| 1 | // SPDX-License-Identifier: GPL-2.0-or-later |
| 2 | /* |
| 3 | * Handle async block request by crypto hardware engine. |
| 4 | * |
| 5 | * Copyright (C) 2016 Linaro, Inc. |
| 6 | * |
| 7 | * Author: Baolin Wang <baolin.wang@linaro.org> |
| 8 | */ |
| 9 | |
| 10 | #include <crypto/internal/aead.h> |
| 11 | #include <crypto/internal/akcipher.h> |
| 12 | #include <crypto/internal/engine.h> |
| 13 | #include <crypto/internal/hash.h> |
| 14 | #include <crypto/internal/kpp.h> |
| 15 | #include <crypto/internal/skcipher.h> |
| 16 | #include <linux/err.h> |
| 17 | #include <linux/delay.h> |
| 18 | #include <linux/device.h> |
| 19 | #include <linux/kernel.h> |
| 20 | #include <linux/module.h> |
| 21 | #include <uapi/linux/sched/types.h> |
| 22 | #include "internal.h" |
| 23 | |
| 24 | #define CRYPTO_ENGINE_MAX_QLEN 10 |
| 25 | |
| 26 | struct crypto_engine_alg { |
| 27 | struct crypto_alg base; |
| 28 | struct crypto_engine_op op; |
| 29 | }; |
| 30 | |
| 31 | /** |
| 32 | * crypto_finalize_request - finalize one request if the request is done |
| 33 | * @engine: the hardware engine |
| 34 | * @req: the request need to be finalized |
| 35 | * @err: error number |
| 36 | */ |
| 37 | static void crypto_finalize_request(struct crypto_engine *engine, |
| 38 | struct crypto_async_request *req, int err) |
| 39 | { |
| 40 | unsigned long flags; |
| 41 | |
| 42 | /* |
| 43 | * If hardware cannot enqueue more requests |
| 44 | * and retry mechanism is not supported |
| 45 | * make sure we are completing the current request |
| 46 | */ |
| 47 | if (!engine->retry_support) { |
| 48 | spin_lock_irqsave(&engine->queue_lock, flags); |
| 49 | if (engine->cur_req == req) { |
| 50 | engine->cur_req = NULL; |
| 51 | } |
| 52 | spin_unlock_irqrestore(lock: &engine->queue_lock, flags); |
| 53 | } |
| 54 | |
| 55 | lockdep_assert_in_softirq(); |
| 56 | crypto_request_complete(req, err); |
| 57 | |
| 58 | kthread_queue_work(worker: engine->kworker, work: &engine->pump_requests); |
| 59 | } |
| 60 | |
| 61 | /** |
| 62 | * crypto_pump_requests - dequeue one request from engine queue to process |
| 63 | * @engine: the hardware engine |
| 64 | * @in_kthread: true if we are in the context of the request pump thread |
| 65 | * |
| 66 | * This function checks if there is any request in the engine queue that |
| 67 | * needs processing and if so call out to the driver to initialize hardware |
| 68 | * and handle each request. |
| 69 | */ |
| 70 | static void crypto_pump_requests(struct crypto_engine *engine, |
| 71 | bool in_kthread) |
| 72 | { |
| 73 | struct crypto_async_request *async_req, *backlog; |
| 74 | struct crypto_engine_alg *alg; |
| 75 | struct crypto_engine_op *op; |
| 76 | unsigned long flags; |
| 77 | bool was_busy = false; |
| 78 | int ret; |
| 79 | |
| 80 | spin_lock_irqsave(&engine->queue_lock, flags); |
| 81 | |
| 82 | /* Make sure we are not already running a request */ |
| 83 | if (!engine->retry_support && engine->cur_req) |
| 84 | goto out; |
| 85 | |
| 86 | /* If another context is idling then defer */ |
| 87 | if (engine->idling) { |
| 88 | kthread_queue_work(worker: engine->kworker, work: &engine->pump_requests); |
| 89 | goto out; |
| 90 | } |
| 91 | |
| 92 | /* Check if the engine queue is idle */ |
| 93 | if (!crypto_queue_len(queue: &engine->queue) || !engine->running) { |
| 94 | if (!engine->busy) |
| 95 | goto out; |
| 96 | |
| 97 | /* Only do teardown in the thread */ |
| 98 | if (!in_kthread) { |
| 99 | kthread_queue_work(worker: engine->kworker, |
| 100 | work: &engine->pump_requests); |
| 101 | goto out; |
| 102 | } |
| 103 | |
| 104 | engine->busy = false; |
| 105 | engine->idling = true; |
| 106 | spin_unlock_irqrestore(lock: &engine->queue_lock, flags); |
| 107 | |
| 108 | if (engine->unprepare_crypt_hardware && |
| 109 | engine->unprepare_crypt_hardware(engine)) |
| 110 | dev_err(engine->dev, "failed to unprepare crypt hardware\n" ); |
| 111 | |
| 112 | spin_lock_irqsave(&engine->queue_lock, flags); |
| 113 | engine->idling = false; |
| 114 | goto out; |
| 115 | } |
| 116 | |
| 117 | start_request: |
| 118 | /* Get the fist request from the engine queue to handle */ |
| 119 | backlog = crypto_get_backlog(queue: &engine->queue); |
| 120 | async_req = crypto_dequeue_request(queue: &engine->queue); |
| 121 | if (!async_req) |
| 122 | goto out; |
| 123 | |
| 124 | /* |
| 125 | * If hardware doesn't support the retry mechanism, |
| 126 | * keep track of the request we are processing now. |
| 127 | * We'll need it on completion (crypto_finalize_request). |
| 128 | */ |
| 129 | if (!engine->retry_support) |
| 130 | engine->cur_req = async_req; |
| 131 | |
| 132 | if (engine->busy) |
| 133 | was_busy = true; |
| 134 | else |
| 135 | engine->busy = true; |
| 136 | |
| 137 | spin_unlock_irqrestore(lock: &engine->queue_lock, flags); |
| 138 | |
| 139 | /* Until here we get the request need to be encrypted successfully */ |
| 140 | if (!was_busy && engine->prepare_crypt_hardware) { |
| 141 | ret = engine->prepare_crypt_hardware(engine); |
| 142 | if (ret) { |
| 143 | dev_err(engine->dev, "failed to prepare crypt hardware\n" ); |
| 144 | goto req_err_1; |
| 145 | } |
| 146 | } |
| 147 | |
| 148 | alg = container_of(async_req->tfm->__crt_alg, |
| 149 | struct crypto_engine_alg, base); |
| 150 | op = &alg->op; |
| 151 | ret = op->do_one_request(engine, async_req); |
| 152 | |
| 153 | /* Request unsuccessfully executed by hardware */ |
| 154 | if (ret < 0) { |
| 155 | /* |
| 156 | * If hardware queue is full (-ENOSPC), requeue request |
| 157 | * regardless of backlog flag. |
| 158 | * Otherwise, unprepare and complete the request. |
| 159 | */ |
| 160 | if (!engine->retry_support || |
| 161 | (ret != -ENOSPC)) { |
| 162 | dev_err(engine->dev, |
| 163 | "Failed to do one request from queue: %d\n" , |
| 164 | ret); |
| 165 | goto req_err_1; |
| 166 | } |
| 167 | spin_lock_irqsave(&engine->queue_lock, flags); |
| 168 | /* |
| 169 | * If hardware was unable to execute request, enqueue it |
| 170 | * back in front of crypto-engine queue, to keep the order |
| 171 | * of requests. |
| 172 | */ |
| 173 | crypto_enqueue_request_head(queue: &engine->queue, request: async_req); |
| 174 | |
| 175 | kthread_queue_work(worker: engine->kworker, work: &engine->pump_requests); |
| 176 | goto out; |
| 177 | } |
| 178 | |
| 179 | goto retry; |
| 180 | |
| 181 | req_err_1: |
| 182 | crypto_request_complete(req: async_req, err: ret); |
| 183 | |
| 184 | retry: |
| 185 | if (backlog) |
| 186 | crypto_request_complete(req: backlog, err: -EINPROGRESS); |
| 187 | |
| 188 | /* If retry mechanism is supported, send new requests to engine */ |
| 189 | if (engine->retry_support) { |
| 190 | spin_lock_irqsave(&engine->queue_lock, flags); |
| 191 | goto start_request; |
| 192 | } |
| 193 | return; |
| 194 | |
| 195 | out: |
| 196 | spin_unlock_irqrestore(lock: &engine->queue_lock, flags); |
| 197 | |
| 198 | /* |
| 199 | * Batch requests is possible only if |
| 200 | * hardware can enqueue multiple requests |
| 201 | */ |
| 202 | if (engine->do_batch_requests) { |
| 203 | ret = engine->do_batch_requests(engine); |
| 204 | if (ret) |
| 205 | dev_err(engine->dev, "failed to do batch requests: %d\n" , |
| 206 | ret); |
| 207 | } |
| 208 | |
| 209 | return; |
| 210 | } |
| 211 | |
| 212 | static void crypto_pump_work(struct kthread_work *work) |
| 213 | { |
| 214 | struct crypto_engine *engine = |
| 215 | container_of(work, struct crypto_engine, pump_requests); |
| 216 | |
| 217 | crypto_pump_requests(engine, in_kthread: true); |
| 218 | } |
| 219 | |
| 220 | /** |
| 221 | * crypto_transfer_request - transfer the new request into the engine queue |
| 222 | * @engine: the hardware engine |
| 223 | * @req: the request need to be listed into the engine queue |
| 224 | * @need_pump: indicates whether queue the pump of request to kthread_work |
| 225 | */ |
| 226 | static int crypto_transfer_request(struct crypto_engine *engine, |
| 227 | struct crypto_async_request *req, |
| 228 | bool need_pump) |
| 229 | { |
| 230 | unsigned long flags; |
| 231 | int ret; |
| 232 | |
| 233 | spin_lock_irqsave(&engine->queue_lock, flags); |
| 234 | |
| 235 | if (!engine->running) { |
| 236 | spin_unlock_irqrestore(lock: &engine->queue_lock, flags); |
| 237 | return -ESHUTDOWN; |
| 238 | } |
| 239 | |
| 240 | ret = crypto_enqueue_request(queue: &engine->queue, request: req); |
| 241 | |
| 242 | if (!engine->busy && need_pump) |
| 243 | kthread_queue_work(worker: engine->kworker, work: &engine->pump_requests); |
| 244 | |
| 245 | spin_unlock_irqrestore(lock: &engine->queue_lock, flags); |
| 246 | return ret; |
| 247 | } |
| 248 | |
| 249 | /** |
| 250 | * crypto_transfer_request_to_engine - transfer one request to list |
| 251 | * into the engine queue |
| 252 | * @engine: the hardware engine |
| 253 | * @req: the request need to be listed into the engine queue |
| 254 | */ |
| 255 | static int crypto_transfer_request_to_engine(struct crypto_engine *engine, |
| 256 | struct crypto_async_request *req) |
| 257 | { |
| 258 | return crypto_transfer_request(engine, req, need_pump: true); |
| 259 | } |
| 260 | |
| 261 | /** |
| 262 | * crypto_transfer_aead_request_to_engine - transfer one aead_request |
| 263 | * to list into the engine queue |
| 264 | * @engine: the hardware engine |
| 265 | * @req: the request need to be listed into the engine queue |
| 266 | */ |
| 267 | int crypto_transfer_aead_request_to_engine(struct crypto_engine *engine, |
| 268 | struct aead_request *req) |
| 269 | { |
| 270 | return crypto_transfer_request_to_engine(engine, req: &req->base); |
| 271 | } |
| 272 | EXPORT_SYMBOL_GPL(crypto_transfer_aead_request_to_engine); |
| 273 | |
| 274 | /** |
| 275 | * crypto_transfer_akcipher_request_to_engine - transfer one akcipher_request |
| 276 | * to list into the engine queue |
| 277 | * @engine: the hardware engine |
| 278 | * @req: the request need to be listed into the engine queue |
| 279 | */ |
| 280 | int crypto_transfer_akcipher_request_to_engine(struct crypto_engine *engine, |
| 281 | struct akcipher_request *req) |
| 282 | { |
| 283 | return crypto_transfer_request_to_engine(engine, req: &req->base); |
| 284 | } |
| 285 | EXPORT_SYMBOL_GPL(crypto_transfer_akcipher_request_to_engine); |
| 286 | |
| 287 | /** |
| 288 | * crypto_transfer_hash_request_to_engine - transfer one ahash_request |
| 289 | * to list into the engine queue |
| 290 | * @engine: the hardware engine |
| 291 | * @req: the request need to be listed into the engine queue |
| 292 | */ |
| 293 | int crypto_transfer_hash_request_to_engine(struct crypto_engine *engine, |
| 294 | struct ahash_request *req) |
| 295 | { |
| 296 | return crypto_transfer_request_to_engine(engine, req: &req->base); |
| 297 | } |
| 298 | EXPORT_SYMBOL_GPL(crypto_transfer_hash_request_to_engine); |
| 299 | |
| 300 | /** |
| 301 | * crypto_transfer_kpp_request_to_engine - transfer one kpp_request to list |
| 302 | * into the engine queue |
| 303 | * @engine: the hardware engine |
| 304 | * @req: the request need to be listed into the engine queue |
| 305 | */ |
| 306 | int crypto_transfer_kpp_request_to_engine(struct crypto_engine *engine, |
| 307 | struct kpp_request *req) |
| 308 | { |
| 309 | return crypto_transfer_request_to_engine(engine, req: &req->base); |
| 310 | } |
| 311 | EXPORT_SYMBOL_GPL(crypto_transfer_kpp_request_to_engine); |
| 312 | |
| 313 | /** |
| 314 | * crypto_transfer_skcipher_request_to_engine - transfer one skcipher_request |
| 315 | * to list into the engine queue |
| 316 | * @engine: the hardware engine |
| 317 | * @req: the request need to be listed into the engine queue |
| 318 | */ |
| 319 | int crypto_transfer_skcipher_request_to_engine(struct crypto_engine *engine, |
| 320 | struct skcipher_request *req) |
| 321 | { |
| 322 | return crypto_transfer_request_to_engine(engine, req: &req->base); |
| 323 | } |
| 324 | EXPORT_SYMBOL_GPL(crypto_transfer_skcipher_request_to_engine); |
| 325 | |
| 326 | /** |
| 327 | * crypto_finalize_aead_request - finalize one aead_request if |
| 328 | * the request is done |
| 329 | * @engine: the hardware engine |
| 330 | * @req: the request need to be finalized |
| 331 | * @err: error number |
| 332 | */ |
| 333 | void crypto_finalize_aead_request(struct crypto_engine *engine, |
| 334 | struct aead_request *req, int err) |
| 335 | { |
| 336 | return crypto_finalize_request(engine, req: &req->base, err); |
| 337 | } |
| 338 | EXPORT_SYMBOL_GPL(crypto_finalize_aead_request); |
| 339 | |
| 340 | /** |
| 341 | * crypto_finalize_akcipher_request - finalize one akcipher_request if |
| 342 | * the request is done |
| 343 | * @engine: the hardware engine |
| 344 | * @req: the request need to be finalized |
| 345 | * @err: error number |
| 346 | */ |
| 347 | void crypto_finalize_akcipher_request(struct crypto_engine *engine, |
| 348 | struct akcipher_request *req, int err) |
| 349 | { |
| 350 | return crypto_finalize_request(engine, req: &req->base, err); |
| 351 | } |
| 352 | EXPORT_SYMBOL_GPL(crypto_finalize_akcipher_request); |
| 353 | |
| 354 | /** |
| 355 | * crypto_finalize_hash_request - finalize one ahash_request if |
| 356 | * the request is done |
| 357 | * @engine: the hardware engine |
| 358 | * @req: the request need to be finalized |
| 359 | * @err: error number |
| 360 | */ |
| 361 | void crypto_finalize_hash_request(struct crypto_engine *engine, |
| 362 | struct ahash_request *req, int err) |
| 363 | { |
| 364 | return crypto_finalize_request(engine, req: &req->base, err); |
| 365 | } |
| 366 | EXPORT_SYMBOL_GPL(crypto_finalize_hash_request); |
| 367 | |
| 368 | /** |
| 369 | * crypto_finalize_kpp_request - finalize one kpp_request if the request is done |
| 370 | * @engine: the hardware engine |
| 371 | * @req: the request need to be finalized |
| 372 | * @err: error number |
| 373 | */ |
| 374 | void crypto_finalize_kpp_request(struct crypto_engine *engine, |
| 375 | struct kpp_request *req, int err) |
| 376 | { |
| 377 | return crypto_finalize_request(engine, req: &req->base, err); |
| 378 | } |
| 379 | EXPORT_SYMBOL_GPL(crypto_finalize_kpp_request); |
| 380 | |
| 381 | /** |
| 382 | * crypto_finalize_skcipher_request - finalize one skcipher_request if |
| 383 | * the request is done |
| 384 | * @engine: the hardware engine |
| 385 | * @req: the request need to be finalized |
| 386 | * @err: error number |
| 387 | */ |
| 388 | void crypto_finalize_skcipher_request(struct crypto_engine *engine, |
| 389 | struct skcipher_request *req, int err) |
| 390 | { |
| 391 | return crypto_finalize_request(engine, req: &req->base, err); |
| 392 | } |
| 393 | EXPORT_SYMBOL_GPL(crypto_finalize_skcipher_request); |
| 394 | |
| 395 | /** |
| 396 | * crypto_engine_start - start the hardware engine |
| 397 | * @engine: the hardware engine need to be started |
| 398 | * |
| 399 | * Return 0 on success, else on fail. |
| 400 | */ |
| 401 | int crypto_engine_start(struct crypto_engine *engine) |
| 402 | { |
| 403 | unsigned long flags; |
| 404 | |
| 405 | spin_lock_irqsave(&engine->queue_lock, flags); |
| 406 | |
| 407 | if (engine->running || engine->busy) { |
| 408 | spin_unlock_irqrestore(lock: &engine->queue_lock, flags); |
| 409 | return -EBUSY; |
| 410 | } |
| 411 | |
| 412 | engine->running = true; |
| 413 | spin_unlock_irqrestore(lock: &engine->queue_lock, flags); |
| 414 | |
| 415 | kthread_queue_work(worker: engine->kworker, work: &engine->pump_requests); |
| 416 | |
| 417 | return 0; |
| 418 | } |
| 419 | EXPORT_SYMBOL_GPL(crypto_engine_start); |
| 420 | |
| 421 | /** |
| 422 | * crypto_engine_stop - stop the hardware engine |
| 423 | * @engine: the hardware engine need to be stopped |
| 424 | * |
| 425 | * Return 0 on success, else on fail. |
| 426 | */ |
| 427 | int crypto_engine_stop(struct crypto_engine *engine) |
| 428 | { |
| 429 | unsigned long flags; |
| 430 | unsigned int limit = 500; |
| 431 | int ret = 0; |
| 432 | |
| 433 | spin_lock_irqsave(&engine->queue_lock, flags); |
| 434 | |
| 435 | /* |
| 436 | * If the engine queue is not empty or the engine is on busy state, |
| 437 | * we need to wait for a while to pump the requests of engine queue. |
| 438 | */ |
| 439 | while ((crypto_queue_len(queue: &engine->queue) || engine->busy) && limit--) { |
| 440 | spin_unlock_irqrestore(lock: &engine->queue_lock, flags); |
| 441 | msleep(msecs: 20); |
| 442 | spin_lock_irqsave(&engine->queue_lock, flags); |
| 443 | } |
| 444 | |
| 445 | if (crypto_queue_len(queue: &engine->queue) || engine->busy) |
| 446 | ret = -EBUSY; |
| 447 | else |
| 448 | engine->running = false; |
| 449 | |
| 450 | spin_unlock_irqrestore(lock: &engine->queue_lock, flags); |
| 451 | |
| 452 | if (ret) |
| 453 | dev_warn(engine->dev, "could not stop engine\n" ); |
| 454 | |
| 455 | return ret; |
| 456 | } |
| 457 | EXPORT_SYMBOL_GPL(crypto_engine_stop); |
| 458 | |
| 459 | /** |
| 460 | * crypto_engine_alloc_init_and_set - allocate crypto hardware engine structure |
| 461 | * and initialize it by setting the maximum number of entries in the software |
| 462 | * crypto-engine queue. |
| 463 | * @dev: the device attached with one hardware engine |
| 464 | * @retry_support: whether hardware has support for retry mechanism |
| 465 | * @cbk_do_batch: pointer to a callback function to be invoked when executing |
| 466 | * a batch of requests. |
| 467 | * This has the form: |
| 468 | * callback(struct crypto_engine *engine) |
| 469 | * where: |
| 470 | * engine: the crypto engine structure. |
| 471 | * @rt: whether this queue is set to run as a realtime task |
| 472 | * @qlen: maximum size of the crypto-engine queue |
| 473 | * |
| 474 | * This must be called from context that can sleep. |
| 475 | * Return: the crypto engine structure on success, else NULL. |
| 476 | */ |
| 477 | struct crypto_engine *crypto_engine_alloc_init_and_set(struct device *dev, |
| 478 | bool retry_support, |
| 479 | int (*cbk_do_batch)(struct crypto_engine *engine), |
| 480 | bool rt, int qlen) |
| 481 | { |
| 482 | struct crypto_engine *engine; |
| 483 | |
| 484 | if (!dev) |
| 485 | return NULL; |
| 486 | |
| 487 | engine = devm_kzalloc(dev, size: sizeof(*engine), GFP_KERNEL); |
| 488 | if (!engine) |
| 489 | return NULL; |
| 490 | |
| 491 | engine->dev = dev; |
| 492 | engine->rt = rt; |
| 493 | engine->running = false; |
| 494 | engine->busy = false; |
| 495 | engine->idling = false; |
| 496 | engine->retry_support = retry_support; |
| 497 | engine->priv_data = dev; |
| 498 | /* |
| 499 | * Batch requests is possible only if |
| 500 | * hardware has support for retry mechanism. |
| 501 | */ |
| 502 | engine->do_batch_requests = retry_support ? cbk_do_batch : NULL; |
| 503 | |
| 504 | snprintf(buf: engine->name, size: sizeof(engine->name), |
| 505 | fmt: "%s-engine" , dev_name(dev)); |
| 506 | |
| 507 | crypto_init_queue(queue: &engine->queue, max_qlen: qlen); |
| 508 | spin_lock_init(&engine->queue_lock); |
| 509 | |
| 510 | engine->kworker = kthread_run_worker(0, "%s" , engine->name); |
| 511 | if (IS_ERR(ptr: engine->kworker)) { |
| 512 | dev_err(dev, "failed to create crypto request pump task\n" ); |
| 513 | return NULL; |
| 514 | } |
| 515 | kthread_init_work(&engine->pump_requests, crypto_pump_work); |
| 516 | |
| 517 | if (engine->rt) { |
| 518 | dev_info(dev, "will run requests pump with realtime priority\n" ); |
| 519 | sched_set_fifo(p: engine->kworker->task); |
| 520 | } |
| 521 | |
| 522 | return engine; |
| 523 | } |
| 524 | EXPORT_SYMBOL_GPL(crypto_engine_alloc_init_and_set); |
| 525 | |
| 526 | /** |
| 527 | * crypto_engine_alloc_init - allocate crypto hardware engine structure and |
| 528 | * initialize it. |
| 529 | * @dev: the device attached with one hardware engine |
| 530 | * @rt: whether this queue is set to run as a realtime task |
| 531 | * |
| 532 | * This must be called from context that can sleep. |
| 533 | * Return: the crypto engine structure on success, else NULL. |
| 534 | */ |
| 535 | struct crypto_engine *crypto_engine_alloc_init(struct device *dev, bool rt) |
| 536 | { |
| 537 | return crypto_engine_alloc_init_and_set(dev, false, NULL, rt, |
| 538 | CRYPTO_ENGINE_MAX_QLEN); |
| 539 | } |
| 540 | EXPORT_SYMBOL_GPL(crypto_engine_alloc_init); |
| 541 | |
| 542 | /** |
| 543 | * crypto_engine_exit - free the resources of hardware engine when exit |
| 544 | * @engine: the hardware engine need to be freed |
| 545 | */ |
| 546 | void crypto_engine_exit(struct crypto_engine *engine) |
| 547 | { |
| 548 | int ret; |
| 549 | |
| 550 | ret = crypto_engine_stop(engine); |
| 551 | if (ret) |
| 552 | return; |
| 553 | |
| 554 | kthread_destroy_worker(worker: engine->kworker); |
| 555 | } |
| 556 | EXPORT_SYMBOL_GPL(crypto_engine_exit); |
| 557 | |
| 558 | int crypto_engine_register_aead(struct aead_engine_alg *alg) |
| 559 | { |
| 560 | if (!alg->op.do_one_request) |
| 561 | return -EINVAL; |
| 562 | return crypto_register_aead(alg: &alg->base); |
| 563 | } |
| 564 | EXPORT_SYMBOL_GPL(crypto_engine_register_aead); |
| 565 | |
| 566 | void crypto_engine_unregister_aead(struct aead_engine_alg *alg) |
| 567 | { |
| 568 | crypto_unregister_aead(alg: &alg->base); |
| 569 | } |
| 570 | EXPORT_SYMBOL_GPL(crypto_engine_unregister_aead); |
| 571 | |
| 572 | int crypto_engine_register_aeads(struct aead_engine_alg *algs, int count) |
| 573 | { |
| 574 | int i, ret; |
| 575 | |
| 576 | for (i = 0; i < count; i++) { |
| 577 | ret = crypto_engine_register_aead(&algs[i]); |
| 578 | if (ret) |
| 579 | goto err; |
| 580 | } |
| 581 | |
| 582 | return 0; |
| 583 | |
| 584 | err: |
| 585 | crypto_engine_unregister_aeads(algs, count: i); |
| 586 | |
| 587 | return ret; |
| 588 | } |
| 589 | EXPORT_SYMBOL_GPL(crypto_engine_register_aeads); |
| 590 | |
| 591 | void crypto_engine_unregister_aeads(struct aead_engine_alg *algs, int count) |
| 592 | { |
| 593 | int i; |
| 594 | |
| 595 | for (i = count - 1; i >= 0; --i) |
| 596 | crypto_engine_unregister_aead(&algs[i]); |
| 597 | } |
| 598 | EXPORT_SYMBOL_GPL(crypto_engine_unregister_aeads); |
| 599 | |
| 600 | int crypto_engine_register_ahash(struct ahash_engine_alg *alg) |
| 601 | { |
| 602 | if (!alg->op.do_one_request) |
| 603 | return -EINVAL; |
| 604 | return crypto_register_ahash(alg: &alg->base); |
| 605 | } |
| 606 | EXPORT_SYMBOL_GPL(crypto_engine_register_ahash); |
| 607 | |
| 608 | void crypto_engine_unregister_ahash(struct ahash_engine_alg *alg) |
| 609 | { |
| 610 | crypto_unregister_ahash(alg: &alg->base); |
| 611 | } |
| 612 | EXPORT_SYMBOL_GPL(crypto_engine_unregister_ahash); |
| 613 | |
| 614 | int crypto_engine_register_ahashes(struct ahash_engine_alg *algs, int count) |
| 615 | { |
| 616 | int i, ret; |
| 617 | |
| 618 | for (i = 0; i < count; i++) { |
| 619 | ret = crypto_engine_register_ahash(&algs[i]); |
| 620 | if (ret) |
| 621 | goto err; |
| 622 | } |
| 623 | |
| 624 | return 0; |
| 625 | |
| 626 | err: |
| 627 | crypto_engine_unregister_ahashes(algs, count: i); |
| 628 | |
| 629 | return ret; |
| 630 | } |
| 631 | EXPORT_SYMBOL_GPL(crypto_engine_register_ahashes); |
| 632 | |
| 633 | void crypto_engine_unregister_ahashes(struct ahash_engine_alg *algs, |
| 634 | int count) |
| 635 | { |
| 636 | int i; |
| 637 | |
| 638 | for (i = count - 1; i >= 0; --i) |
| 639 | crypto_engine_unregister_ahash(&algs[i]); |
| 640 | } |
| 641 | EXPORT_SYMBOL_GPL(crypto_engine_unregister_ahashes); |
| 642 | |
| 643 | int crypto_engine_register_akcipher(struct akcipher_engine_alg *alg) |
| 644 | { |
| 645 | if (!alg->op.do_one_request) |
| 646 | return -EINVAL; |
| 647 | return crypto_register_akcipher(alg: &alg->base); |
| 648 | } |
| 649 | EXPORT_SYMBOL_GPL(crypto_engine_register_akcipher); |
| 650 | |
| 651 | void crypto_engine_unregister_akcipher(struct akcipher_engine_alg *alg) |
| 652 | { |
| 653 | crypto_unregister_akcipher(alg: &alg->base); |
| 654 | } |
| 655 | EXPORT_SYMBOL_GPL(crypto_engine_unregister_akcipher); |
| 656 | |
| 657 | int crypto_engine_register_kpp(struct kpp_engine_alg *alg) |
| 658 | { |
| 659 | if (!alg->op.do_one_request) |
| 660 | return -EINVAL; |
| 661 | return crypto_register_kpp(alg: &alg->base); |
| 662 | } |
| 663 | EXPORT_SYMBOL_GPL(crypto_engine_register_kpp); |
| 664 | |
| 665 | void crypto_engine_unregister_kpp(struct kpp_engine_alg *alg) |
| 666 | { |
| 667 | crypto_unregister_kpp(alg: &alg->base); |
| 668 | } |
| 669 | EXPORT_SYMBOL_GPL(crypto_engine_unregister_kpp); |
| 670 | |
| 671 | int crypto_engine_register_skcipher(struct skcipher_engine_alg *alg) |
| 672 | { |
| 673 | if (!alg->op.do_one_request) |
| 674 | return -EINVAL; |
| 675 | return crypto_register_skcipher(alg: &alg->base); |
| 676 | } |
| 677 | EXPORT_SYMBOL_GPL(crypto_engine_register_skcipher); |
| 678 | |
| 679 | void crypto_engine_unregister_skcipher(struct skcipher_engine_alg *alg) |
| 680 | { |
| 681 | return crypto_unregister_skcipher(alg: &alg->base); |
| 682 | } |
| 683 | EXPORT_SYMBOL_GPL(crypto_engine_unregister_skcipher); |
| 684 | |
| 685 | int crypto_engine_register_skciphers(struct skcipher_engine_alg *algs, |
| 686 | int count) |
| 687 | { |
| 688 | int i, ret; |
| 689 | |
| 690 | for (i = 0; i < count; i++) { |
| 691 | ret = crypto_engine_register_skcipher(&algs[i]); |
| 692 | if (ret) |
| 693 | goto err; |
| 694 | } |
| 695 | |
| 696 | return 0; |
| 697 | |
| 698 | err: |
| 699 | crypto_engine_unregister_skciphers(algs, count: i); |
| 700 | |
| 701 | return ret; |
| 702 | } |
| 703 | EXPORT_SYMBOL_GPL(crypto_engine_register_skciphers); |
| 704 | |
| 705 | void crypto_engine_unregister_skciphers(struct skcipher_engine_alg *algs, |
| 706 | int count) |
| 707 | { |
| 708 | int i; |
| 709 | |
| 710 | for (i = count - 1; i >= 0; --i) |
| 711 | crypto_engine_unregister_skcipher(&algs[i]); |
| 712 | } |
| 713 | EXPORT_SYMBOL_GPL(crypto_engine_unregister_skciphers); |
| 714 | |
| 715 | MODULE_LICENSE("GPL" ); |
| 716 | MODULE_DESCRIPTION("Crypto hardware engine framework" ); |
| 717 | |