| 1 | /* SPDX-License-Identifier: GPL-2.0-or-later */ |
| 2 | /* |
| 3 | * Symmetric key ciphers. |
| 4 | * |
| 5 | * Copyright (c) 2007-2015 Herbert Xu <herbert@gondor.apana.org.au> |
| 6 | */ |
| 7 | |
| 8 | #ifndef _CRYPTO_SKCIPHER_H |
| 9 | #define _CRYPTO_SKCIPHER_H |
| 10 | |
| 11 | #include <linux/atomic.h> |
| 12 | #include <linux/container_of.h> |
| 13 | #include <linux/crypto.h> |
| 14 | #include <linux/slab.h> |
| 15 | #include <linux/string.h> |
| 16 | #include <linux/types.h> |
| 17 | |
| 18 | /* Set this bit if the lskcipher operation is a continuation. */ |
| 19 | #define CRYPTO_LSKCIPHER_FLAG_CONT 0x00000001 |
| 20 | /* Set this bit if the lskcipher operation is final. */ |
| 21 | #define CRYPTO_LSKCIPHER_FLAG_FINAL 0x00000002 |
| 22 | /* The bit CRYPTO_TFM_REQ_MAY_SLEEP can also be set if needed. */ |
| 23 | |
| 24 | /* Set this bit if the skcipher operation is a continuation. */ |
| 25 | #define CRYPTO_SKCIPHER_REQ_CONT 0x00000001 |
| 26 | /* Set this bit if the skcipher operation is not final. */ |
| 27 | #define CRYPTO_SKCIPHER_REQ_NOTFINAL 0x00000002 |
| 28 | |
| 29 | struct scatterlist; |
| 30 | |
| 31 | /** |
| 32 | * struct skcipher_request - Symmetric key cipher request |
| 33 | * @cryptlen: Number of bytes to encrypt or decrypt |
| 34 | * @iv: Initialisation Vector |
| 35 | * @src: Source SG list |
| 36 | * @dst: Destination SG list |
| 37 | * @base: Underlying async request |
| 38 | * @__ctx: Start of private context data |
| 39 | */ |
| 40 | struct skcipher_request { |
| 41 | unsigned int cryptlen; |
| 42 | |
| 43 | u8 *iv; |
| 44 | |
| 45 | struct scatterlist *src; |
| 46 | struct scatterlist *dst; |
| 47 | |
| 48 | struct crypto_async_request base; |
| 49 | |
| 50 | void *__ctx[] CRYPTO_MINALIGN_ATTR; |
| 51 | }; |
| 52 | |
| 53 | struct crypto_skcipher { |
| 54 | unsigned int reqsize; |
| 55 | |
| 56 | struct crypto_tfm base; |
| 57 | }; |
| 58 | |
| 59 | struct crypto_sync_skcipher { |
| 60 | struct crypto_skcipher base; |
| 61 | }; |
| 62 | |
| 63 | struct crypto_lskcipher { |
| 64 | struct crypto_tfm base; |
| 65 | }; |
| 66 | |
| 67 | /* |
| 68 | * struct skcipher_alg_common - common properties of skcipher_alg |
| 69 | * @min_keysize: Minimum key size supported by the transformation. This is the |
| 70 | * smallest key length supported by this transformation algorithm. |
| 71 | * This must be set to one of the pre-defined values as this is |
| 72 | * not hardware specific. Possible values for this field can be |
| 73 | * found via git grep "_MIN_KEY_SIZE" include/crypto/ |
| 74 | * @max_keysize: Maximum key size supported by the transformation. This is the |
| 75 | * largest key length supported by this transformation algorithm. |
| 76 | * This must be set to one of the pre-defined values as this is |
| 77 | * not hardware specific. Possible values for this field can be |
| 78 | * found via git grep "_MAX_KEY_SIZE" include/crypto/ |
| 79 | * @ivsize: IV size applicable for transformation. The consumer must provide an |
| 80 | * IV of exactly that size to perform the encrypt or decrypt operation. |
| 81 | * @chunksize: Equal to the block size except for stream ciphers such as |
| 82 | * CTR where it is set to the underlying block size. |
| 83 | * @statesize: Size of the internal state for the algorithm. |
| 84 | * @base: Definition of a generic crypto algorithm. |
| 85 | */ |
| 86 | #define SKCIPHER_ALG_COMMON { \ |
| 87 | unsigned int min_keysize; \ |
| 88 | unsigned int max_keysize; \ |
| 89 | unsigned int ivsize; \ |
| 90 | unsigned int chunksize; \ |
| 91 | unsigned int statesize; \ |
| 92 | \ |
| 93 | struct crypto_alg base; \ |
| 94 | } |
| 95 | struct skcipher_alg_common SKCIPHER_ALG_COMMON; |
| 96 | |
| 97 | /** |
| 98 | * struct skcipher_alg - symmetric key cipher definition |
| 99 | * @setkey: Set key for the transformation. This function is used to either |
| 100 | * program a supplied key into the hardware or store the key in the |
| 101 | * transformation context for programming it later. Note that this |
| 102 | * function does modify the transformation context. This function can |
| 103 | * be called multiple times during the existence of the transformation |
| 104 | * object, so one must make sure the key is properly reprogrammed into |
| 105 | * the hardware. This function is also responsible for checking the key |
| 106 | * length for validity. In case a software fallback was put in place in |
| 107 | * the @cra_init call, this function might need to use the fallback if |
| 108 | * the algorithm doesn't support all of the key sizes. |
| 109 | * @encrypt: Encrypt a scatterlist of blocks. This function is used to encrypt |
| 110 | * the supplied scatterlist containing the blocks of data. The crypto |
| 111 | * API consumer is responsible for aligning the entries of the |
| 112 | * scatterlist properly and making sure the chunks are correctly |
| 113 | * sized. In case a software fallback was put in place in the |
| 114 | * @cra_init call, this function might need to use the fallback if |
| 115 | * the algorithm doesn't support all of the key sizes. In case the |
| 116 | * key was stored in transformation context, the key might need to be |
| 117 | * re-programmed into the hardware in this function. This function |
| 118 | * shall not modify the transformation context, as this function may |
| 119 | * be called in parallel with the same transformation object. |
| 120 | * @decrypt: Decrypt a single block. This is a reverse counterpart to @encrypt |
| 121 | * and the conditions are exactly the same. |
| 122 | * @export: Export partial state of the transformation. This function dumps the |
| 123 | * entire state of the ongoing transformation into a provided block of |
| 124 | * data so it can be @import 'ed back later on. This is useful in case |
| 125 | * you want to save partial result of the transformation after |
| 126 | * processing certain amount of data and reload this partial result |
| 127 | * multiple times later on for multiple re-use. No data processing |
| 128 | * happens at this point. |
| 129 | * @import: Import partial state of the transformation. This function loads the |
| 130 | * entire state of the ongoing transformation from a provided block of |
| 131 | * data so the transformation can continue from this point onward. No |
| 132 | * data processing happens at this point. |
| 133 | * @init: Initialize the cryptographic transformation object. This function |
| 134 | * is used to initialize the cryptographic transformation object. |
| 135 | * This function is called only once at the instantiation time, right |
| 136 | * after the transformation context was allocated. In case the |
| 137 | * cryptographic hardware has some special requirements which need to |
| 138 | * be handled by software, this function shall check for the precise |
| 139 | * requirement of the transformation and put any software fallbacks |
| 140 | * in place. |
| 141 | * @exit: Deinitialize the cryptographic transformation object. This is a |
| 142 | * counterpart to @init, used to remove various changes set in |
| 143 | * @init. |
| 144 | * @walksize: Equal to the chunk size except in cases where the algorithm is |
| 145 | * considerably more efficient if it can operate on multiple chunks |
| 146 | * in parallel. Should be a multiple of chunksize. |
| 147 | * @co: see struct skcipher_alg_common |
| 148 | * |
| 149 | * All fields except @ivsize are mandatory and must be filled. |
| 150 | */ |
| 151 | struct skcipher_alg { |
| 152 | int (*setkey)(struct crypto_skcipher *tfm, const u8 *key, |
| 153 | unsigned int keylen); |
| 154 | int (*encrypt)(struct skcipher_request *req); |
| 155 | int (*decrypt)(struct skcipher_request *req); |
| 156 | int (*export)(struct skcipher_request *req, void *out); |
| 157 | int (*import)(struct skcipher_request *req, const void *in); |
| 158 | int (*init)(struct crypto_skcipher *tfm); |
| 159 | void (*exit)(struct crypto_skcipher *tfm); |
| 160 | |
| 161 | unsigned int walksize; |
| 162 | |
| 163 | union { |
| 164 | struct SKCIPHER_ALG_COMMON; |
| 165 | struct skcipher_alg_common co; |
| 166 | }; |
| 167 | }; |
| 168 | |
| 169 | /** |
| 170 | * struct lskcipher_alg - linear symmetric key cipher definition |
| 171 | * @setkey: Set key for the transformation. This function is used to either |
| 172 | * program a supplied key into the hardware or store the key in the |
| 173 | * transformation context for programming it later. Note that this |
| 174 | * function does modify the transformation context. This function can |
| 175 | * be called multiple times during the existence of the transformation |
| 176 | * object, so one must make sure the key is properly reprogrammed into |
| 177 | * the hardware. This function is also responsible for checking the key |
| 178 | * length for validity. In case a software fallback was put in place in |
| 179 | * the @cra_init call, this function might need to use the fallback if |
| 180 | * the algorithm doesn't support all of the key sizes. |
| 181 | * @encrypt: Encrypt a number of bytes. This function is used to encrypt |
| 182 | * the supplied data. This function shall not modify |
| 183 | * the transformation context, as this function may be called |
| 184 | * in parallel with the same transformation object. Data |
| 185 | * may be left over if length is not a multiple of blocks |
| 186 | * and there is more to come (final == false). The number of |
| 187 | * left-over bytes should be returned in case of success. |
| 188 | * The siv field shall be as long as ivsize + statesize with |
| 189 | * the IV placed at the front. The state will be used by the |
| 190 | * algorithm internally. |
| 191 | * @decrypt: Decrypt a number of bytes. This is a reverse counterpart to |
| 192 | * @encrypt and the conditions are exactly the same. |
| 193 | * @init: Initialize the cryptographic transformation object. This function |
| 194 | * is used to initialize the cryptographic transformation object. |
| 195 | * This function is called only once at the instantiation time, right |
| 196 | * after the transformation context was allocated. |
| 197 | * @exit: Deinitialize the cryptographic transformation object. This is a |
| 198 | * counterpart to @init, used to remove various changes set in |
| 199 | * @init. |
| 200 | * @co: see struct skcipher_alg_common |
| 201 | */ |
| 202 | struct lskcipher_alg { |
| 203 | int (*setkey)(struct crypto_lskcipher *tfm, const u8 *key, |
| 204 | unsigned int keylen); |
| 205 | int (*encrypt)(struct crypto_lskcipher *tfm, const u8 *src, |
| 206 | u8 *dst, unsigned len, u8 *siv, u32 flags); |
| 207 | int (*decrypt)(struct crypto_lskcipher *tfm, const u8 *src, |
| 208 | u8 *dst, unsigned len, u8 *siv, u32 flags); |
| 209 | int (*init)(struct crypto_lskcipher *tfm); |
| 210 | void (*exit)(struct crypto_lskcipher *tfm); |
| 211 | |
| 212 | struct skcipher_alg_common co; |
| 213 | }; |
| 214 | |
| 215 | #define MAX_SYNC_SKCIPHER_REQSIZE 384 |
| 216 | /* |
| 217 | * This performs a type-check against the "_tfm" argument to make sure |
| 218 | * all users have the correct skcipher tfm for doing on-stack requests. |
| 219 | */ |
| 220 | #define SYNC_SKCIPHER_REQUEST_ON_STACK(name, _tfm) \ |
| 221 | char __##name##_desc[sizeof(struct skcipher_request) + \ |
| 222 | MAX_SYNC_SKCIPHER_REQSIZE \ |
| 223 | ] CRYPTO_MINALIGN_ATTR; \ |
| 224 | struct skcipher_request *name = \ |
| 225 | (((struct skcipher_request *)__##name##_desc)->base.tfm = \ |
| 226 | crypto_sync_skcipher_tfm((_tfm)), \ |
| 227 | (void *)__##name##_desc) |
| 228 | |
| 229 | /** |
| 230 | * DOC: Symmetric Key Cipher API |
| 231 | * |
| 232 | * Symmetric key cipher API is used with the ciphers of type |
| 233 | * CRYPTO_ALG_TYPE_SKCIPHER (listed as type "skcipher" in /proc/crypto). |
| 234 | * |
| 235 | * Asynchronous cipher operations imply that the function invocation for a |
| 236 | * cipher request returns immediately before the completion of the operation. |
| 237 | * The cipher request is scheduled as a separate kernel thread and therefore |
| 238 | * load-balanced on the different CPUs via the process scheduler. To allow |
| 239 | * the kernel crypto API to inform the caller about the completion of a cipher |
| 240 | * request, the caller must provide a callback function. That function is |
| 241 | * invoked with the cipher handle when the request completes. |
| 242 | * |
| 243 | * To support the asynchronous operation, additional information than just the |
| 244 | * cipher handle must be supplied to the kernel crypto API. That additional |
| 245 | * information is given by filling in the skcipher_request data structure. |
| 246 | * |
| 247 | * For the symmetric key cipher API, the state is maintained with the tfm |
| 248 | * cipher handle. A single tfm can be used across multiple calls and in |
| 249 | * parallel. For asynchronous block cipher calls, context data supplied and |
| 250 | * only used by the caller can be referenced the request data structure in |
| 251 | * addition to the IV used for the cipher request. The maintenance of such |
| 252 | * state information would be important for a crypto driver implementer to |
| 253 | * have, because when calling the callback function upon completion of the |
| 254 | * cipher operation, that callback function may need some information about |
| 255 | * which operation just finished if it invoked multiple in parallel. This |
| 256 | * state information is unused by the kernel crypto API. |
| 257 | */ |
| 258 | |
| 259 | static inline struct crypto_skcipher *__crypto_skcipher_cast( |
| 260 | struct crypto_tfm *tfm) |
| 261 | { |
| 262 | return container_of(tfm, struct crypto_skcipher, base); |
| 263 | } |
| 264 | |
| 265 | /** |
| 266 | * crypto_alloc_skcipher() - allocate symmetric key cipher handle |
| 267 | * @alg_name: is the cra_name / name or cra_driver_name / driver name of the |
| 268 | * skcipher cipher |
| 269 | * @type: specifies the type of the cipher |
| 270 | * @mask: specifies the mask for the cipher |
| 271 | * |
| 272 | * Allocate a cipher handle for an skcipher. The returned struct |
| 273 | * crypto_skcipher is the cipher handle that is required for any subsequent |
| 274 | * API invocation for that skcipher. |
| 275 | * |
| 276 | * Return: allocated cipher handle in case of success; IS_ERR() is true in case |
| 277 | * of an error, PTR_ERR() returns the error code. |
| 278 | */ |
| 279 | struct crypto_skcipher *crypto_alloc_skcipher(const char *alg_name, |
| 280 | u32 type, u32 mask); |
| 281 | |
| 282 | struct crypto_sync_skcipher *crypto_alloc_sync_skcipher(const char *alg_name, |
| 283 | u32 type, u32 mask); |
| 284 | |
| 285 | |
| 286 | /** |
| 287 | * crypto_alloc_lskcipher() - allocate linear symmetric key cipher handle |
| 288 | * @alg_name: is the cra_name / name or cra_driver_name / driver name of the |
| 289 | * lskcipher |
| 290 | * @type: specifies the type of the cipher |
| 291 | * @mask: specifies the mask for the cipher |
| 292 | * |
| 293 | * Allocate a cipher handle for an lskcipher. The returned struct |
| 294 | * crypto_lskcipher is the cipher handle that is required for any subsequent |
| 295 | * API invocation for that lskcipher. |
| 296 | * |
| 297 | * Return: allocated cipher handle in case of success; IS_ERR() is true in case |
| 298 | * of an error, PTR_ERR() returns the error code. |
| 299 | */ |
| 300 | struct crypto_lskcipher *crypto_alloc_lskcipher(const char *alg_name, |
| 301 | u32 type, u32 mask); |
| 302 | |
| 303 | static inline struct crypto_tfm *crypto_skcipher_tfm( |
| 304 | struct crypto_skcipher *tfm) |
| 305 | { |
| 306 | return &tfm->base; |
| 307 | } |
| 308 | |
| 309 | static inline struct crypto_tfm *crypto_lskcipher_tfm( |
| 310 | struct crypto_lskcipher *tfm) |
| 311 | { |
| 312 | return &tfm->base; |
| 313 | } |
| 314 | |
| 315 | static inline struct crypto_tfm *crypto_sync_skcipher_tfm( |
| 316 | struct crypto_sync_skcipher *tfm) |
| 317 | { |
| 318 | return crypto_skcipher_tfm(tfm: &tfm->base); |
| 319 | } |
| 320 | |
| 321 | /** |
| 322 | * crypto_free_skcipher() - zeroize and free cipher handle |
| 323 | * @tfm: cipher handle to be freed |
| 324 | * |
| 325 | * If @tfm is a NULL or error pointer, this function does nothing. |
| 326 | */ |
| 327 | static inline void crypto_free_skcipher(struct crypto_skcipher *tfm) |
| 328 | { |
| 329 | crypto_destroy_tfm(mem: tfm, tfm: crypto_skcipher_tfm(tfm)); |
| 330 | } |
| 331 | |
| 332 | static inline void crypto_free_sync_skcipher(struct crypto_sync_skcipher *tfm) |
| 333 | { |
| 334 | crypto_free_skcipher(tfm: &tfm->base); |
| 335 | } |
| 336 | |
| 337 | /** |
| 338 | * crypto_free_lskcipher() - zeroize and free cipher handle |
| 339 | * @tfm: cipher handle to be freed |
| 340 | * |
| 341 | * If @tfm is a NULL or error pointer, this function does nothing. |
| 342 | */ |
| 343 | static inline void crypto_free_lskcipher(struct crypto_lskcipher *tfm) |
| 344 | { |
| 345 | crypto_destroy_tfm(mem: tfm, tfm: crypto_lskcipher_tfm(tfm)); |
| 346 | } |
| 347 | |
| 348 | /** |
| 349 | * crypto_has_skcipher() - Search for the availability of an skcipher. |
| 350 | * @alg_name: is the cra_name / name or cra_driver_name / driver name of the |
| 351 | * skcipher |
| 352 | * @type: specifies the type of the skcipher |
| 353 | * @mask: specifies the mask for the skcipher |
| 354 | * |
| 355 | * Return: true when the skcipher is known to the kernel crypto API; false |
| 356 | * otherwise |
| 357 | */ |
| 358 | int crypto_has_skcipher(const char *alg_name, u32 type, u32 mask); |
| 359 | |
| 360 | static inline const char *crypto_skcipher_driver_name( |
| 361 | struct crypto_skcipher *tfm) |
| 362 | { |
| 363 | return crypto_tfm_alg_driver_name(tfm: crypto_skcipher_tfm(tfm)); |
| 364 | } |
| 365 | |
| 366 | static inline const char *crypto_lskcipher_driver_name( |
| 367 | struct crypto_lskcipher *tfm) |
| 368 | { |
| 369 | return crypto_tfm_alg_driver_name(tfm: crypto_lskcipher_tfm(tfm)); |
| 370 | } |
| 371 | |
| 372 | static inline struct skcipher_alg_common *crypto_skcipher_alg_common( |
| 373 | struct crypto_skcipher *tfm) |
| 374 | { |
| 375 | return container_of(crypto_skcipher_tfm(tfm)->__crt_alg, |
| 376 | struct skcipher_alg_common, base); |
| 377 | } |
| 378 | |
| 379 | static inline struct skcipher_alg *crypto_skcipher_alg( |
| 380 | struct crypto_skcipher *tfm) |
| 381 | { |
| 382 | return container_of(crypto_skcipher_tfm(tfm)->__crt_alg, |
| 383 | struct skcipher_alg, base); |
| 384 | } |
| 385 | |
| 386 | static inline struct lskcipher_alg *crypto_lskcipher_alg( |
| 387 | struct crypto_lskcipher *tfm) |
| 388 | { |
| 389 | return container_of(crypto_lskcipher_tfm(tfm)->__crt_alg, |
| 390 | struct lskcipher_alg, co.base); |
| 391 | } |
| 392 | |
| 393 | /** |
| 394 | * crypto_skcipher_ivsize() - obtain IV size |
| 395 | * @tfm: cipher handle |
| 396 | * |
| 397 | * The size of the IV for the skcipher referenced by the cipher handle is |
| 398 | * returned. This IV size may be zero if the cipher does not need an IV. |
| 399 | * |
| 400 | * Return: IV size in bytes |
| 401 | */ |
| 402 | static inline unsigned int crypto_skcipher_ivsize(struct crypto_skcipher *tfm) |
| 403 | { |
| 404 | return crypto_skcipher_alg_common(tfm)->ivsize; |
| 405 | } |
| 406 | |
| 407 | static inline unsigned int crypto_sync_skcipher_ivsize( |
| 408 | struct crypto_sync_skcipher *tfm) |
| 409 | { |
| 410 | return crypto_skcipher_ivsize(tfm: &tfm->base); |
| 411 | } |
| 412 | |
| 413 | /** |
| 414 | * crypto_lskcipher_ivsize() - obtain IV size |
| 415 | * @tfm: cipher handle |
| 416 | * |
| 417 | * The size of the IV for the lskcipher referenced by the cipher handle is |
| 418 | * returned. This IV size may be zero if the cipher does not need an IV. |
| 419 | * |
| 420 | * Return: IV size in bytes |
| 421 | */ |
| 422 | static inline unsigned int crypto_lskcipher_ivsize( |
| 423 | struct crypto_lskcipher *tfm) |
| 424 | { |
| 425 | return crypto_lskcipher_alg(tfm)->co.ivsize; |
| 426 | } |
| 427 | |
| 428 | /** |
| 429 | * crypto_skcipher_blocksize() - obtain block size of cipher |
| 430 | * @tfm: cipher handle |
| 431 | * |
| 432 | * The block size for the skcipher referenced with the cipher handle is |
| 433 | * returned. The caller may use that information to allocate appropriate |
| 434 | * memory for the data returned by the encryption or decryption operation |
| 435 | * |
| 436 | * Return: block size of cipher |
| 437 | */ |
| 438 | static inline unsigned int crypto_skcipher_blocksize( |
| 439 | struct crypto_skcipher *tfm) |
| 440 | { |
| 441 | return crypto_tfm_alg_blocksize(tfm: crypto_skcipher_tfm(tfm)); |
| 442 | } |
| 443 | |
| 444 | /** |
| 445 | * crypto_lskcipher_blocksize() - obtain block size of cipher |
| 446 | * @tfm: cipher handle |
| 447 | * |
| 448 | * The block size for the lskcipher referenced with the cipher handle is |
| 449 | * returned. The caller may use that information to allocate appropriate |
| 450 | * memory for the data returned by the encryption or decryption operation |
| 451 | * |
| 452 | * Return: block size of cipher |
| 453 | */ |
| 454 | static inline unsigned int crypto_lskcipher_blocksize( |
| 455 | struct crypto_lskcipher *tfm) |
| 456 | { |
| 457 | return crypto_tfm_alg_blocksize(tfm: crypto_lskcipher_tfm(tfm)); |
| 458 | } |
| 459 | |
| 460 | /** |
| 461 | * crypto_skcipher_chunksize() - obtain chunk size |
| 462 | * @tfm: cipher handle |
| 463 | * |
| 464 | * The block size is set to one for ciphers such as CTR. However, |
| 465 | * you still need to provide incremental updates in multiples of |
| 466 | * the underlying block size as the IV does not have sub-block |
| 467 | * granularity. This is known in this API as the chunk size. |
| 468 | * |
| 469 | * Return: chunk size in bytes |
| 470 | */ |
| 471 | static inline unsigned int crypto_skcipher_chunksize( |
| 472 | struct crypto_skcipher *tfm) |
| 473 | { |
| 474 | return crypto_skcipher_alg_common(tfm)->chunksize; |
| 475 | } |
| 476 | |
| 477 | /** |
| 478 | * crypto_lskcipher_chunksize() - obtain chunk size |
| 479 | * @tfm: cipher handle |
| 480 | * |
| 481 | * The block size is set to one for ciphers such as CTR. However, |
| 482 | * you still need to provide incremental updates in multiples of |
| 483 | * the underlying block size as the IV does not have sub-block |
| 484 | * granularity. This is known in this API as the chunk size. |
| 485 | * |
| 486 | * Return: chunk size in bytes |
| 487 | */ |
| 488 | static inline unsigned int crypto_lskcipher_chunksize( |
| 489 | struct crypto_lskcipher *tfm) |
| 490 | { |
| 491 | return crypto_lskcipher_alg(tfm)->co.chunksize; |
| 492 | } |
| 493 | |
| 494 | /** |
| 495 | * crypto_skcipher_statesize() - obtain state size |
| 496 | * @tfm: cipher handle |
| 497 | * |
| 498 | * Some algorithms cannot be chained with the IV alone. They carry |
| 499 | * internal state which must be replicated if data is to be processed |
| 500 | * incrementally. The size of that state can be obtained with this |
| 501 | * function. |
| 502 | * |
| 503 | * Return: state size in bytes |
| 504 | */ |
| 505 | static inline unsigned int crypto_skcipher_statesize( |
| 506 | struct crypto_skcipher *tfm) |
| 507 | { |
| 508 | return crypto_skcipher_alg_common(tfm)->statesize; |
| 509 | } |
| 510 | |
| 511 | /** |
| 512 | * crypto_lskcipher_statesize() - obtain state size |
| 513 | * @tfm: cipher handle |
| 514 | * |
| 515 | * Some algorithms cannot be chained with the IV alone. They carry |
| 516 | * internal state which must be replicated if data is to be processed |
| 517 | * incrementally. The size of that state can be obtained with this |
| 518 | * function. |
| 519 | * |
| 520 | * Return: state size in bytes |
| 521 | */ |
| 522 | static inline unsigned int crypto_lskcipher_statesize( |
| 523 | struct crypto_lskcipher *tfm) |
| 524 | { |
| 525 | return crypto_lskcipher_alg(tfm)->co.statesize; |
| 526 | } |
| 527 | |
| 528 | static inline unsigned int crypto_sync_skcipher_blocksize( |
| 529 | struct crypto_sync_skcipher *tfm) |
| 530 | { |
| 531 | return crypto_skcipher_blocksize(tfm: &tfm->base); |
| 532 | } |
| 533 | |
| 534 | static inline unsigned int crypto_skcipher_alignmask( |
| 535 | struct crypto_skcipher *tfm) |
| 536 | { |
| 537 | return crypto_tfm_alg_alignmask(tfm: crypto_skcipher_tfm(tfm)); |
| 538 | } |
| 539 | |
| 540 | static inline unsigned int crypto_lskcipher_alignmask( |
| 541 | struct crypto_lskcipher *tfm) |
| 542 | { |
| 543 | return crypto_tfm_alg_alignmask(tfm: crypto_lskcipher_tfm(tfm)); |
| 544 | } |
| 545 | |
| 546 | static inline u32 crypto_skcipher_get_flags(struct crypto_skcipher *tfm) |
| 547 | { |
| 548 | return crypto_tfm_get_flags(tfm: crypto_skcipher_tfm(tfm)); |
| 549 | } |
| 550 | |
| 551 | static inline void crypto_skcipher_set_flags(struct crypto_skcipher *tfm, |
| 552 | u32 flags) |
| 553 | { |
| 554 | crypto_tfm_set_flags(tfm: crypto_skcipher_tfm(tfm), flags); |
| 555 | } |
| 556 | |
| 557 | static inline void crypto_skcipher_clear_flags(struct crypto_skcipher *tfm, |
| 558 | u32 flags) |
| 559 | { |
| 560 | crypto_tfm_clear_flags(tfm: crypto_skcipher_tfm(tfm), flags); |
| 561 | } |
| 562 | |
| 563 | static inline u32 crypto_sync_skcipher_get_flags( |
| 564 | struct crypto_sync_skcipher *tfm) |
| 565 | { |
| 566 | return crypto_skcipher_get_flags(tfm: &tfm->base); |
| 567 | } |
| 568 | |
| 569 | static inline void crypto_sync_skcipher_set_flags( |
| 570 | struct crypto_sync_skcipher *tfm, u32 flags) |
| 571 | { |
| 572 | crypto_skcipher_set_flags(tfm: &tfm->base, flags); |
| 573 | } |
| 574 | |
| 575 | static inline void crypto_sync_skcipher_clear_flags( |
| 576 | struct crypto_sync_skcipher *tfm, u32 flags) |
| 577 | { |
| 578 | crypto_skcipher_clear_flags(tfm: &tfm->base, flags); |
| 579 | } |
| 580 | |
| 581 | static inline u32 crypto_lskcipher_get_flags(struct crypto_lskcipher *tfm) |
| 582 | { |
| 583 | return crypto_tfm_get_flags(tfm: crypto_lskcipher_tfm(tfm)); |
| 584 | } |
| 585 | |
| 586 | static inline void crypto_lskcipher_set_flags(struct crypto_lskcipher *tfm, |
| 587 | u32 flags) |
| 588 | { |
| 589 | crypto_tfm_set_flags(tfm: crypto_lskcipher_tfm(tfm), flags); |
| 590 | } |
| 591 | |
| 592 | static inline void crypto_lskcipher_clear_flags(struct crypto_lskcipher *tfm, |
| 593 | u32 flags) |
| 594 | { |
| 595 | crypto_tfm_clear_flags(tfm: crypto_lskcipher_tfm(tfm), flags); |
| 596 | } |
| 597 | |
| 598 | /** |
| 599 | * crypto_skcipher_setkey() - set key for cipher |
| 600 | * @tfm: cipher handle |
| 601 | * @key: buffer holding the key |
| 602 | * @keylen: length of the key in bytes |
| 603 | * |
| 604 | * The caller provided key is set for the skcipher referenced by the cipher |
| 605 | * handle. |
| 606 | * |
| 607 | * Note, the key length determines the cipher type. Many block ciphers implement |
| 608 | * different cipher modes depending on the key size, such as AES-128 vs AES-192 |
| 609 | * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128 |
| 610 | * is performed. |
| 611 | * |
| 612 | * Return: 0 if the setting of the key was successful; < 0 if an error occurred |
| 613 | */ |
| 614 | int crypto_skcipher_setkey(struct crypto_skcipher *tfm, |
| 615 | const u8 *key, unsigned int keylen); |
| 616 | |
| 617 | static inline int crypto_sync_skcipher_setkey(struct crypto_sync_skcipher *tfm, |
| 618 | const u8 *key, unsigned int keylen) |
| 619 | { |
| 620 | return crypto_skcipher_setkey(tfm: &tfm->base, key, keylen); |
| 621 | } |
| 622 | |
| 623 | /** |
| 624 | * crypto_lskcipher_setkey() - set key for cipher |
| 625 | * @tfm: cipher handle |
| 626 | * @key: buffer holding the key |
| 627 | * @keylen: length of the key in bytes |
| 628 | * |
| 629 | * The caller provided key is set for the lskcipher referenced by the cipher |
| 630 | * handle. |
| 631 | * |
| 632 | * Note, the key length determines the cipher type. Many block ciphers implement |
| 633 | * different cipher modes depending on the key size, such as AES-128 vs AES-192 |
| 634 | * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128 |
| 635 | * is performed. |
| 636 | * |
| 637 | * Return: 0 if the setting of the key was successful; < 0 if an error occurred |
| 638 | */ |
| 639 | int crypto_lskcipher_setkey(struct crypto_lskcipher *tfm, |
| 640 | const u8 *key, unsigned int keylen); |
| 641 | |
| 642 | static inline unsigned int crypto_skcipher_min_keysize( |
| 643 | struct crypto_skcipher *tfm) |
| 644 | { |
| 645 | return crypto_skcipher_alg_common(tfm)->min_keysize; |
| 646 | } |
| 647 | |
| 648 | static inline unsigned int crypto_skcipher_max_keysize( |
| 649 | struct crypto_skcipher *tfm) |
| 650 | { |
| 651 | return crypto_skcipher_alg_common(tfm)->max_keysize; |
| 652 | } |
| 653 | |
| 654 | static inline unsigned int crypto_lskcipher_min_keysize( |
| 655 | struct crypto_lskcipher *tfm) |
| 656 | { |
| 657 | return crypto_lskcipher_alg(tfm)->co.min_keysize; |
| 658 | } |
| 659 | |
| 660 | static inline unsigned int crypto_lskcipher_max_keysize( |
| 661 | struct crypto_lskcipher *tfm) |
| 662 | { |
| 663 | return crypto_lskcipher_alg(tfm)->co.max_keysize; |
| 664 | } |
| 665 | |
| 666 | /** |
| 667 | * crypto_skcipher_reqtfm() - obtain cipher handle from request |
| 668 | * @req: skcipher_request out of which the cipher handle is to be obtained |
| 669 | * |
| 670 | * Return the crypto_skcipher handle when furnishing an skcipher_request |
| 671 | * data structure. |
| 672 | * |
| 673 | * Return: crypto_skcipher handle |
| 674 | */ |
| 675 | static inline struct crypto_skcipher *crypto_skcipher_reqtfm( |
| 676 | struct skcipher_request *req) |
| 677 | { |
| 678 | return __crypto_skcipher_cast(tfm: req->base.tfm); |
| 679 | } |
| 680 | |
| 681 | static inline struct crypto_sync_skcipher *crypto_sync_skcipher_reqtfm( |
| 682 | struct skcipher_request *req) |
| 683 | { |
| 684 | struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); |
| 685 | |
| 686 | return container_of(tfm, struct crypto_sync_skcipher, base); |
| 687 | } |
| 688 | |
| 689 | /** |
| 690 | * crypto_skcipher_encrypt() - encrypt plaintext |
| 691 | * @req: reference to the skcipher_request handle that holds all information |
| 692 | * needed to perform the cipher operation |
| 693 | * |
| 694 | * Encrypt plaintext data using the skcipher_request handle. That data |
| 695 | * structure and how it is filled with data is discussed with the |
| 696 | * skcipher_request_* functions. |
| 697 | * |
| 698 | * Return: 0 if the cipher operation was successful; < 0 if an error occurred |
| 699 | */ |
| 700 | int crypto_skcipher_encrypt(struct skcipher_request *req); |
| 701 | |
| 702 | /** |
| 703 | * crypto_skcipher_decrypt() - decrypt ciphertext |
| 704 | * @req: reference to the skcipher_request handle that holds all information |
| 705 | * needed to perform the cipher operation |
| 706 | * |
| 707 | * Decrypt ciphertext data using the skcipher_request handle. That data |
| 708 | * structure and how it is filled with data is discussed with the |
| 709 | * skcipher_request_* functions. |
| 710 | * |
| 711 | * Return: 0 if the cipher operation was successful; < 0 if an error occurred |
| 712 | */ |
| 713 | int crypto_skcipher_decrypt(struct skcipher_request *req); |
| 714 | |
| 715 | /** |
| 716 | * crypto_skcipher_export() - export partial state |
| 717 | * @req: reference to the skcipher_request handle that holds all information |
| 718 | * needed to perform the operation |
| 719 | * @out: output buffer of sufficient size that can hold the state |
| 720 | * |
| 721 | * Export partial state of the transformation. This function dumps the |
| 722 | * entire state of the ongoing transformation into a provided block of |
| 723 | * data so it can be @import 'ed back later on. This is useful in case |
| 724 | * you want to save partial result of the transformation after |
| 725 | * processing certain amount of data and reload this partial result |
| 726 | * multiple times later on for multiple re-use. No data processing |
| 727 | * happens at this point. |
| 728 | * |
| 729 | * Return: 0 if the cipher operation was successful; < 0 if an error occurred |
| 730 | */ |
| 731 | int crypto_skcipher_export(struct skcipher_request *req, void *out); |
| 732 | |
| 733 | /** |
| 734 | * crypto_skcipher_import() - import partial state |
| 735 | * @req: reference to the skcipher_request handle that holds all information |
| 736 | * needed to perform the operation |
| 737 | * @in: buffer holding the state |
| 738 | * |
| 739 | * Import partial state of the transformation. This function loads the |
| 740 | * entire state of the ongoing transformation from a provided block of |
| 741 | * data so the transformation can continue from this point onward. No |
| 742 | * data processing happens at this point. |
| 743 | * |
| 744 | * Return: 0 if the cipher operation was successful; < 0 if an error occurred |
| 745 | */ |
| 746 | int crypto_skcipher_import(struct skcipher_request *req, const void *in); |
| 747 | |
| 748 | /** |
| 749 | * crypto_lskcipher_encrypt() - encrypt plaintext |
| 750 | * @tfm: lskcipher handle |
| 751 | * @src: source buffer |
| 752 | * @dst: destination buffer |
| 753 | * @len: number of bytes to process |
| 754 | * @siv: IV + state for the cipher operation. The length of the IV must |
| 755 | * comply with the IV size defined by crypto_lskcipher_ivsize. The |
| 756 | * IV is then followed with a buffer with the length as specified by |
| 757 | * crypto_lskcipher_statesize. |
| 758 | * Encrypt plaintext data using the lskcipher handle. |
| 759 | * |
| 760 | * Return: >=0 if the cipher operation was successful, if positive |
| 761 | * then this many bytes have been left unprocessed; |
| 762 | * < 0 if an error occurred |
| 763 | */ |
| 764 | int crypto_lskcipher_encrypt(struct crypto_lskcipher *tfm, const u8 *src, |
| 765 | u8 *dst, unsigned len, u8 *siv); |
| 766 | |
| 767 | /** |
| 768 | * crypto_lskcipher_decrypt() - decrypt ciphertext |
| 769 | * @tfm: lskcipher handle |
| 770 | * @src: source buffer |
| 771 | * @dst: destination buffer |
| 772 | * @len: number of bytes to process |
| 773 | * @siv: IV + state for the cipher operation. The length of the IV must |
| 774 | * comply with the IV size defined by crypto_lskcipher_ivsize. The |
| 775 | * IV is then followed with a buffer with the length as specified by |
| 776 | * crypto_lskcipher_statesize. |
| 777 | * |
| 778 | * Decrypt ciphertext data using the lskcipher handle. |
| 779 | * |
| 780 | * Return: >=0 if the cipher operation was successful, if positive |
| 781 | * then this many bytes have been left unprocessed; |
| 782 | * < 0 if an error occurred |
| 783 | */ |
| 784 | int crypto_lskcipher_decrypt(struct crypto_lskcipher *tfm, const u8 *src, |
| 785 | u8 *dst, unsigned len, u8 *siv); |
| 786 | |
| 787 | /** |
| 788 | * DOC: Symmetric Key Cipher Request Handle |
| 789 | * |
| 790 | * The skcipher_request data structure contains all pointers to data |
| 791 | * required for the symmetric key cipher operation. This includes the cipher |
| 792 | * handle (which can be used by multiple skcipher_request instances), pointer |
| 793 | * to plaintext and ciphertext, asynchronous callback function, etc. It acts |
| 794 | * as a handle to the skcipher_request_* API calls in a similar way as |
| 795 | * skcipher handle to the crypto_skcipher_* API calls. |
| 796 | */ |
| 797 | |
| 798 | /** |
| 799 | * crypto_skcipher_reqsize() - obtain size of the request data structure |
| 800 | * @tfm: cipher handle |
| 801 | * |
| 802 | * Return: number of bytes |
| 803 | */ |
| 804 | static inline unsigned int crypto_skcipher_reqsize(struct crypto_skcipher *tfm) |
| 805 | { |
| 806 | return tfm->reqsize; |
| 807 | } |
| 808 | |
| 809 | /** |
| 810 | * skcipher_request_set_tfm() - update cipher handle reference in request |
| 811 | * @req: request handle to be modified |
| 812 | * @tfm: cipher handle that shall be added to the request handle |
| 813 | * |
| 814 | * Allow the caller to replace the existing skcipher handle in the request |
| 815 | * data structure with a different one. |
| 816 | */ |
| 817 | static inline void skcipher_request_set_tfm(struct skcipher_request *req, |
| 818 | struct crypto_skcipher *tfm) |
| 819 | { |
| 820 | req->base.tfm = crypto_skcipher_tfm(tfm); |
| 821 | } |
| 822 | |
| 823 | static inline void skcipher_request_set_sync_tfm(struct skcipher_request *req, |
| 824 | struct crypto_sync_skcipher *tfm) |
| 825 | { |
| 826 | skcipher_request_set_tfm(req, tfm: &tfm->base); |
| 827 | } |
| 828 | |
| 829 | static inline struct skcipher_request *skcipher_request_cast( |
| 830 | struct crypto_async_request *req) |
| 831 | { |
| 832 | return container_of(req, struct skcipher_request, base); |
| 833 | } |
| 834 | |
| 835 | /** |
| 836 | * skcipher_request_alloc() - allocate request data structure |
| 837 | * @tfm: cipher handle to be registered with the request |
| 838 | * @gfp: memory allocation flag that is handed to kmalloc by the API call. |
| 839 | * |
| 840 | * Allocate the request data structure that must be used with the skcipher |
| 841 | * encrypt and decrypt API calls. During the allocation, the provided skcipher |
| 842 | * handle is registered in the request data structure. |
| 843 | * |
| 844 | * Return: allocated request handle in case of success, or NULL if out of memory |
| 845 | */ |
| 846 | static inline struct skcipher_request *skcipher_request_alloc_noprof( |
| 847 | struct crypto_skcipher *tfm, gfp_t gfp) |
| 848 | { |
| 849 | struct skcipher_request *req; |
| 850 | |
| 851 | req = kmalloc_noprof(size: sizeof(struct skcipher_request) + |
| 852 | crypto_skcipher_reqsize(tfm), flags: gfp); |
| 853 | |
| 854 | if (likely(req)) |
| 855 | skcipher_request_set_tfm(req, tfm); |
| 856 | |
| 857 | return req; |
| 858 | } |
| 859 | #define skcipher_request_alloc(...) alloc_hooks(skcipher_request_alloc_noprof(__VA_ARGS__)) |
| 860 | |
| 861 | /** |
| 862 | * skcipher_request_free() - zeroize and free request data structure |
| 863 | * @req: request data structure cipher handle to be freed |
| 864 | */ |
| 865 | static inline void skcipher_request_free(struct skcipher_request *req) |
| 866 | { |
| 867 | kfree_sensitive(objp: req); |
| 868 | } |
| 869 | |
| 870 | static inline void skcipher_request_zero(struct skcipher_request *req) |
| 871 | { |
| 872 | struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); |
| 873 | |
| 874 | memzero_explicit(s: req, count: sizeof(*req) + crypto_skcipher_reqsize(tfm)); |
| 875 | } |
| 876 | |
| 877 | /** |
| 878 | * skcipher_request_set_callback() - set asynchronous callback function |
| 879 | * @req: request handle |
| 880 | * @flags: specify zero or an ORing of the flags |
| 881 | * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and |
| 882 | * increase the wait queue beyond the initial maximum size; |
| 883 | * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep |
| 884 | * @compl: callback function pointer to be registered with the request handle |
| 885 | * @data: The data pointer refers to memory that is not used by the kernel |
| 886 | * crypto API, but provided to the callback function for it to use. Here, |
| 887 | * the caller can provide a reference to memory the callback function can |
| 888 | * operate on. As the callback function is invoked asynchronously to the |
| 889 | * related functionality, it may need to access data structures of the |
| 890 | * related functionality which can be referenced using this pointer. The |
| 891 | * callback function can access the memory via the "data" field in the |
| 892 | * crypto_async_request data structure provided to the callback function. |
| 893 | * |
| 894 | * This function allows setting the callback function that is triggered once the |
| 895 | * cipher operation completes. |
| 896 | * |
| 897 | * The callback function is registered with the skcipher_request handle and |
| 898 | * must comply with the following template:: |
| 899 | * |
| 900 | * void callback_function(struct crypto_async_request *req, int error) |
| 901 | */ |
| 902 | static inline void skcipher_request_set_callback(struct skcipher_request *req, |
| 903 | u32 flags, |
| 904 | crypto_completion_t compl, |
| 905 | void *data) |
| 906 | { |
| 907 | req->base.complete = compl; |
| 908 | req->base.data = data; |
| 909 | req->base.flags = flags; |
| 910 | } |
| 911 | |
| 912 | /** |
| 913 | * skcipher_request_set_crypt() - set data buffers |
| 914 | * @req: request handle |
| 915 | * @src: source scatter / gather list |
| 916 | * @dst: destination scatter / gather list |
| 917 | * @cryptlen: number of bytes to process from @src |
| 918 | * @iv: IV for the cipher operation which must comply with the IV size defined |
| 919 | * by crypto_skcipher_ivsize |
| 920 | * |
| 921 | * This function allows setting of the source data and destination data |
| 922 | * scatter / gather lists. |
| 923 | * |
| 924 | * For encryption, the source is treated as the plaintext and the |
| 925 | * destination is the ciphertext. For a decryption operation, the use is |
| 926 | * reversed - the source is the ciphertext and the destination is the plaintext. |
| 927 | */ |
| 928 | static inline void skcipher_request_set_crypt( |
| 929 | struct skcipher_request *req, |
| 930 | struct scatterlist *src, struct scatterlist *dst, |
| 931 | unsigned int cryptlen, void *iv) |
| 932 | { |
| 933 | req->src = src; |
| 934 | req->dst = dst; |
| 935 | req->cryptlen = cryptlen; |
| 936 | req->iv = iv; |
| 937 | } |
| 938 | |
| 939 | #endif /* _CRYPTO_SKCIPHER_H */ |
| 940 | |
| 941 | |