Abstract
One third of all proteins in eukaryotes transit between the endoplasmic reticulum (ER) and the Golgi to reach their functional destination inside or outside of the cell. During export, secretory proteins concentrate at transitional zones of the ER known as ER exit sites, where they are packaged into transport carriers formed by the highly conserved coat protein complex II (COPII). Despite long-standing knowledge of many of the fundamental pathways that govern traffic in the early secretory pathway, we still lack a complete mechanistic model to explain how the various steps of COPII-mediated ER exit are regulated to efficiently transport diverse cargoes. In this Review, we discuss the current understanding of the mechanisms underlying COPII-mediated vesicular transport, highlighting outstanding knowledge gaps. We focus on how coat assembly and disassembly dictate carrier morphogenesis, how COPII selectively recruits a vast number of cargo and cargo adaptors, and finally discuss how COPII mechanisms in mammals might have adapted to enable transport of large proteins.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
References
Zanetti, G., Pahuja, K. B., Studer, S., Shim, S. & Schekman, R. COPII and the regulation of protein sorting in mammals. Nat. Cell Biol. 14, 20–28 (2012).
Barlowe, C. et al. COPII: a membrane coat formed by Sec proteins that drive vesicle budding from the endoplasmic reticulum. Cell 77, 895–907 (1994).
Novick, P., Field, C. & Schekman, R. Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell 21, 205–215 (1980).
Matsuoka, K. et al. COPII-coated vesicle formation reconstituted with purified coat proteins and chemically defined liposomes. Cell 93, 263–275 (1998).
Novick, P., Ferro, S. & Schekman, R. Order of events in the yeast secretory pathway. Cell 25, 461–469 (1981).
Bonifacino, J. S. Vesicular transport earns a nobel. Trends Cell Biol. 24, 3–5 (2014).
Barlowe, C. & Schekman, R. SEC12 encodes a guanine-nucleotide-exchange factor essential for transport vesicle budding from the ER. Nature 365, 347–349 (1993).
Futai, E., Hamamoto, S., Orci, L. & Schekman, R. GTP/GDP exchange by Sec12p enables COPII vesicle bud formation on synthetic liposomes. EMBO J. 23, 4146–4155 (2004).
Yoshihisa, T., Barlowe, C. & Schekman, R. Requirement for a GTPase-activating protein in vesicle budding from the endoplasmic reticulum. Science 259, 1466–1468 (1993).
Bi, X., Corpina, R. A. & Goldberg, J. Structure of the Sec23/24-Sar1 pre-budding complex of the COPII vesicle coat. Nature 419, 271–277 (2002).
Fath, S., Mancias, J. D., Bi, X. & Goldberg, J. Structure and organization of coat proteins in the COPII cage. Cell 129, 1325–1336 (2007).
Miller, E., Antonny, B., Hamamoto, S. & Schekman, R. Cargo selection into COPII vesicles is driven by the Sec24p subunit. EMBO J. 21, 6105–6113 (2002).
Miller, E. A. et al. Multiple cargo binding sites on the COPII subunit Sec24p ensure capture of diverse membrane proteins into transport vesicles. Cell 114, 497–509 (2003).
Chatterjee, S., Choi, A. J. & Frankel, G. A systematic review of Sec24 cargo interactome. Traffic 22, 412–424 (2021).
Mossessova, E., Bickford, L. C. & Goldberg, J. SNARE selectivity of the COPII coat. Cell 114, 483–495 (2003).
Stagg, S. M. et al. Structure of the Sec13/31 COPII coat cage. Nature 439, 234–238 (2006).
Stagg, S. M. et al. Structural basis for cargo regulation of COPII coat assembly. Cell 134, 474–484 (2008).
Antonny, B., Madden, D., Hamamoto, S., Orci, L. & Schekman, R. Dynamics of the COPII coat with GTP and stable analogues. Nat. Cell Biol. 3, 531–537 (2001).
Yorimitsu, T. & Sato, K. Insights into structural and regulatory roles of Sec16 in COPII vesicle formation at ER exit sites. Mol. Biol. Cell 23, 2930–2942 (2012).
Kung, L. F. et al. Sec24p and Sec16p cooperate to regulate the GTP cycle of the COPII coat. EMBO J. 31, 1014–1027 (2012).
Bharucha, N. et al. Sec16 influences transitional ER sites by regulating rather than organizing COPII. Mol. Biol. Cell 24, 3406–3419 (2013).
Sprangers, J. & Rabouille, C. SEC16 in COPII coat dynamics at ER exit sites. Biochem. Soc. Trans. 43, 97–103 (2015).
Melville, D. B., Studer, S. & Schekman, R. Small sequence variations between two mammalian paralogs of the small GTPase SAR1 underlie functional differences in coat protein complex II assembly. J. Biol. Chem. 295, 8401–8412 (2020).
Khoriaty, R. et al. Functions of the COPII gene paralogs SEC23A and SEC23B are interchangeable in vivo. Proc. Natl Acad. Sci. USA 115, E7748–E7757 (2018).
Wendeler, M. W., Paccaud, J.-P. & Hauri, H.-P. Role of Sec24 isoforms in selective export of membrane proteins from the endoplasmic reticulum. EMBO Rep. 8, 258–264 (2007).
Nakano, A. The Golgi apparatus and its next-door neighbors. Front. Cell Dev. Biol. 10, 884360 (2022).
Appenzeller-Herzog, C. & Hauri, H.-P. The ER-Golgi intermediate compartment (ERGIC): in search of its identity and function. J. Cell. Sci. 119, 2173–2183 (2006).
Bunel, L., Pincet, L., Malhotra, V., Raote, I. & Pincet, F. A model for collagen secretion by intercompartmental continuities. Proc. Natl Acad. Sci. USA 121, e2310404120 (2024).
Raote, I. & Malhotra, V. Tunnels for protein export from the endoplasmic reticulum. Annu. Rev. Biochem. 90, 605–630 (2021).
Raote, I. et al. A physical mechanism of TANGO1-mediated bulky cargo export. eLife 9, e59426 (2020).
Santos, A. J. M., Nogueira, C., Ortega-Bellido, M. & Malhotra, V. TANGO1 and Mia2/cTAGE5 (TALI) cooperate to export bulky pre-chylomicrons/VLDLs from the endoplasmic reticulum. J. Cell Biol. 213, 343–354 (2016).
Shomron, O. et al. COPII collar defines the boundary between ER and ER exit site and does not coat cargo containers. J. Cell Biol. 220, e201907224 (2021).
Weigel, A. V. et al. ER-to-Golgi protein delivery through an interwoven, tubular network extending from ER. Cell 184, 2412–2429 (2021).
McCaughey, J. & Stephens, D. J. ER-to-Golgi transport: a sizeable problem. Trends Cell Biol. 29, 940–953 (2019).
Saito, K. et al. TANGO1 facilitates cargo loading at endoplasmic reticulum exit sites. Cell 136, 891–902 (2009).
Saito, K. et al. cTAGE5 mediates collagen secretion through interaction with TANGO1 at endoplasmic reticulum exit sites. Mol. Biol. Cell 22, 2301–2308 (2011).
Venditti, R. et al. Sedlin controls the ER export of procollagen by regulating the Sar1 cycle. Science 337, 1668–1672 (2012).
McCaughey, J. et al. A general role for TANGO1, encoded by MIA3, in secretory pathway organization and function. J. Cell Sci. 134, jcs259075 (2021).
Liu, M. et al. Tango1 spatially organizes ER exit sites to control ER export. J. Cell Biol. 216, 1035–1049 (2017).
Witte, K. et al. TFG-1 function in protein secretion and oncogenesis. Nat. Cell Biol. 13, 550–558 (2011).
Johnson, A. et al. TFG clusters COPII-coated transport carriers and promotes early secretory pathway organization. EMBO J. 34, 811–827 (2015).
Hanna, M. G. et al. TFG facilitates outer coat disassembly on COPII transport carriers to promote tethering and fusion with ER-Golgi intermediate compartments. Proc. Natl Acad. Sci. USA 114, E7707–E7716 (2017).
Lee, M. C. S. et al. Sar1p N-terminal helix initiates membrane curvature and completes the fission of a COPII vesicle. Cell 122, 605–617 (2005).
Hutchings, J., Stancheva, V., Miller, E. A. & Zanetti, G. Subtomogram averaging of COPII assemblies reveals how coat organization dictates membrane shape. Nat. Commun. 9, 4154 (2018).
Kasberg, W. et al. The Sar1 GTPase is dispensable for COPII-dependent cargo export from the ER. Cell Rep. 42, 112635 (2023).
Cutrona, M. B. et al. Silencing of mammalian Sar1 isoforms reveals COPII-independent protein sorting and transport. Traffic 14, 691–708 (2013).
Tang, V. T. et al. Functional overlap between the mammalian Sar1a and Sar1b paralogs in vivo. Proc. Natl Acad. Sci. USA 121, e2322164121 (2024).
Karlsson, M. et al. A single–cell type transcriptomics map of human tissues. Sci. Adv. 7, eabh2169 (2021).
Jones, B. et al. Mutations in a Sar1 GTPase of COPII vesicles are associated with lipid absorption disorders. Nat. Genet. 34, 29–31 (2003).
Fromme, J. C. et al. The genetic basis of a craniofacial disease provides insight into COPII coat assembly. Dev. Cell 13, 623–634 (2007).
Sané, A. T. et al. Understanding chylomicron retention disease through Sar1b GTPase gene disruption: insight from cell culture. Arterioscler. Thromb. Vasc. Biol. 37, 2243–2251 (2017).
Čopič, A., Latham, C. F., Horlbeck, M. A., D’Arcangelo, J. G. & Miller, E. A. ER cargo properties specify a requirement for COPII coat rigidity mediated by sec13p. Science 335, 1359–1362 (2012).
Bi, X., Mancias, J. D. & Goldberg, J. Insights into COPII coat nucleation from the structure of Sec23.Sar1 complexed with the active fragment of Sec31. Dev. Cell 13, 635–645 (2007).
Hutchings, J. et al. Structure of the complete, membrane-assembled COPII coat reveals a complex interaction network. Nat. Commun. 12, 2034 (2021).
Zivanov, J. et al. A Bayesian approach to single-particle electron cryo-tomography in RELION-4.0. Elife 11, e83724 (2022).
Ma, W. & Goldberg, J. TANGO1/cTAGE5 receptor as a polyvalent template for assembly of large COPII coats. PNAS 113, 10061–10066 (2016).
Pyle, E., Miller, E. A. & Zanetti, G. Cryo-electron tomography reveals how COPII assembles on cargo-containing membranes. Nat. Struct. Mol. Biol. https://doi.org/10.1038/s41594-024-01413-4 (2024).
Hanna, M. G. et al. Sar1 GTPase activity is regulated by membrane curvature. J. Biol. Chem. 291, 1014–1027 (2016).
Kanapin, A. et al. Mouse proteome analysis. Genome Res. 13, 1335–1344 (2003).
Dancourt, J. & Barlowe, C. Protein sorting receptors in the early secretory pathway. Annu. Rev. Biochem. 79, 777–802 (2010).
Barlowe, C. & Helenius, A. Cargo capture and bulk flow in the early secretory pathway. Annu. Rev. Cell Dev. Biol. 32, 197–222 (2016).
Thor, F., Gautschi, M., Geiger, R. & Helenius, A. Bulk flow revisited: transport of a soluble protein in the secretory pathway. Traffic 10, 1819–1830 (2009).
Wieland, F. T., Gleason, M. L., Serafini, T. A. & Rothman, J. E. The rate of bulk flow from the endoplasmic reticulum to the cell surface. Cell 50, 289–300 (1987).
Kuehn, M. J., Herrmann, J. M. & Schekman, R. COPII-cargo interactions direct protein sorting into ER-derived transport vesicles. Nature 391, 187–190 (1998).
Mancias, J. D. & Goldberg, J. Structural basis of cargo membrane protein discrimination by the human COPII coat machinery. EMBO J. 27, 2918–2928 (2008).
Zeyen, L., Döring, T., Stieler, J. T. & Prange, R. Hepatitis B subviral envelope particles use the COPII machinery for intracellular transport via selective exploitation of Sec24A and Sec23B. Cell Microbiol. 22, e13181 (2020).
Nufer, O. et al. Role of cytoplasmic C-terminal amino acids of membrane proteins in ER export. J. Cell Sci. 115, 619–628 (2002).
Pagant, S., Wu, A., Edwards, S., Diehl, F. & Miller, E. A. Sec24 is a coincidence detector that simultaneously binds two signals to drive ER export. Curr. Biol. 25, 403–412 (2015).
Farhan, H. et al. Concentrative export from the endoplasmic reticulum of the γ-aminobutyric acid transporter 1 requires binding to SEC24D. J. Biol. Chem. 282, 7679–7689 (2007).
Appenzeller, C., Andersson, H., Kappeler, F. & Hauri, H. P. The lectin ERGIC-53 is a cargo transport receptor for glycoproteins. Nat. Cell Biol. 1, 330–334 (1999).
Aridor, M., Weissman, J., Bannykh, S., Nuoffer, C. & Balch, W. E. Cargo selection by the COPII budding machinery during export from the ER. J. Cell Biol. 141, 61–70 (1998).
Belden, W. J. & Barlowe, C. Role of Erv29p in collecting soluble secretory proteins into ER-derived transport vesicles. Science 294, 1528–1531 (2001).
Geva, Y. & Schuldiner, M. The back and forth of cargo exit from the endoplasmic reticulum. Curr. Biol. 24, R130–R136 (2014).
Pearson, G. J. et al. ER-export and ARFRP1/AP-1-dependent delivery of SARS-CoV-2 envelope to lysosomes controls late stages of viral replication. Sci. Adv. 10, eadl5012 (2024).
Huang, Y. et al. An in vitro vesicle formation assay reveals cargo clients and factors that mediate vesicular trafficking. Proc. Natl Acad. Sci. USA 118, e2101287118 (2021).
Adolf, F. et al. Proteomic profiling of mammalian COPII and COPI vesicles. Cell Rep. 26, 250–265.e5 (2019).
Mancias, J. D. & Goldberg, J. The transport signal on Sec22 for packaging into COPII-coated vesicles is a conformational epitope. Mol. Cell 26, 403–414 (2007).
Herzig, Y., Sharpe, H. J., Elbaz, Y., Munro, S. & Schuldiner, M. A systematic approach to pair secretory cargo receptors with their cargo suggests a mechanism for cargo selection by Erv14. PLoS Biol. 10, e1001329 (2012).
Adolf, F., Rhiel, M., Reckmann, I. & Wieland, F. T. Sec24C/D-isoform-specific sorting of the preassembled ER-Golgi Q-SNARE complex. Mol. Biol. Cell 27, 2697–2707 (2016).
Pagano, A. et al. Sec24 proteins and sorting at the endoplasmic reticulum. J. Biol. Chem. 274, 7833–7840 (1999).
Miller, E. A., Liu, Y., Barlowe, C. & Schekman, R. ER-Golgi transport defects are associated with mutations in the Sed5p-binding domain of the COPII coat subunit, Sec24p. Mol. Biol. Cell 16, 3719–3726 (2005).
Yin, P., Li, Y. & Zhang, L. Sec24C-dependent transport of claudin-1 regulates hepatitis C virus entry. J. Virol. 91, e00629–17 (2017).
Deng, S.-J. et al. The role of the C-terminal domain of PCSK9 and SEC24 isoforms in PCSK9 secretion. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1865, 158660 (2020).
Ma, W., Goldberg, E. & Goldberg, J. ER retention is imposed by COPII protein sorting and attenuated by 4-phenylbutyrate. Elife 6, e26624 (2017).
Subramanian, A. et al. Auto-regulation of secretory flux by sensing and responding to the folded cargo protein load in the endoplasmic reticulum. Cell 176, 1461–1476 (2019).
Wouters, R. et al. Assembly of γ-secretase occurs through stable dimers after exit from the endoplasmic reticulum. J. Cell Biol. 220, e201911104 (2021).
Gomez-Navarro, N. et al. Selective inhibition of protein secretion by abrogating receptor-coat interactions during ER export. Proc. Natl Acad. Sci. USA 119, e2202080119 (2022).
Gomez-Navarro, N. et al. Cargo crowding contributes to sorting stringency in COPII vesicles. J. Cell Biol. 219, e201806038 (2020).
Chen, X.-W. et al. SEC24A deficiency lowers plasma cholesterol through reduced PCSK9 secretion. Elife 2, e00444 (2013).
Adnan, M., Islam, W., Zhang, J., Zheng, W. & Lu, G.-D. Diverse role of SNARE protein Sec22 in vesicle trafficking, membrane fusion, and autophagy. Cells 8, 337 (2019).
Sucic, S. et al. Switching the clientele: a lysine residing in the C terminus of the serotonin transporter specifies its preference for the coat protein complex II component SEC24C. J. Biol. Chem. 288, 5330–5341 (2013).
Kovalchuk, V. et al. Trafficking of the amino acid transporter B0,+ (SLC6A14) to the plasma membrane involves an exclusive interaction with SEC24C for its exit from the endoplasmic reticulum. Biochim. Biophys. Acta Mol. Cell Res. 1866, 252–263 (2019).
Farhan, H. et al. Signal-dependent export of GABA transporter 1 from the ER-Golgi intermediate compartment is specified by a C-terminal motif. J. Cell Sci. 121, 753–761 (2008).
Fernández-Sánchez, E., Díez-Guerra, F. J., Cubelos, B., Giménez, C. & Zafra, F. Mechanisms of endoplasmic-reticulum export of glycine transporter-1 (GLYT1). Biochem. J. 409, 669–681 (2008).
Bauman, P. A. & Blakely, R. D. Determinants within the C-terminus of the human norepinephrine transporter dictate transporter trafficking, stability, and activity. Arch. Biochem. Biophys. 404, 80–91 (2002).
Yamayoshi, S. et al. Ebola virus matrix protein VP40 uses the COPII transport system for its intracellular transport. Cell Host Microbe 3, 168–177 (2008).
Miao, G., Zhang, Y., Chen, D. & Zhang, H. The ER-localized transmembrane protein TMEM39A/SUSR2 regulates autophagy by controlling the trafficking of the PtdIns(4)P phosphatase SAC1. Mol. Cell 77, 618–632.e5 (2020).
Nie, C., Wang, H., Wang, R., Ginsburg, D. & Chen, X.-W. Dimeric sorting code for concentrative cargo selection by the COPII coat. Proc. Natl Acad. Sci. USA 115, E3155–E3162 (2018).
Watanabe, S. et al. Structure of full-length ERGIC-53 in complex with MCFD2 for cargo transport. Nat. Commun. 15, 2404 (2024).
Zheng, C., Liu, H., Yuan, S., Zhou, J. & Zhang, B. Molecular basis of LMAN1 in coordinating LMAN1-MCFD2 cargo receptor formation and ER-to-Golgi transport of FV/FVIII. Blood 116, 5698–5706 (2010).
Robinson, C. M., Duggan, A. & Forrester, A. ER exit in physiology and disease. Front. Mol. Biosci. 11, 1352970 (2024).
Gamerdinger, M. & Deuerling, E. Cotranslational sorting and processing of newly synthesized proteins in eukaryotes. Trends Biochem. Sci. 49, 105–118 (2024).
Pool, M. R. Targeting of proteins for translocation at the endoplasmic reticulum. Int. J. Mol. Sci. 23, 3773 (2022).
Lang, S. et al. Signal peptide features determining the substrate specificities of targeting and translocation components in human ER protein import. Front. Physiol. 13, 833540 (2022).
Vashist, S. et al. Distinct retrieval and retention mechanisms are required for the quality control of endoplasmic reticulum protein folding. J. Cell Biol. 155, 355–368 (2001).
Barlowe, C. K. & Miller, E. A. Secretory protein biogenesis and traffic in the early secretory pathway. Genetics 193, 383–410 (2013).
Macer, D. R. & Koch, G. L. Identification of a set of calcium-binding proteins in reticuloplasm, the luminal content of the endoplasmic reticulum. J. Cell Sci. 91, 61–70 (1988).
Appenzeller-Herzog, C., Roche, A.-C., Nufer, O. & Hauri, H.-P. pH-induced conversion of the transport lectin ERGIC-53 triggers glycoprotein release. J. Biol. Chem. 279, 12943–12950 (2004).
Tempio, T. et al. A virtuous cycle operated by ERp44 and ERGIC-53 guarantees proteostasis in the early secretory compartment. iScience 24, 102244 (2021).
Satoh, T., Suzuki, K., Yamaguchi, T. & Kato, K. Structural basis for disparate sugar-binding specificities in the homologous cargo receptors ERGIC-53 and VIP36. PLoS One 9, e87963 (2014).
Bräuer, P. et al. Structural basis for pH-dependent retrieval of ER proteins from the Golgi by the KDEL receptor. Science 363, 1103–1107 (2019).
Zhang, Y., Srivastava, V. & Zhang, B. Mammalian cargo receptors for endoplasmic reticulum-to-Golgi transport: mechanisms and interactions. Biochem. Soc. Trans. 51, 971–981 (2023).
Zheng, C. et al. Structural characterization of carbohydrate binding by LMAN1 protein provides new insight into the endoplasmic reticulum export of factors V (FV) and VIII (FVIII). J. Biol. Chem. 288, 20499–20509 (2013).
Cortini, M. & Sitia, R. ERp44 and ERGIC-53 synergize in coupling efficiency and fidelity of IgM polymerization and secretion. Traffic 11, 651–659 (2010).
Benham, A. M. Protein secretion and the endoplasmic reticulum. Cold Spring Harb. Perspect. Biol. 4, a012872 (2012).
Malchus, N. & Weiss, M. Anomalous diffusion reports on the interaction of misfolded proteins with the quality control machinery in the endoplasmic reticulum. Biophys. J. 99, 1321–1328 (2010).
Bisnett, B. J., Condon, B. M., Lamb, C. H., Georgiou, G. R. & Boyce, M. Export control: post-transcriptional regulation of the COPII trafficking pathway. Front. Cell Dev. Biol. 8, 618652 (2020).
Jakobsen, M. K. et al. Phosphorylation of Chs2p regulates interaction with COPII. J. Cell Sci. 126, 2151–2156 (2013).
Lagunas-Gomez, D., Yañez-Dominguez, C., Zavala-Padilla, G., Barlowe, C. & Pantoja, O. The C-terminus of the cargo receptor Erv14 affects COPII vesicle formation and cargo delivery. J. Cell Sci. 136, jcs260527 (2023).
Yellaturu, C. R. et al. Insulin enhances post-translational processing of nascent SREBP-1c by promoting its phosphorylation and association with COPII vesicles. J. Biol. Chem. 284, 7518–7532 (2009).
Lu, C.-L. et al. Collagen has a unique SEC24 preference for efficient export from the endoplasmic reticulum. Traffic 23, 81–93 (2022).
Uhlén, M. et al. Proteomics. Tissue-based map of the human proteome. Science 347, 1260419 (2015).
Paccaud, J. P. et al. Cloning and functional characterization of mammalian homologues of the COPII component Sec23. Mol. Biol. Cell 7, 1535–1546 (1996).
Borgese, N. Getting membrane proteins on and off the shuttle bus between the endoplasmic reticulum and the Golgi complex. J. Cell Sci. 129, 1537–1545 (2016).
Ronchi, P., Colombo, S., Francolini, M. & Borgese, N. Transmembrane domain-dependent partitioning of membrane proteins within the endoplasmic reticulum. J. Cell Biol. 181, 105–118 (2008).
Dukhovny, A., Yaffe, Y., Shepshelovitch, J. & Hirschberg, K. The length of cargo-protein transmembrane segments drives secretory transport by facilitating cargo concentration in export domains. J. Cell Sci. 122, 1759–1767 (2009).
Runz, H., Miura, K., Weiss, M. & Pepperkok, R. Sterols regulate ER‐export dynamics of secretory cargo protein ts‐O45‐G. EMBO J. 25, 2953–2965 (2006).
Pathre, P. et al. Activation of phospholipase D by the small GTPase Sar1p is required to support COPII assembly and ER export. EMBO J. 22, 4059–4069 (2003).
Blumental-Perry, A. et al. Phosphatidylinositol 4-phosphate formation at ER exit sites regulates ER export. Dev. Cell 11, 671–682 (2006).
Bonnon, C., Wendeler, M. W., Paccaud, J.-P. & Hauri, H.-P. Selective export of human GPI-anchored proteins from the endoplasmic reticulum. J. Cell Sci. 123, 1705–1715 (2010).
Ridsdale, A. et al. Cholesterol is required for efficient endoplasmic reticulum-to-Golgi transport of secretory membrane proteins. Mol. Biol. Cell 17, 1593–1605 (2006).
Sharpe, H. J., Stevens, T. J. & Munro, S. A comprehensive comparison of transmembrane domains reveals organelle-specific properties. Cell 142, 158–169 (2010).
Kaiser, H.-J. et al. Lateral sorting in model membranes by cholesterol-mediated hydrophobic matching. Proc. Natl Acad. Sci. USA 108, 16628–16633 (2011).
Bielli, A. et al. Regulation of Sar1 NH2 terminus by GTP binding and hydrolysis promotes membrane deformation to control COPII vesicle fission. J. Cell Biol. 171, 919–924 (2005).
Schindler, A. J. & Schekman, R. In vitro reconstitution of ER-stress induced ATF6 transport in COPII vesicles. Proc. Natl Acad. Sci. USA 106, 17775–17780 (2009).
Adolf, F. et al. Scission of COPI and COPII vesicles is independent of GTP hydrolysis. Traffic 14, 922–932 (2013).
Paul, S., Audhya, A. & Cui, Q. Molecular mechanism of GTP binding- and dimerization-induced enhancement of Sar1-mediated membrane remodeling. Proc. Natl Acad. Sci. USA 120, e2212513120 (2023).
Sato, K. & Nakano, A. Dissection of COPII subunit-cargo assembly and disassembly kinetics during Sar1p-GTP hydrolysis. Nat. Struct. Mol. Biol. 12, 167–174 (2005).
Lord, C. et al. Sequential interactions with Sec23 control the direction of vesicle traffic. Nature 473, 181–186 (2011).
Wegeng, W. R. et al. A Hollow TFG condensate spatially compartmentalizes the early secretory pathway. Preprint at bioRxiv https://doi.org/10.1101/2024.03.26.586876 (2024).
Kasberg, W. et al. TFG regulates inner COPII coat recruitment to facilitate anterograde secretory protein transport. MBoC 35, ar113 (2024).
Kanadome, T., Shibata, H., Kuwata, K., Takahara, T. & Maki, M. The calcium-binding protein ALG-2 promotes endoplasmic reticulum exit site localization and polymerization of Trk-fused gene (TFG) protein. FEBS J. 284, 56–76 (2017).
Hanna, M. G., Peotter, J. L., Frankel, E. B. & Audhya, A. Membrane transport at an organelle interface in the early secretory pathway: take your coat off and stay a while. BioEssays 40, 1800004 (2018).
Qiu, H. et al. Short-distance vesicle transport via phase separation. Cell 187, 2175–2193.e21 (2024).
Gallo, R., Rai, A. K., McIntyre, A. B. R., Meyer, K. & Pelkmans, L. DYRK3 enables secretory trafficking by maintaining the liquid-like state of ER exit sites. Dev. Cell 58, 1880–1897.e11 (2023).
Westrate, L. M., Hoyer, M. J., Nash, M. J. & Voeltz, G. K. Vesicular and uncoated Rab1-dependent cargo carriers facilitate ER to Golgi transport. J. Cell Sci. 133, jcs239814 (2020).
Gorur, A. et al. COPII-coated membranes function as transport carriers of intracellular procollagen I. J. Cell Biol. 216, 1745–1759 (2017).
Jin, L. et al. Ubiquitin-dependent regulation of COPII coat size and function. Nature 482, 495–500 (2012).
McGourty, C. A. et al. Regulation of the CUL3 ubiquitin ligase by a calcium-dependent co-adaptor. Cell 167, 525–538 (2016).
Rezaei, N., Lyons, A. & Forde, N. R. Environmentally controlled curvature of single collagen proteins. Biophys. J. 115, 1457–1469 (2018).
Kim, S.-D. et al. The SEC23-SEC31 interface plays critical role for export of procollagen from the endoplasmic reticulum. J. Biol. Chem. 287, 10134–10144 (2012).
Boyadjiev, S. A. et al. Cranio-lenticulo-sutural dysplasia is caused by a SEC23A mutation leading to abnormal endoplasmic-reticulum-to-Golgi trafficking. Nat. Genet. 38, 1192–1197 (2006).
Saito, K. & Maeda, M. Not just a cargo receptor for large cargoes; an emerging role of TANGO1 as an organizer of ER exit sites. J. Biochem. 166, 115–119 (2019).
Arnolds, O. & Stoll, R. Characterization of a fold in TANGO1 evolved from SH3 domains for the export of bulky cargos. Nat. Commun. 14, 2273 (2023).
Raote, I. et al. TANGO1 membrane helices create a lipid diffusion barrier at curved membranes. eLife 9, e57822 (2020).
Maeda, M., Katada, T. & Saito, K. TANGO1 recruits Sec16 to coordinately organize ER exit sites for efficient secretion. J. Cell Biol. 216, 1731–1743 (2017).
Saito, K. et al. Concentration of Sec12 at ER exit sites via interaction with cTAGE5 is required for collagen export. J. Cell Biol. 206, 751–762 (2014).
Santos, A. J. M., Raote, I., Scarpa, M., Brouwers, N. & Malhotra, V. TANGO1 recruits ERGIC membranes to the endoplasmic reticulum for procollagen export. Elife 4, e10982 (2015).
Raote, I. et al. TANGO1 builds a machine for collagen export by recruiting and spatially organizing COPII, tethers and membranes. Elife 7, e32723 (2018).
Ríos-Barrera, L. D., Sigurbjörnsdóttir, S., Baer, M. & Leptin, M. Dual function for Tango1 in secretion of bulky cargo and in ER-Golgi morphology. Proc. Natl Acad. Sci. USA 114, E10389–E10398 (2017).
Reynolds, H. M., Zhang, L., Tran, D. T. & Ten Hagen, K. G. Tango1 coordinates the formation of endoplasmic reticulum/Golgi docking sites to mediate secretory granule formation. J. Biol. Chem. 294, 19498–19510 (2019).
Feng, Z., Yang, K. & Pastor-Pareja, J. C. Tales of the ER-Golgi frontier: Drosophila-centric considerations on tango1 function. Front. Cell Dev. Biol. 8, 619022 (2020).
Bard, F. et al. Functional genomics reveals genes involved in protein secretion and Golgi organization. Nature 439, 604–607 (2006).
Saxena, S. et al. Endoplasmic reticulum exit sites are segregated for secretion based on cargo size. Dev. Cell 59, 2593–2608 (2024).
Bykov, Y. S. et al. The structure of the COPI coat determined within the cell. eLife 6, e32493 (2017).
Scales, S. J., Pepperkok, R. & Kreis, T. E. Visualization of ER-to-Golgi transport in living cells reveals a sequential mode of action for COPII and COPI. Cell 90, 1137–1148 (1997).
Stephens, D. J., Lin-Marq, N., Pagano, A., Pepperkok, R. & Paccaud, J. P. COPI-coated ER-to-Golgi transport complexes segregate from COPII in close proximity to ER exit sites. J. Cell Sci. 113, 2177–2185 (2000).
Shima, D. T., Scales, S. J., Kreis, T. E. & Pepperkok, R. Segregation of COPI-rich and anterograde-cargo-rich domains in endoplasmic-reticulum-to-Golgi transport complexes. Curr. Biol. 9, 821–824 (1999).
Kurokawa, K., Okamoto, M. & Nakano, A. Contact of cis-Golgi with ER exit sites executes cargo capture and delivery from the ER. Nat. Commun. 5, 3653 (2014).
Nogales, E. & Mahamid, J. Bridging structural and cell biology with cryo-electron microscopy. Nature 628, 47–56 (2024).
M, A. & Kn, F. Selective targeting of ER exit sites supports axon development. Traffic 10, 1669–1684 (2009).
Yperman, K. & Kuijpers, M. Neuronal endoplasmic reticulum architecture and roles in axonal physiology. Mol. Cell Neurosci. 125, 103822 (2023).
Wang, B., Stanford, K. R. & Kundu, M. ER-to-Golgi trafficking and its implication in neurological diseases. Cells 9, 408 (2020).
Chen, X., Wang, X., Huang, F. & Ma, D. Multicolor single-molecule localization microscopy: review and prospect. PhotoniX 5, 29 (2024).
Kumar, A. et al. Multispectral live-cell imaging with uncompromised spatiotemporal resolution. Preprint at bioRxiv https://doi.org/10.1101/2024.06.12.597784 (2024).
Peddie, C. J. et al. Volume electron microscopy. Nat. Rev. Methods Primers 2, 1–23 (2022).
Hoffman, D. P. et al. Correlative three-dimensional super-resolution and block-face electron microscopy of whole vitreously frozen cells. Science 367, eaaz5357 (2020).
Dumoux, M. et al. Cryo-plasma FIB/SEM volume imaging of biological specimens. eLife 12, e83623 (2023).
Lucas, B. A., Himes, B. A. & Grigorieff, N. Baited reconstruction with 2D template matching for high-resolution structure determination in vitro and in vivo without template bias. eLife 12, RP90486 (2023).
Castaño-Díez, D. & Zanetti, G. In situ structure determination by subtomogram averaging. Curr. Opin. Struct. Biol. 58, 68–75 (2019).
Tuijtel, M. W., Koster, A. J., Jakobs, S., Faas, F. G. A. & Sharp, T. H. Correlative cryo super-resolution light and electron microscopy on mammalian cells using fluorescent proteins. Sci. Rep. 9, 1369 (2019).
Phillips, M. A. et al. CryoSIM: super-resolution 3D structured illumination cryogenic fluorescence microscopy for correlated ultrastructural imaging. Optica 7, 802–812 (2020).
Moser, F. et al. Cryo-SOFI enabling low-dose super-resolution correlative light and electron cryo-microscopy. Proc. Natl Acad. Sci. USA 116, 4804–4809 (2019).
Chang, Y.-W. et al. Correlated cryogenic photoactivated localization microscopy and cryo-electron tomography. Nat. Methods 11, 737–739 (2014).
Liu, B. et al. Three-dimensional super-resolution protein localization correlated with vitrified cellular context. Sci. Rep. 5, 13017 (2015).
Zanetti-Domingues, L. C. et al. Toward quantitative super-resolution methods for cryo-CLEM. Methods Cell Biol. 187, 249–292 (2024).
Liu, Y.-T. et al. Isotropic reconstruction for electron tomography with deep learning. Nat. Commun. 13, 6482 (2022).
Buchholz, T.-O. et al. Content-aware image restoration for electron microscopy. Methods Cell Biol. 152, 277–289 (2019).
Dimchev, G., Amiri, B., Fäßler, F., Falcke, M. & Schur, F. K. Computational toolbox for ultrastructural quantitative analysis of filament networks in cryo-ET data. J. Struct. Biol. 213, 107808 (2021).
Lamm, L. et al. MemBrain: a deep learning-aided pipeline for detection of membrane proteins in cryo-electron tomograms. Comput. Methods Prog. Biomed. 224, 106990 (2022).
Böhm, J. et al. Toward detecting and identifying macromolecules in a cellular context: template matching applied to electron tomograms. Proc. Natl Acad. Sci. USA 97, 14245–14250 (2000).
Moebel, E. et al. Deep learning improves macromolecule identification in 3D cellular cryo-electron tomograms. Nat. Methods 18, 1386–1394 (2021).
Rice, G. et al. TomoTwin: generalized 3D localization of macromolecules in cryo-electron tomograms with structural data mining. Nat. Methods 20, 871–880 (2023).
de Teresa-Trueba, I. et al. Convolutional networks for supervised mining of molecular patterns within cellular context. Nat. Methods 20, 284–294 (2023).
Acknowledgements
Work in the group of G.Z. was supported by the European Research Council (ERC-StG-2019 grant 852915) and the Biotechnology and Biological Sciences Research Council (BBSRC grant BB/T002670/1).
Author information
Authors and Affiliations
Contributions
The authors contributed equally to all aspects of the article.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Molecular Cell Biology thanks Hesso Farhan, Koret Hirschberg and Charles Barlowe for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Related links
Cryo ET Data Portal: https://cryoetdataportal.czscience.com/runs/15050
Human Protein Atlas: https://www.proteinatlas.org/
Supplementary information
Glossary
- Arginine finger
-
This is a highly conserved and essential residue acting in trans on many GTPase and AAA+ ATPase enzymes to promote GTP hydrolysis. Often they are found in GTPase-activating proteins (GAPs) (such as Sec23).
- Bulk flow
-
Bulk flow refers to the passive export of proteins at their prevailing concentrations within the endoplasmic reticulum.
- Chylomicrons
-
Chylomicrons are large lipoproteins produced in enterocytes. They are composed of a central lipid core primarily consisting of triglycerides, together with esterified cholesterol and phospholipids and transport dietary fat from the intestine to the liver and peripheral tissues.
- Cryo-structured illumination microscopy
-
Interference-based high-resolution fluorescence technique performed at cryogenic temperatures (below −160 °C).
- Focused ion beam–scanning electron microscopy
-
A dual beam technique where scanning electron microscopy is combined with a focussed ion beam to visualize and mill material. It can be used to prepare thin lamellae of biological samples for use in transmission electron microscopy, or to produce serial scanning electron microscopy images of the ‘face’ of the block being milled.
- Giant unilamellar vesicles
-
Spherical particles made of a lipid bilayer with sizes in the micrometre range. They can be used to mimic cellular membranes for in vitro experiments.
- Microsomes
-
Particles derived from permeabilised cells after differential centrifugation, consisting mostly of endoplasmic reticulum membranes.
- Molecular dynamics simulations
-
A computational technique used to simulate the physical movements of atoms and molecules over time based on their energy landscape.
- Retention using selective hooks
-
The retention using selective hooks (RUSH) system is used to synchronise protein transport within the secretory pathway. It consists of a ‘hook’ (a streptavidin-tagged protein localized to a secretory compartment like the endoplasmic reticulum) and a ‘reporter’ (a fluorescently tagged protein fused to streptavidin binding peptide, SBP). The streptavidin-SBP interaction retains the reporter at the location of the hook, and is disrupted by biotin, causing the reporter to be released synchronously.
- Tryptophan fluorescence measurements
-
A technique that monitors tryptophan fluorescence to measure conformational changes in proteins.
- v-SNARE
-
SNAREs mediate the fusion of vesicles with the target membrane via the interaction of vesicle localized SNAREs (v-SNAREs) with target membrane localized SNAREs (t-SNAREs).
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Downes, K.W., Zanetti, G. Mechanisms of COPII coat assembly and cargo recognition in the secretory pathway. Nat Rev Mol Cell Biol (2025). https://doi.org/10.1038/s41580-025-00839-y
Accepted:
Published:
DOI: https://doi.org/10.1038/s41580-025-00839-y