA_BALANCING */ |
| 1697 | |
| 1698 | #endif /* CONFIG_MMU */ |
| 1699 | |
| 1700 | #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP |
| 1701 | |
| 1702 | #ifndef __PAGETABLE_P4D_FOLDED |
| 1703 | int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot); |
| 1704 | void p4d_clear_huge(p4d_t *p4d); |
| 1705 | #else |
| 1706 | static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot) |
| 1707 | { |
| 1708 | return 0; |
| 1709 | } |
| 1710 | static inline void p4d_clear_huge(p4d_t *p4d) { } |
| 1711 | #endif /* !__PAGETABLE_P4D_FOLDED */ |
| 1712 | |
| 1713 | int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot); |
| 1714 | int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot); |
| 1715 | int pud_clear_huge(pud_t *pud); |
| 1716 | int pmd_clear_huge(pmd_t *pmd); |
| 1717 | int p4d_free_pud_page(p4d_t *p4d, unsigned long addr); |
| 1718 | int pud_free_pmd_page(pud_t *pud, unsigned long addr); |
| 1719 | int pmd_free_pte_page(pmd_t *pmd, unsigned long addr); |
| 1720 | #else /* !CONFIG_HAVE_ARCH_HUGE_VMAP */ |
| 1721 | static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot) |
| 1722 | { |
| 1723 | return 0; |
| 1724 | } |
| 1725 | static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot) |
| 1726 | { |
| 1727 | return 0; |
| 1728 | } |
| 1729 | static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot) |
| 1730 | { |
| 1731 | return 0; |
| 1732 | } |
| 1733 | static inline void p4d_clear_huge(p4d_t *p4d) { } |
| 1734 | static inline int pud_clear_huge(pud_t *pud) |
| 1735 | { |
| 1736 | return 0; |
| 1737 | } |
| 1738 | static inline int pmd_clear_huge(pmd_t *pmd) |
| 1739 | { |
| 1740 | return 0; |
| 1741 | } |
| 1742 | static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr) |
| 1743 | { |
| 1744 | return 0; |
| 1745 | } |
| 1746 | static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr) |
| 1747 | { |
| 1748 | return 0; |
| 1749 | } |
| 1750 | static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr) |
| 1751 | { |
| 1752 | return 0; |
| 1753 | } |
| 1754 | #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */ |
| 1755 | |
| 1756 | #ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE |
| 1757 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| 1758 | /* |
| 1759 | * ARCHes with special requirements for evicting THP backing TLB entries can |
| 1760 | * implement this. Otherwise also, it can help optimize normal TLB flush in |
| 1761 | * THP regime. Stock flush_tlb_range() typically has optimization to nuke the |
| 1762 | * entire TLB if flush span is greater than a threshold, which will |
| 1763 | * likely be true for a single huge page. Thus a single THP flush will |
| 1764 | * invalidate the entire TLB which is not desirable. |
| 1765 | * e.g. see arch/arc: flush_pmd_tlb_range |
| 1766 | */ |
| 1767 | #define flush_pmd_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end) |
| 1768 | #define flush_pud_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end) |
| 1769 | #else |
| 1770 | #define flush_pmd_tlb_range(vma, addr, end) BUILD_BUG() |
| 1771 | #define flush_pud_tlb_range(vma, addr, end) BUILD_BUG() |
| 1772 | #endif |
| 1773 | #endif |
| 1774 | |
| 1775 | struct file; |
| 1776 | int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn, |
| 1777 | unsigned long size, pgprot_t *vma_prot); |
| 1778 | |
| 1779 | #ifndef CONFIG_X86_ESPFIX64 |
| 1780 | static inline void init_espfix_bsp(void) { } |
| 1781 | #endif |
| 1782 | |
| 1783 | extern void __init pgtable_cache_init(void); |
| 1784 | |
| 1785 | #ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED |
| 1786 | static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot) |
| 1787 | { |
| 1788 | return true; |
| 1789 | } |
| 1790 | |
| 1791 | static inline bool arch_has_pfn_modify_check(void) |
| 1792 | { |
| 1793 | return false; |
| 1794 | } |
| 1795 | #endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */ |
| 1796 | |
| 1797 | /* |
| 1798 | * Architecture PAGE_KERNEL_* fallbacks |
| 1799 | * |
| 1800 | * Some architectures don't define certain PAGE_KERNEL_* flags. This is either |
| 1801 | * because they really don't support them, or the port needs to be updated to |
| 1802 | * reflect the required functionality. Below are a set of relatively safe |
| 1803 | * fallbacks, as best effort, which we can count on in lieu of the architectures |
| 1804 | * not defining them on their own yet. |
| 1805 | */ |
| 1806 | |
| 1807 | #ifndef PAGE_KERNEL_RO |
| 1808 | # define PAGE_KERNEL_RO PAGE_KERNEL |
| 1809 | #endif |
| 1810 | |
| 1811 | #ifndef PAGE_KERNEL_EXEC |
| 1812 | # define PAGE_KERNEL_EXEC PAGE_KERNEL |
| 1813 | #endif |
| 1814 | |
| 1815 | /* |
| 1816 | * Page Table Modification bits for pgtbl_mod_mask. |
| 1817 | * |
| 1818 | * These are used by the p?d_alloc_track*() set of functions an in the generic |
| 1819 | * vmalloc/ioremap code to track at which page-table levels entries have been |
| 1820 | * modified. Based on that the code can better decide when vmalloc and ioremap |
| 1821 | * mapping changes need to be synchronized to other page-tables in the system. |
| 1822 | */ |
| 1823 | #define __PGTBL_PGD_MODIFIED 0 |
| 1824 | #define __PGTBL_P4D_MODIFIED 1 |
| 1825 | #define __PGTBL_PUD_MODIFIED 2 |
| 1826 | #define __PGTBL_PMD_MODIFIED 3 |
| 1827 | #define __PGTBL_PTE_MODIFIED 4 |
| 1828 | |
| 1829 | #define PGTBL_PGD_MODIFIED BIT(__PGTBL_PGD_MODIFIED) |
| 1830 | #define PGTBL_P4D_MODIFIED BIT(__PGTBL_P4D_MODIFIED) |
| 1831 | #define PGTBL_PUD_MODIFIED BIT(__PGTBL_PUD_MODIFIED) |
| 1832 | #define PGTBL_PMD_MODIFIED BIT(__PGTBL_PMD_MODIFIED) |
| 1833 | #define PGTBL_PTE_MODIFIED BIT(__PGTBL_PTE_MODIFIED) |
| 1834 | |
| 1835 | /* Page-Table Modification Mask */ |
| 1836 | typedef unsigned int pgtbl_mod_mask; |
| 1837 | |
| 1838 | #endif /* !__ASSEMBLY__ */ |
| 1839 | |
| 1840 | #if !defined(MAX_POSSIBLE_PHYSMEM_BITS) && !defined(CONFIG_64BIT) |
| 1841 | #ifdef CONFIG_PHYS_ADDR_T_64BIT |
| 1842 | /* |
| 1843 | * ZSMALLOC needs to know the highest PFN on 32-bit architectures |
| 1844 | * with physical address space extension, but falls back to |
| 1845 | * BITS_PER_LONG otherwise. |
| 1846 | */ |
| 1847 | #error Missing MAX_POSSIBLE_PHYSMEM_BITS definition |
| 1848 | #else |
| 1849 | #define MAX_POSSIBLE_PHYSMEM_BITS 32 |
| 1850 | #endif |
| 1851 | #endif |
| 1852 | |
| 1853 | #ifndef has_transparent_hugepage |
| 1854 | #define has_transparent_hugepage() IS_BUILTIN(CONFIG_TRANSPARENT_HUGEPAGE) |
| 1855 | #endif |
| 1856 | |
| 1857 | #ifndef has_transparent_pud_hugepage |
| 1858 | #define has_transparent_pud_hugepage() IS_BUILTIN(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) |
| 1859 | #endif |
| 1860 | /* |
| 1861 | * On some architectures it depends on the mm if the p4d/pud or pmd |
| 1862 | * layer of the page table hierarchy is folded or not. |
| 1863 | */ |
| 1864 | #ifndef mm_p4d_folded |
| 1865 | #define mm_p4d_folded(mm) __is_defined(__PAGETABLE_P4D_FOLDED) |
| 1866 | #endif |
| 1867 | |
| 1868 | #ifndef mm_pud_folded |
| 1869 | #define mm_pud_folded(mm) __is_defined(__PAGETABLE_PUD_FOLDED) |
| 1870 | #endif |
| 1871 | |
| 1872 | #ifndef mm_pmd_folded |
| 1873 | #define mm_pmd_folded(mm) __is_defined(__PAGETABLE_PMD_FOLDED) |
| 1874 | #endif |
| 1875 | |
| 1876 | #ifndef p4d_offset_lockless |
| 1877 | #define p4d_offset_lockless(pgdp, pgd, address) p4d_offset(&(pgd), address) |
| 1878 | #endif |
| 1879 | #ifndef pud_offset_lockless |
| 1880 | #define pud_offset_lockless(p4dp, p4d, address) pud_offset(&(p4d), address) |
| 1881 | #endif |
| 1882 | #ifndef pmd_offset_lockless |
| 1883 | #define pmd_offset_lockless(pudp, pud, address) pmd_offset(&(pud), address) |
| 1884 | #endif |
| 1885 | |
| 1886 | /* |
| 1887 | * pXd_leaf() is the API to check whether a pgtable entry is a huge page |
| 1888 | * mapping. It should work globally across all archs, without any |
| 1889 | * dependency on CONFIG_* options. For architectures that do not support |
| 1890 | * huge mappings on specific levels, below fallbacks will be used. |
| 1891 | * |
| 1892 | * A leaf pgtable entry should always imply the following: |
| 1893 | * |
| 1894 | * - It is a "present" entry. IOW, before using this API, please check it |
| 1895 | * with pXd_present() first. NOTE: it may not always mean the "present |
| 1896 | * bit" is set. For example, PROT_NONE entries are always "present". |
| 1897 | * |
| 1898 | * - It should _never_ be a swap entry of any type. Above "present" check |
| 1899 | * should have guarded this, but let's be crystal clear on this. |
| 1900 | * |
| 1901 | * - It should contain a huge PFN, which points to a huge page larger than |
| 1902 | * PAGE_SIZE of the platform. The PFN format isn't important here. |
| 1903 | * |
| 1904 | * - It should cover all kinds of huge mappings (e.g., pXd_trans_huge(), |
| 1905 | * pXd_devmap(), or hugetlb mappings). |
| 1906 | */ |
| 1907 | #ifndef pgd_leaf |
| 1908 | #define pgd_leaf(x) false |
| 1909 | #endif |
| 1910 | #ifndef p4d_leaf |
| 1911 | #define p4d_leaf(x) false |
| 1912 | #endif |
| 1913 | #ifndef pud_leaf |
| 1914 | #define pud_leaf(x) false |
| 1915 | #endif |
| 1916 | #ifndef pmd_leaf |
| 1917 | #define pmd_leaf(x) false |
| 1918 | #endif |
| 1919 | |
| 1920 | #ifndef pgd_leaf_size |
| 1921 | #define pgd_leaf_size(x) (1ULL << PGDIR_SHIFT) |
| 1922 | #endif |
| 1923 | #ifndef p4d_leaf_size |
| 1924 | #define p4d_leaf_size(x) P4D_SIZE |
| 1925 | #endif |
| 1926 | #ifndef pud_leaf_size |
| 1927 | #define pud_leaf_size(x) PUD_SIZE |
| 1928 | #endif |
| 1929 | #ifndef pmd_leaf_size |
| 1930 | #define pmd_leaf_size(x) PMD_SIZE |
| 1931 | #endif |
| 1932 | #ifndef __pte_leaf_size |
| 1933 | #ifndef pte_leaf_size |
| 1934 | #define pte_leaf_size(x) PAGE_SIZE |
| 1935 | #endif |
| 1936 | #define __pte_leaf_size(x,y) pte_leaf_size(y) |
| 1937 | #endif |
| 1938 | |
| 1939 | /* |
| 1940 | * We always define pmd_pfn for all archs as it's used in lots of generic |
| 1941 | * code. Now it happens too for pud_pfn (and can happen for larger |
| 1942 | * mappings too in the future; we're not there yet). Instead of defining |
| 1943 | * it for all archs (like pmd_pfn), provide a fallback. |
| 1944 | * |
| 1945 | * Note that returning 0 here means any arch that didn't define this can |
| 1946 | * get severely wrong when it hits a real pud leaf. It's arch's |
| 1947 | * responsibility to properly define it when a huge pud is possible. |
| 1948 | */ |
| 1949 | #ifndef pud_pfn |
| 1950 | #define pud_pfn(x) 0 |
| 1951 | #endif |
| 1952 | |
| 1953 | /* |
| 1954 | * Some architectures have MMUs that are configurable or selectable at boot |
| 1955 | * time. These lead to variable PTRS_PER_x. For statically allocated arrays it |
| 1956 | * helps to have a static maximum value. |
| 1957 | */ |
| 1958 | |
| 1959 | #ifndef MAX_PTRS_PER_PTE |
| 1960 | #define MAX_PTRS_PER_PTE PTRS_PER_PTE |
| 1961 | #endif |
| 1962 | |
| 1963 | #ifndef MAX_PTRS_PER_PMD |
| 1964 | #define MAX_PTRS_PER_PMD PTRS_PER_PMD |
| 1965 | #endif |
| 1966 | |
| 1967 | #ifndef MAX_PTRS_PER_PUD |
| 1968 | #define MAX_PTRS_PER_PUD PTRS_PER_PUD |
| 1969 | #endif |
| 1970 | |
| 1971 | #ifndef MAX_PTRS_PER_P4D |
| 1972 | #define MAX_PTRS_PER_P4D PTRS_PER_P4D |
| 1973 | #endif |
| 1974 | |
| 1975 | #ifndef pte_pgprot |
| 1976 | #define pte_pgprot(x) ((pgprot_t) {0}) |
| 1977 | #endif |
| 1978 | |
| 1979 | #ifndef pmd_pgprot |
| 1980 | #define pmd_pgprot(x) ((pgprot_t) {0}) |
| 1981 | #endif |
| 1982 | |
| 1983 | #ifndef pud_pgprot |
| 1984 | #define pud_pgprot(x) ((pgprot_t) {0}) |
| 1985 | #endif |
| 1986 | |
| 1987 | /* description of effects of mapping type and prot in current implementation. |
| 1988 | * this is due to the limited x86 page protection hardware. The expected |
| 1989 | * behavior is in parens: |
| 1990 | * |
| 1991 | * map_type prot |
| 1992 | * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC |
| 1993 | * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes |
| 1994 | * w: (no) no w: (no) no w: (yes) yes w: (no) no |
| 1995 | * x: (no) no x: (no) yes x: (no) yes x: (yes) yes |
| 1996 | * |
| 1997 | * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes |
| 1998 | * w: (no) no w: (no) no w: (copy) copy w: (no) no |
| 1999 | * x: (no) no x: (no) yes x: (no) yes x: (yes) yes |
| 2000 | * |
| 2001 | * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and |
| 2002 | * MAP_PRIVATE (with Enhanced PAN supported): |
| 2003 | * r: (no) no |
| 2004 | * w: (no) no |
| 2005 | * x: (yes) yes |
| 2006 | */ |
| 2007 | #define DECLARE_VM_GET_PAGE_PROT \ |
| 2008 | pgprot_t vm_get_page_prot(unsigned long vm_flags) \ |
| 2009 | { \ |
| 2010 | return protection_map[vm_flags & \ |
| 2011 | (VM_READ | VM_WRITE | VM_EXEC | VM_SHARED)]; \ |
| 2012 | } \ |
| 2013 | EXPORT_SYMBOL(vm_get_page_prot); |
| 2014 | |
| 2015 | #endif /* _LINUX_PGTABLE_H */ |
| 2016 | |