Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Toward clinical long-read genome sequencing for rare diseases

Abstract

Genetic diagnostics is driven by technological advances, forming a tight interface between research, clinic and industry, which enables rapid implementation of new technologies. Short-read genome and exome sequencing, the current state of the art in clinical genetics, can detect a broad spectrum of genetic variants across the genome. However, despite these advancements, more than half of individuals with rare diseases remain undiagnosed after genomic investigations. Long-read whole-genome sequencing (LR-WGS) is a promising technology that identifies previously difficult-to-detect variants while also enabling phasing and methylation analysis and has the potential of generating complete personal assemblies. To pave the way for clinical use of LR-WGS, the clinical genomic community must establish standardized protocols and quality parameters while also developing innovative tools for data analysis and interpretation. In this Perspective, we explore the key challenges and benefits in integrating LR-WGS into routine clinical diagnostics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Coding and noncoding disease-causing variants.
Fig. 2: Analysis of various genetic variants.

Similar content being viewed by others

References

  1. Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Venter, J. C. et al. The sequence of the human genome. Science 291, 1304–1351 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Miller, D. T. et al. Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am. J. Hum. Genet. 86, 749–764 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Choi, M. et al. Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. Proc. Natl Acad. Sci. USA 106, 19096–19101 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ng, S. B. et al. Targeted capture and massively parallel sequencing of 12 human exomes. Nature 461, 272–276 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gilissen, C. et al. Genome sequencing identifies major causes of severe intellectual disability. Nature 511, 344–347 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Investigators, G. P. P. et al. 100,000 genomes pilot on rare-disease diagnosis in health care — preliminary report. N. Engl. J. Med. 385, 1868–1880 (2021).

    Article  Google Scholar 

  8. Stranneheim, H. et al. Integration of whole genome sequencing into a healthcare setting: high diagnostic rates across multiple clinical entities in 3219 rare disease patients. Genome Med. 13, 40 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ebert, P. et al. Haplotype-resolved diverse human genomes and integrated analysis of structural variation. Science 372, eabf7117 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hiatt, S. M. et al. Long-read genome sequencing for the molecular diagnosis of neurodevelopmental disorders. HGG Adv. 2, 100023 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Eisfeldt, J. et al. A national long-read sequencing study on chromosomal rearrangements uncovers hidden complexities. Genome Res. 34, 1774–1784 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bilgrav Saether, K. et al. Leveraging the T2T assembly to resolve rare and pathogenic inversions in reference genome gaps. Genome Res. 34, 1785–1797 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Nurk, S. et al. The complete sequence of a human genome. Science 376, 44–53 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hiatt, S. M. et al. Long-read genome sequencing and variant reanalysis increase diagnostic yield in neurodevelopmental disorders. Genome Res. 34, 1747–1762 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hops, W. et al. HiFi long-read genomes for difficult-to-detect, clinically relevant variants. Am. J. Hum. Genet. 112, 450–456 (2025).

    Article  CAS  PubMed  Google Scholar 

  16. Steyaert, W. et al. Unravelling undiagnosed rare disease cases by HiFi long-read genome sequencing. Genome Res. https://doi.org/10.1101/gr.279414.124 (2025).

  17. Leitao, E., Schroder, C. & Depienne, C. Identification and characterization of repeat expansions in neurological disorders: methodologies, tools, and strategies. Rev. Neurol. 180, 383–392 (2024).

    Article  CAS  PubMed  Google Scholar 

  18. Eggermann, T. et al. Imprinting disorders. Nat. Rev. Dis. Primers 9, 33 (2023).

    Article  PubMed  Google Scholar 

  19. Greene, D. et al. Mutations in the U4 snRNA gene RNU4-2 cause one of the most prevalent monogenic neurodevelopmental disorders. Nat. Med. 30, 2165–2169 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen, Y. et al. De novo variants in the RNU4-2 snRNA cause a frequent neurodevelopmental syndrome. Nature 632, 832–840 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ganesh, V. S. et al. Neurodevelopmental disorder caused by deletion of CHASERR, a lncRNA gene. N. Engl. J. Med. 391, 1511–1518 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Magnusson, M. et al. Loqusdb: added value of an observations database of local genomic variation. BMC Bioinformatics 21, 273 (2020).

    CAS  Google Scholar 

  23. Gonzalez-Del Pozo, M. et al. A comprehensive WGS-based pipeline for the identification of new candidate genes in inherited retinal dystrophies. npj Genom. Med. 7, 17 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kohler, S. et al. The Human Phenotype Ontology in 2021. Nucleic Acids Res. 49, D1207–D1217 (2021).

    Article  PubMed  Google Scholar 

  25. Martin, A. R. et al. PanelApp crowdsources expert knowledge to establish consensus diagnostic gene panels. Nat. Genet. 51, 1560–1565 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. Amberger, J. S., Bocchini, C. A., Schiettecatte, F., Scott, A. F. & Hamosh, A. OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders. Nucleic Acids Res. 43, D789–D798 (2015).

    Article  PubMed  Google Scholar 

  27. Acuna-Hidalgo, R., Veltman, J. A. & Hoischen, A. New insights into the generation and role of de novo mutations in health and disease. Genome Biol. 17, 241 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Tesi, B. et al. Precision medicine in rare diseases: what is next? J. Intern. Med. 294, 397–412 (2023).

    Article  PubMed  Google Scholar 

  29. Chen, X. et al. Spinal muscular atrophy diagnosis and carrier screening from genome sequencing data. Genet. Med. 22, 945–953 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dolzhenko, E. et al. ExpansionHunter: a sequence-graph-based tool to analyze variation in short tandem repeat regions. Bioinformatics 35, 4754–4756 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Maggi, J. et al. Limited added diagnostic value of whole genome sequencing in genetic testing of inherited retinal diseases in a Swiss patient cohort. Int. J. Mol. Sci. 25, 6540 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yang, M. et al. Diagnostic utility of whole genome sequencing after negative karyotyping/chromosomal microarray in infants born with multiple congenital anomalies. J. Korean Med. Sci. 39, e250 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lionel, A. C. et al. Improved diagnostic yield compared with targeted gene sequencing panels suggests a role for whole-genome sequencing as a first-tier genetic test. Genet. Med. 20, 435–443 (2018).

    Article  CAS  PubMed  Google Scholar 

  34. Katsanis, N. et al. Triallelic inheritance in Bardet–Biedl syndrome, a Mendelian recessive disorder. Science 293, 2256–2259 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Smail, C. et al. Complex trait associations in rare diseases and impacts on Mendelian variant interpretation. Nat. Commun. 15, 8196 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lemmers, R. J. et al. Digenic inheritance of an SMCHD1 mutation and an FSHD-permissive D4Z4 allele causes facioscapulohumeral muscular dystrophy type 2. Nat. Genet. 44, 1370–1374 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Grigelioniene, G. et al. Gain-of-function mutation of microRNA-140 in human skeletal dysplasia. Nat. Med. 25, 583–590 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Spielmann, M. & Mundlos, S. Looking beyond the genes: the role of non-coding variants in human disease. Hum. Mol. Genet. 25, R157–R165 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. Weischenfeldt, J. & Ibrahim, D. M. When 3D genome changes cause disease: the impact of structural variations in congenital disease and cancer. Curr. Opin. Genet. Dev. 80, 102048 (2023).

    Article  CAS  PubMed  Google Scholar 

  40. Yepez, V. A. et al. Clinical implementation of RNA sequencing for Mendelian disease diagnostics. Genome Med. 14, 38 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Carrasco-Zanini, J. et al. Proteomic signatures improve risk prediction for common and rare diseases. Nat. Med. 30, 2489–2498 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chantada-Vazquez, M. D. P., Bravo, S. B., Barbosa-Gouveia, S., Alvarez, J. V. & Couce, M. L. Proteomics in inherited metabolic disorders. Int. J. Mol. Sci. 23, 6540 (2022).

    Article  Google Scholar 

  43. Lunke, S. et al. Integrated multi-omics for rapid rare disease diagnosis on a national scale. Nat. Med. 29, 1681–1691 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ewing, A. D. et al. Nanopore sequencing enables comprehensive transposable element epigenomic profiling. Mol. Cell 80, 915–928 (2020).

    Article  CAS  PubMed  Google Scholar 

  45. Robinson, J. T. et al. Integrative Genomics Viewer. Nat. Biotechnol. 29, 24–26 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chaisson, M. J. P., Sulovari, A., Valdmanis, P. N., Miller, D. E. & Eichler, E. E. Advances in the discovery and analyses of human tandem repeats. Emerg. Top. Life Sci. 7, 361–381 (2023).

    Article  CAS  Google Scholar 

  47. Porubsky, D. et al. A familial, telomere-to-telomere reference for human de novo mutation and recombination from a four-generation pedigree. Preprint at bioRxiv https://doi.org/10.1101/2024.08.05.606142 (2024).

  48. Chen, X. et al. Comprehensive SMN1 and SMN2 profiling for spinal muscular atrophy analysis using long-read PacBio HiFi sequencing. Am. J. Hum. Genet. 110, 240–250 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Funderburk, S. J., Spence, M. A. & Sparkes, R. S. Mental retardation associated with ‘balanced’ chromosome rearrangements. Am. J. Hum. Genet. 29, 136–141 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Jacobs, P. A. Correlation between euploid structural chromosome rearrangements and mental subnormality in humans. Nature 249, 164–165 (1974).

    Article  CAS  PubMed  Google Scholar 

  51. Ten Berk de Boer, E. et al. Long-read sequencing and optical mapping generates near T2T assemblies that resolves a centromeric translocation. Sci. Rep. 14, 9000 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Abel, H. J. et al. Mapping and characterization of structural variation in 17,795 human genomes. Nature 583, 83–89 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gustafson, J. A. et al. High-coverage nanopore sequencing of samples from the 1000 Genomes Project to build a comprehensive catalog of human genetic variation. Genome Res. 34, 2061–2073 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Liao, W. W. et al. A draft human pangenome reference. Nature 617, 312–324 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kronenberg, Z. et al. The Platinum Pedigree: a long-read benchmark for genetic variants. Preprint at bioRxiv https://doi.org/10.1101/2024.10.02.616333 (2024).

  56. Mitsuhashi, S., Frith, M. C. & Matsumoto, N. Genome-wide survey of tandem repeats by nanopore sequencing shows that disease-associated repeats are more polymorphic in the general population. BMC Med. Genomics 14, 17 (2021).

    CAS  Google Scholar 

  57. Baekgaard, C. H., Lester, E. B., Moller-Larsen, S., Lauridsen, M. F. & Larsen, M. J. NanoImprint: a DNA methylation tool for clinical interpretation and diagnosis of common imprinting disorders using nanopore long-read sequencing. Ann. Hum. Genet. 88, 392–398 (2024).

    Article  CAS  PubMed  Google Scholar 

  58. Eisfeldt, J. et al. Resolving complex duplication variants in autism spectrum disorder using long-read genome sequencing. Genome Res. 34, 1763–1773 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Levy, M. A. et al. Novel diagnostic DNA methylation episignatures expand and refine the epigenetic landscapes of Mendelian disorders. HGG Adv. 3, 100075 (2022).

    CAS  PubMed  Google Scholar 

  60. Geysens, M. et al. Clinical evaluation of long-read sequencing-based episignature detection in developmental disorders. Genome Med. 17, 1 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. De Clercq, G. et al. Full characterization of unresolved structural variation through long-read sequencing and optical genome mapping. Sci. Rep. 14, 29142 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Koren, S. et al. Gapless assembly of complete human and plant chromosomes using only nanopore sequencing. Genome Res. 34, 1919–1930 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wenger, A. M. et al. Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome. Nat. Biotechnol. 37, 1155–1162 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kruglyak, S. et al. Characterizing and addressing error modes to improve sequencing accuracy. Preprint at bioRxiv https://doi.org/10.1101/2024.02.01.578321 (2024).

  65. Tesi, N. et al. Characterizing tandem repeat complexities across long-read sequencing platforms with TREAT and otter. Genome Res. 34, 1942–1953 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Douvlataniotis, K., Bensberg, M., Lentini, A., Gylemo, B. & Nestor, C. E. No evidence for DNA N6-methyladenine in mammals. Sci. Adv. 6, eaay3335 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lenner, F. et al. Nallo: a comprehensive Nextflow pipeline for long-read rare disease analysis. GitHub https://github.com/genomic-medicine-sweden/nallo (2025).

  68. Hon, T. et al. Highly accurate long-read HiFi sequencing data for five complex genomes. Sci. Data 7, 399 (2020).

    CAS  Google Scholar 

  69. Ni, P. et al. DNA 5-methylcytosine detection and methylation phasing using PacBio circular consensus sequencing. Nat. Commun. 14, 4054 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Jain, M., Olsen, H. E., Paten, B. & Akeson, M. The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community. Genome Biol. 17, 239 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Pages-Gallego, M. & de Ridder, J. Comprehensive benchmark and architectural analysis of deep learning models for nanopore sequencing basecalling. Genome Biol. 24, 71 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Stanojević, D., Lin, D., Florez de Sessions, P. & Šikić, M. Telomere-to-telomere phased genome assembly using error-corrected Simplex nanopore reads. Preprint at bioRxiv https://doi.org/10.1101/2024.05.18.594796 (2024).

  73. Jorgensen, M. W., Miceikaite, I. & Larsen, M. J. nanoNIPT: short-fragment nanopore sequencing of cell-free DNA for non-invasive prenatal testing of fetal aneuploidies and sex chromosome aberrations. Prenat. Diagn. 43, 314–317 (2023).

    Article  PubMed  Google Scholar 

  74. Jain, M. et al. Nanopore sequencing and assembly of a human genome with ultra-long reads. Nat. Biotechnol. 36, 338–345 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Dorey, A. & Howorka, S. Nanopore DNA sequencing technologies and their applications towards single-molecule proteomics. Nat. Chem. 16, 314–334 (2024).

    Article  CAS  PubMed  Google Scholar 

  76. Loukanov, A., Filipov, C., Mladenova, P., Toshev, S. & Emin, S. Electron microscopic visualization of complementary labeled DNA with platinum-containing guanine derivative. Microsc. Res. Tech. 79, 280–284 (2016).

    Article  CAS  PubMed  Google Scholar 

  77. Mittal, S. & Pathak, B. Towards a graphene semi/hybrid-nanogap: a new architecture for ultrafast DNA sequencing. Nanoscale 15, 757–767 (2023).

    Article  CAS  PubMed  Google Scholar 

  78. Liu, S. et al. Targeted transcriptome analysis using synthetic long read sequencing uncovers isoform reprograming in the progression of colon cancer. Commun. Biol. 4, 506 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Watson, J. D. & Crick, F. H. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 171, 737–738 (1953).

    Article  CAS  PubMed  Google Scholar 

  80. Tjio, J. H. & Levan, A. The chromosome number of man. Hereditas 42, U1–U6 (1956).

    Article  Google Scholar 

  81. Lejeune, J., Turpin, R. & Gautier, M. [Chromosomic diagnosis of mongolism]. Arch. Fr. Pediatr. 16, 962–963 (1959).

    CAS  PubMed  Google Scholar 

  82. Caspersson, T., Zech, L., Johansson, C. & Modest, E. J. Identification of human chromosomes by DNA-binding fluorescent agents. Chromosoma 30, 215–227 (1970).

    Article  CAS  PubMed  Google Scholar 

  83. Smith, L. M., Fung, S., Hunkapiller, M. W., Hunkapiller, T. J. & Hood, L. E. The synthesis of oligonucleotides containing an aliphatic amino group at the 5′ terminus: synthesis of fluorescent DNA primers for use in DNA sequence analysis. Nucleic Acids Res. 13, 2399–2412 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Sanger, F., Nicklen, S. & Coulson, A. R. DNA sequencing with chain-terminating inhibitors. Proc. Natl Acad. Sci. USA 74, 5463–5467 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Pinkel, D. et al. Fluorescence in situ hybridization with human chromosome-specific libraries: detection of trisomy 21 and translocations of chromosome 4. Proc. Natl Acad. Sci. USA 85, 9138–9142 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Riordan, J. R. et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245, 1066–1073 (1989).

    Article  CAS  PubMed  Google Scholar 

  87. Solinas-Toldo, S. et al. Matrix-based comparative genomic hybridization: biochips to screen for genomic imbalances. Genes Chromosomes Cancer 20, 399–407 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

A.L. was supported by grants from the Swedish Research Council (2019-02078), Region Stockholm (FoUI-1000468 and FoUI-978581), the Rare Diseases Research Foundation (Sällsyntafonden), the Swedish Brain Foundation (FO2024-0128-HK-44) and the Swedish Cancer Society (24 3504 Pj).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: J.E. and A.L.; writing of manuscript: J.E., M.E., M.N. and A.L.; figures: J.E., A.L. and M.E.

Corresponding author

Correspondence to Anna Lindstrand.

Ethics declarations

Competing interests

A.L. has received honoraria from Pacific Biosciences and Illumina. All other authors declare no competing interests.

Peer review

Peer review information

Nature Genetics thanks Alexander Hoischen and Bekim Sadikovic for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Table 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eisfeldt, J., Ek, M., Nordenskjöld, M. et al. Toward clinical long-read genome sequencing for rare diseases. Nat Genet (2025). https://doi.org/10.1038/s41588-025-02160-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41588-025-02160-y

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research
Morty Proxy This is a proxified and sanitized view of the page, visit original site.