Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Modes of Notch signalling in development and disease

Abstract

Many different animal developmental and homeostatic processes rely on signalling via the highly conserved Notch pathway. Often Notch signalling has iterative roles during cell specification and differentiation, controlling not only the state of progenitor cells but also the fate and function of their progeny. Its roles continue throughout the lifespan of the organism, regulating normal tissue maintenance, as well as operating in response to damage. Consistent with such fundamental roles, the pathway has been associated with numerous diseases, including cancers. Understanding how Notch signalling is orchestrated to bring about different outcomes is challenging, given that it has many diverse functions. Classic models proposed that stochastic differences in cell states were important to polarise signalling during cell fate decisions. Subsequently, the importance of oscillatory Notch signalling was uncovered, and it became clear that it operates in different modalities depending on the regulatory inputs. With the advent of ever-more-sensitive live-imaging and quantitative approaches, it is becoming evident that differences in the dynamics, levels and architectures of Notch signalling are critical in shaping and maintaining tissues. This Review focuses on the cellular and molecular mechanisms involved in conferring different modalities on Notch pathway operations and how these enable different types of functional outcomes from pathway activation. We also discuss their dysregulation in cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the core Notch pathway.
Fig. 2: Stochastic Notch signalling and lateral inhibition.
Fig. 3: Oscillatory Notch signalling.
Fig. 4: Sustained Notch signalling.
Fig. 5: Digital and graded Notch signalling.
Fig. 6: Notch oncogenic modes of action.

Similar content being viewed by others

References

  1. Bray, S. J. Notch signalling in context. Nat. Rev. Mol. Cell Biol. 17, 722–735 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Sjoqvist, M. & Andersson, E. R. Do as I say, Not(ch) as I do: lateral control of cell fate. Dev. Biol. 447, 58–70 (2019).

    Article  PubMed  Google Scholar 

  3. Henrique, D. & Schweisguth, F. Mechanisms of Notch signaling: a simple logic deployed in time and space. Development https://doi.org/10.1242/dev.172148 (2019).

  4. Siebel, C. & Lendahl, U. Notch signaling in development, tissue homeostasis, and disease. Physiol. Rev. 97, 1235–1294 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. Aster, J. C., Pear, W. S. & Blacklow, S. C. The varied roles of Notch in cancer. Annu. Rev. Pathol. 12, 245–275 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. Masek, J. & Andersson, E. R. The developmental biology of genetic Notch disorders. Development 144, 1743–1763 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. Bray, S. J. Notch signalling: a simple pathway becomes complex. Nat. Rev. Mol. Cell Biol. 7, 678–689 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Guruharsha, K. G., Kankel, M. W. & Artavanis-Tsakonas, S. The Notch signalling system: recent insights into the complexity of a conserved pathway. Nat. Rev. Genet. 13, 654–666 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kovall, R. A., Gebelein, B., Sprinzak, D. & Kopan, R. The canonical Notch signaling pathway: structural and biochemical insights into shape, sugar, and force. Dev. Cell 41, 228–241 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sprinzak, D. & Blacklow, S. C. Biophysics of Notch signaling. Annu. Rev. Biophys. 50, 157–189 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Benedito, R. et al. The Notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis. Cell 137, 1124–1135 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Nam, Y., Sliz, P., Song, L., Aster, J. C. & Blacklow, S. C. Structural basis for cooperativity in recruitment of MAML coactivators to Notch transcription complexes. Cell 124, 973–983 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Wilson, J. J. & Kovall, R. A. Crystal structure of the CSL–Notch–Mastermind ternary complex bound to DNA. Cell 124, 985–996 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Bray, S. J. & Gomez-Lamarca, M. Notch after cleavage. Curr. Opin. Cell Biol. 51, 103–109 (2018).

    Article  CAS  PubMed  Google Scholar 

  15. Gordon, W. R. et al. Mechanical allostery: evidence for a force requirement in the proteolytic activation of Notch. Dev. Cell 33, 729–736 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Musse, A. A., Meloty-Kapella, L. & Weinmaster, G. Notch ligand endocytosis: mechanistic basis of signaling activity. Semin. Cell Dev. Biol. 23, 429–436 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Seib, E. & Klein, T. The role of ligand endocytosis in notch signalling. Biol. Cell 113, 401–418 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. Selkoe, D. & Kopan, R. Notch and Presenilin: regulated intramembrane proteolysis links development and degeneration. Annu. Rev. Neurosci. 26, 565–597 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Schroeter, E. H., Kisslinger, J. A. & Kopan, R. Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature 393, 382–386 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Struhl, G. & Greenwald, I. Presenilin is required for activity and nuclear access of Notch in Drosophila. Nature 398, 522–525 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Allman, A. et al. Splenic fibroblasts control marginal zone B cell movement and function via two distinct Notch2-dependent regulatory programs. Immunity 58, 143–161.e148 (2025).

    Article  CAS  PubMed  Google Scholar 

  22. Xu, X. et al. Jag1-Notch cis-interaction determines cell fate segregation in pancreatic development. Nat. Commun. 14, 348 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Corson, F., Couturier, L., Rouault, H., Mazouni, K. & Schweisguth, F. Self-organized Notch dynamics generate stereotyped sensory organ patterns in Drosophila. Science 356, eaai7407 (2017). Taking a live-imaging approach, coupled with mathematical modelling, this work shows how the selection of neural precurors evolves through different phases of Notch signalling, rather than in one step.

    Article  PubMed  Google Scholar 

  24. El Azhar, Y. et al. Unravelling differential Hes1 dynamics during axis elongation of mouse embryos through single-cell tracking. Development 151, dev202936 (2024).

    Article  CAS  PubMed  Google Scholar 

  25. Lewis, J. Notch signalling and the control of cell fate choices in vertebrates. Semin. Cell Dev. Biol. 9, 583–589 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Chitnis, A. B. The role of Notch in lateral inhibition and cell fate specification. Mol. Cell Neurosci. 6, 311–321 (1995).

    Article  CAS  PubMed  Google Scholar 

  27. Collier, J. R., Monk, N. A., Maini, P. K. & Lewis, J. H. Pattern formation by lateral inhibition with feedback: a mathematical model of Delta–Notch intercellular signalling. J. Theor. Biol. 183, 429–446 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Seydoux, G. & Greenwald, I. Cell autonomy of lin-12 function in a cell fate decision in C. elegans. Cell 57, 1237–1245 (1989).

    Article  CAS  PubMed  Google Scholar 

  29. Greenwald, I. Cell-cell interactions that specify certain cell fates in C. elegans development. Trends Genet. 5, 237–241 (1989).

    Article  CAS  PubMed  Google Scholar 

  30. Heitzler, P. & Simpson, P. The choice of cell fate in the epidermis of Drosophila. Cell 64, 1083–1092 (1991).

    Article  CAS  PubMed  Google Scholar 

  31. Bailey, A. M. & Posakony, J. W. Suppressor of hairless directly activates transcription of enhancer of split complex genes in response to Notch receptor activity. Genes. Dev. 9, 2609–2622 (1995).

    Article  CAS  PubMed  Google Scholar 

  32. Heitzler, P., Bourouis, M., Ruel, L., Carteret, C. & Simpson, P. Genes of the Enhancer of split and achaete-scute complexes are required for a regulatory loop between Notch and Delta during lateral signalling in Drosophila. Development 122, 161–171 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Jennings, B., Preiss, A., Delidakis, C. & Bray, S. The Notch signalling pathway is required for Enhancer of split bHLH protein expression during neurogenesis in the Drosophila embryo. Development 120, 3537–3548 (1994).

    Article  CAS  PubMed  Google Scholar 

  34. Lecourtois, M. & Schweisguth, F. The neurogenic Suppressor of Hairless DNA-binding protein mediates the transcriptional activation of the Enhancer of split Complex genes triggered by Notch signaling. Genes. Dev. 9, 2598–2608 (1995).

    Article  CAS  PubMed  Google Scholar 

  35. Barad, O., Hornstein, E. & Barkai, N. Robust selection of sensory organ precursors by the Notch–Delta pathway. Curr. Opin. Cell Biol. 23, 663–667 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Matsuda, M., Koga, M., Woltjen, K., Nishida, E. & Ebisuya, M. Synthetic lateral inhibition governs cell-type bifurcation with robust ratios. Nat. Commun. 6, 6195 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. Attner, M. A., Keil, W., Benavidez, J. M. & Greenwald, I. HLH-2/E2A expression links stochastic and deterministic elements of a cell fate decision during C. elegans gonadogenesis. Curr. Biol. 29, 3094–3100.e3094 (2019). By performing high-throughput lineage analysis in a microfluidic device, the authors study the preceding cell divisions and gene expression levels of a C. elegans cell fate decision that was considered stochastic. Their results reveal that the cells have a pre-existing bias.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shaya, O. et al. Cell–cell contact area affects notch signaling and Notch-dependent patterning. Dev. Cell 40, 505–511.e506 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Adam, J. et al. Cell fate choices and the expression of Notch, Delta and Serrate homologues in the chick inner ear: parallels with Drosophila sense-organ development. Development 125, 4645–4654 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Phan, M. S. et al. Symmetry breaking and fate divergence during lateral inhibition in Drosophila. Development 151, dev203165 (2024).

    Article  CAS  PubMed  Google Scholar 

  41. Webb, A. B. & Oates, A. C. Timing by rhythms: daily clocks and developmental rulers. Dev. Growth Differ. 58, 43–58 (2016).

    Article  PubMed  Google Scholar 

  42. Kageyama, R., Shimojo, H. & Isomura, A. Oscillatory control of Notch signaling in development. Adv. Exp. Med. Biol. 1066, 265–277 (2018).

    Article  CAS  PubMed  Google Scholar 

  43. Kageyama, R., Isomura, A. & Shimojo, H. Biological significance of the coupling delay in synchronized oscillations. Physiology 38, 0 (2023).

    Article  CAS  PubMed  Google Scholar 

  44. Giudicelli, F. & Lewis, J. The vertebrate segmentation clock. Curr. Opin. Genet. Dev. 14, 407–414 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Jouve, C. et al. Notch signalling is required for cyclic expression of the hairy-like gene HES1 in the presomitic mesoderm. Development 127, 1421–1429 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Riedel-Kruse, I. H., Muller, C. & Oates, A. C. Synchrony dynamics during initiation, failure, and rescue of the segmentation clock. Science 317, 1911–1915 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Webb, A. B. et al. Persistence, period and precision of autonomous cellular oscillators from the zebrafish segmentation clock. eLife 5, e08438 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Yoshioka-Kobayashi, K. et al. Coupling delay controls synchronized oscillation in the segmentation clock. Nature 580, 119–123 (2020). One of many notable studies from the Kageyama group; in this work, the authors investigate the consequences of eliminating LFNG, using a sensitive live-imaging approach to measure oscillations. The periodicity of HES7 expression in dissociated LFNG-null cells was normal but they lost synchronicity, arguing that LFNG is involved mostly in cell–cell coupling.

    Article  CAS  PubMed  Google Scholar 

  49. Tsiairis, C. D. & Aulehla, A. Self-organization of embryonic genetic oscillators into spatiotemporal wave patterns. Cell 164, 656–667 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Diaz-Cuadros, M. et al. In vitro characterization of the human segmentation clock. Nature 580, 113–118 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ho, C. et al. Nonreciprocal synchronization in embryonic oscillator ensembles. Proc. Natl Acad. Sci. USA 121, e2401604121 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Venzin, O. F. & Oates, A. C. What are you synching about? Emerging complexity of Notch signaling in the segmentation clock. Dev. Biol. 460, 40–54 (2020).

    Article  CAS  PubMed  Google Scholar 

  53. Lewis, J. Autoinhibition with transcriptional delay: a simple mechanism for the zebrafish somitogenesis oscillator. Curr. Biol. 13, 1398–1408 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Herrgen, L. et al. Intercellular coupling regulates the period of the segmentation clock. Curr. Biol. 20, 1244–1253 (2010).

    Article  CAS  PubMed  Google Scholar 

  55. Momiji, H. & Monk, N. A. Oscillatory Notch-pathway activity in a delay model of neuronal differentiation. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80, 021930 (2009).

    Article  PubMed  Google Scholar 

  56. Bonev, B., Stanley, P. & Papalopulu, N. MicroRNA-9 modulates Hes1 ultradian oscillations by forming a double-negative feedback loop. Cell Rep. 2, 10–18 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hirata, H. et al. Instability of Hes7 protein is crucial for the somite segmentation clock. Nat. Genet. 36, 750–754 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Soto, X. et al. Dynamic properties of noise and Her6 levels are optimized by miR-9, allowing the decoding of the Her6 oscillator. EMBO J. 39, e103558 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Cohen, B. et al. Fringe boundaries coincide with Notch-dependent patterning centres in mammals and alter Notch-dependent development in Drosophila. Nat. Genet. 16, 283–288 (1997).

    Article  CAS  PubMed  Google Scholar 

  60. Kakuda, S. & Haltiwanger, R. S. Deciphering the fringe-mediated Notch code: identification of activating and inhibiting sites allowing discrimination between ligands. Dev. Cell 40, 193–201 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Harvey, B. M. & Haltiwanger, R. S. Regulation of Notch function by o-glycosylation. Adv. Exp. Med. Biol. 1066, 59–78 (2018).

    Article  CAS  PubMed  Google Scholar 

  62. Panin, V. M., Papayannopoulos, V., Wilson, R. & Irvine, K. D. Fringe modulates Notch–ligand interactions. Nature 387, 908–912 (1997).

    Article  CAS  PubMed  Google Scholar 

  63. Bochter, M. S. et al. Lfng and Dll3 cooperate to modulate protein interactions in cis and coordinate oscillatory Notch pathway activation in the segmentation clock. Dev. Biol. 487, 42–56 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ochi, S., Imaizumi, Y., Shimojo, H., Miyachi, H. & Kageyama, R. Oscillatory expression of Hes1 regulates cell proliferation and neuronal differentiation in the embryonic brain. Development 147, dev182204 (2020).

    Article  CAS  PubMed  Google Scholar 

  65. Kobayashi, T. et al. The cyclic gene Hes1 contributes to diverse differentiation responses of embryonic stem cells. Genes. Dev. 23, 1870–1875 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lahmann, I. et al. Oscillations of MyoD and Hes1 proteins regulate the maintenance of activated muscle stem cells. Genes. Dev. 33, 524–535 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sueda, R., Imayoshi, I., Harima, Y. & Kageyama, R. High Hes1 expression and resultant Ascl1 suppression regulate quiescent vs. active neural stem cells in the adult mouse brain. Genes. Dev. 33, 511–523 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Shimojo, H., Ohtsuka, T. & Kageyama, R. Oscillations in Notch signaling regulate maintenance of neural progenitors. Neuron 58, 52–64 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Biga, V. et al. A dynamic, spatially periodic, micro-pattern of HES5 underlies neurogenesis in the mouse spinal cord. Mol. Syst. Biol. 17, e9902 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Shimojo, H. et al. Oscillatory control of Delta-like1 in cell interactions regulates dynamic gene expression and tissue morphogenesis. Genes. Dev. 30, 102–116 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhang, Y. et al. Oscillations of Delta-like1 regulate the balance between differentiation and maintenance of muscle stem cells. Nat. Commun. 12, 1318 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Seymour, P. A. et al. Jag1 modulates an oscillatory Dll1–Notch–Hes1 signaling module to coordinate growth and fate of pancreatic progenitors. Dev. Cell 52, 731–747.e738 (2020).

    Article  CAS  PubMed  Google Scholar 

  73. Rustighi, A. et al. Prolyl-isomerase Pin1 controls normal and cancer stem cells of the breast. EMBO Mol. Med. 6, 99–119 (2014).

    Article  CAS  PubMed  Google Scholar 

  74. Franciosa, G. et al. Prolyl-isomerase Pin1 controls Notch3 protein expression and regulates T-ALL progression. Oncogene 35, 4741–4751 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Harada, Y. et al. Cell cycle arrest determines adult neural stem cell ontogeny by an embryonic Notch-nonoscillatory Hey1 module. Nat. Commun. 12, 6562 (2021). Investigating the basis for Notch regulation of slowly dividing and fast dividing neural progenitors, the authors show that this can be attributed to the identify of the target genes. Hey1, the target in slow-dividing progenitors, does not manifest the same oscillatory expression as Hes1, owing to differences in their cis-regulatory sequences.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Falo-Sanjuan, J., Lammers, N. C., Garcia, H. G. & Bray, S. J. Enhancer priming enables fast and sustained transcriptional responses to Notch signaling. Dev. Cell 50, 411–425.e418 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zhu, X. et al. Sustained Notch signaling in progenitors is required for sequential emergence of distinct cell lineages during organogenesis. Genes. Dev. 20, 2739–2753 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. de Celis, J. F. & Bray, S. Feed-back mechanisms affecting Notch activation at the dorsoventral boundary in the Drosophila wing. Development 124, 3241–3251 (1997).

    Article  PubMed  Google Scholar 

  79. Daudet, N., Ariza-McNaughton, L. & Lewis, J. Notch signalling is needed to maintain, but not to initiate, the formation of prosensory patches in the chick inner ear. Development 134, 2369–2378 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. High, F. A. et al. An essential role for Notch in neural crest during cardiovascular development and smooth muscle differentiation. J. Clin. Invest. 117, 353–363 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Manderfield, L. J. et al. Notch activation of Jagged1 contributes to the assembly of the arterial wall. Circulation 125, 314–323 (2012).

    Article  PubMed  Google Scholar 

  82. Sprinzak, D. et al. Cis-interactions between Notch and Delta generate mutually exclusive signalling states. Nature 465, 86–90 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Basch, M. L. et al. Fine-tuning of Notch signaling sets the boundary of the organ of Corti and establishes sensory cell fates. eLife 5, e19921 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Sato, T. et al. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature 469, 415–418 (2011).

    Article  CAS  PubMed  Google Scholar 

  85. Lafkas, D. et al. Therapeutic antibodies reveal Notch control of transdifferentiation in the adult lung. Nature 528, 127–131 (2015).

    Article  CAS  PubMed  Google Scholar 

  86. Pardo-Saganta, A. et al. Parent stem cells can serve as niches for their daughter cells. Nature 523, 597–601 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kim, J., Irvine, K. D. & Carroll, S. B. Cell recognition, signal induction, and symmetrical gene activation at the dorsal–ventral boundary of the developing drosophila wing. Cell 82, 795–802 (1995).

    Article  CAS  PubMed  Google Scholar 

  88. Couso, J. P., Knust, E. & Martinez Arias, A. Serrate and wingless cooperate to induce vestigial gene expression and wing formation in Drosophila. Curr. Biol. 5, 1437–1448 (1995).

    Article  CAS  PubMed  Google Scholar 

  89. Diaz-Benjumea, F. J. & Cohen, S. M. Serrate signals through Notch to establish a Wingless-dependent organizer at the dorsal/ventral compartment boundary of the Drosophila wing. Development 121, 4215–4225 (1995).

    Article  CAS  PubMed  Google Scholar 

  90. Favarolo, M. B., Revinski, D. R., Garavaglia, M. J. & Lopez, S. L. Nodal and churchill1 position the expression of a notch ligand during Xenopus germ layer segregation. Life Sci. Alliance 5, e202201693 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Magnusson, J. P. et al. A latent neurogenic program in astrocytes regulated by Notch signaling in the mouse. Science 346, 237–241 (2014).

    Article  CAS  PubMed  Google Scholar 

  92. Zamboni, M., Llorens-Bobadilla, E., Magnusson, J. P. & Frisen, J. A widespread neurogenic potential of neocortical astrocytes is induced by injury. Cell Stem Cell 27, 605–617.e605 (2020). Through selective ablation of CSL in astrocytes and single-cell RNA sequencing, the authors reveal that tonic Notch signaling represses neurogenic programme in adult cortical astrocytes, maintaining them in a dormant state.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Schnute, B., Troost, T. & Klein, T. Endocytic trafficking of the Notch receptor. Adv. Exp. Med. Biol. 1066, 99–122 (2018).

    Article  CAS  PubMed  Google Scholar 

  94. Shimizu, H., Hosseini-Alghaderi, S., Woodcock, S. A. & Baron, M. Alternative mechanisms of Notch activation by partitioning into distinct endosomal domains. J. Cell Biol. 223, e202211041 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Mizutari, K. et al. Notch inhibition induces cochlear hair cell regeneration and recovery of hearing after acoustic trauma. Neuron 77, 58–69 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Tao, L. et al. Enhancer decommissioning imposes an epigenetic barrier to sensory hair cell regeneration. Dev. Cell 56, 2471–2485.e2475 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Jacobs, C. T., Kejriwal, A., Kocha, K. M., Jin, K. Y. & Huang, P. Temporal cell fate determination in the spinal cord is mediated by the duration of Notch signalling. Dev. Biol. 489, 1–13 (2022).

    Article  CAS  PubMed  Google Scholar 

  98. Schweisguth, F. Asymmetric cell division in the Drosophila bristle lineage: from the polarization of sensory organ precursor cells to Notch-mediated binary fate decision. Wiley Interdiscip. Rev. Dev. Biol. 4, 299–309 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Couturier, L., Vodovar, N. & Schweisguth, F. Endocytosis by Numb breaks Notch symmetry at cytokinesis. Nat. Cell Biol. 14, 131–139 (2012).

    Article  CAS  PubMed  Google Scholar 

  100. Li, X. et al. Temporal patterning of Drosophila medulla neuroblasts controls neural fates. Nature 498, 456–462 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Pinto-Teixeira, F. et al. Development of concurrent retinotopic maps in the fly motion detection circuit. Cell 173, 485–498.e411 (2018). Here, the authors demonstrate the importance of sequential Notch ON/OFF decisions in programming cell fates needed for correct wiring of the fly visual system.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Le Borgne, R. & Schweisguth, F. Unequal segregation of neuralized biases Notch activation during asymmetric cell division. Dev. Cell 5, 139–148 (2003).

    Article  PubMed  Google Scholar 

  103. Frise, E., Knoblich, J. A., Younger-Shepherd, S., Jan, L. Y. & Jan, Y. N. The Drosophila Numb protein inhibits signaling of the Notch receptor during cell–cell interaction in sensory organ lineage. Proc. Natl Acad. Sci. USA 93, 11925–11932 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Dong, Z., Yang, N., Yeo, S. Y., Chitnis, A. & Guo, S. Intralineage directional Notch signaling regulates self-renewal and differentiation of asymmetrically dividing radial glia. Neuron 74, 65–78 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Nemir, M., Croquelois, A., Pedrazzini, T. & Radtke, F. Induction of cardiogenesis in embryonic stem cells via downregulation of Notch1 signaling. Circ. Res. 98, 1471–1478 (2006).

    Article  CAS  PubMed  Google Scholar 

  106. Kay, M. et al. The conserved long non-coding RNA CARMA regulates cardiomyocyte differentiation. Cardiovasc. Res. 118, 2339–2353 (2022).

    Article  CAS  PubMed  Google Scholar 

  107. Lilja, A. M. et al. Clonal analysis of Notch1-expressing cells reveals the existence of unipotent stem cells that retain long-term plasticity in the embryonic mammary gland. Nat. Cell Biol. 20, 677–687 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Lee, C., Sorensen, E. B., Lynch, T. R. & Kimble, J. C. elegans GLP-1/Notch activates transcription in a probability gradient across the germline stem cell pool. eLife 5, e18370 (2016). Taking a quantitative approach to meaure the transcription of Notch responding gene using single-molecule fluorescence in situ hypbridization, the authors convincingly demonstrate that there is a graded response in the germline stem cells.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Vooijs, M. et al. Mapping the consequence of Notch1 proteolysis in vivo with NIP-CRE. Development 134, 535–544 (2007).

    Article  CAS  PubMed  Google Scholar 

  110. Gama-Norton, L. et al. Notch signal strength controls cell fate in the haemogenic endothelium. Nat. Commun. 6, 8510 (2015).

    Article  CAS  PubMed  Google Scholar 

  111. Porcheri, C. et al. Notch ligand Dll4 impairs cell recruitment to aortic clusters and limits blood stem cell generation. EMBO J. 39, e104270 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Thambyrajah, R. et al. Cis inhibition of NOTCH1 through JAGGED1 sustains embryonic hematopoietic stem cell fate. Nat. Commun. 15, 1604 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Guo, Y., Zhang, S., Wang, D., Heng, B. C. & Deng, X. Role of cell rearrangement and related signaling pathways in the dynamic process of tip cell selection. Cell Commun. Signal. 22, 24 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Guarani, V. et al. Acetylation-dependent regulation of endothelial Notch signalling by the SIRT1 deacetylase. Nature 473, 234–238 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Zhang, T. et al. Generation of excitatory and inhibitory neurons from common progenitors via Notch signaling in the cerebellum. Cell Rep. 35, 109208 (2021).

    Article  CAS  PubMed  Google Scholar 

  116. Ladi, E. et al. The divergent DSL ligand Dll3 does not activate Notch signaling but cell autonomously attenuates signaling induced by other DSL ligands. J. Cell Biol. 170, 983–992 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Brislinger-Engelhardt, M. M. et al. Temporal Notch signaling regulates mucociliary cell fates through Hes-mediated competitive de-repression. Preprint at bioRxiv https://doi.org/10.1101/2023.02.15.528675 (2023).

  118. Ninov, N., Borius, M. & Stainier, D. Y. Different levels of Notch signaling regulate quiescence, renewal and differentiation in pancreatic endocrine progenitors. Development 139, 1557–1567 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Sood, C., Justis, V. T., Doyle, S. E. & Siegrist, S. E. Notch signaling regulates neural stem cell quiescence entry and exit in Drosophila. Development 149, dev200275 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Sueda, R. & Kageyama, R. Regulation of active and quiescent somatic stem cells by Notch signaling. Dev. Growth Differ. 62, 59–66 (2020).

    Article  CAS  PubMed  Google Scholar 

  121. Ellisen, L. W. et al. TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 66, 649–661 (1991).

    Article  CAS  PubMed  Google Scholar 

  122. Palomero, T. et al. NOTCH1 directly regulates c-MYC and activates a feed-forward-loop transcriptional network promoting leukemic cell growth. Proc. Natl Acad. Sci. USA 103, 18261–18266 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Gonzalez-Garcia, S. et al. IL-7R is essential for leukemia-initiating cell activity of T-cell acute lymphoblastic leukemia. Blood 134, 2171–2182 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Gekas, C. et al. β-Catenin is required for T-cell leukemia initiation and MYC transcription downstream of Notch1. Leukemia 30, 2002–2010 (2016).

    Article  CAS  PubMed  Google Scholar 

  125. Espinosa, L. et al. The Notch/Hes1 pathway sustains NF-kB activation through CYLD repression in T cell leukemia. Cancer Cell 18, 268–281 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Palomero, T. et al. Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia. Nat. Med. 13, 1203–1210 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Weng, A. P. et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 306, 269–271 (2004).

    Article  CAS  PubMed  Google Scholar 

  128. Gordon, W. R. et al. Structure of the Notch1-negative regulatory region: implications for normal activation and pathogenic signaling in T-ALL. Blood 113, 4381–4390 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Antfolk, D., Antila, C., Kemppainen, K., Landor, S. K. & Sahlgren, C. Decoding the PTM-switchboard of Notch. Biochim. Biophys. Acta Mol. Cell Res. 1866, 118507 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Li, N. et al. Cyclin C is a haploinsufficient tumour suppressor. Nat. Cell Biol. 16, 1080–1091 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Fryer, C. J., White, J. B. & Jones, K. A. Mastermind recruits CycC:CDK8 to phosphorylate the Notch ICD and coordinate activation with turnover. Mol. Cell 16, 509–520 (2004).

    Article  CAS  PubMed  Google Scholar 

  132. Pear, W. S. et al. Exclusive development of T cell neoplasms in mice transplanted with bone marrow expressing activated Notch alleles. J. Exp. Med. 183, 2283–2291 (1996).

    Article  CAS  PubMed  Google Scholar 

  133. Chiang, M. Y. et al. Leukemia-associated NOTCH1 alleles are weak tumor initiators but accelerate K-ras-initiated leukemia. J. Clin. Invest. 118, 3181–3194 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Kindler, T. et al. K-RasG12D-induced T-cell lymphoblastic lymphoma/leukemias harbor Notch1 mutations and are sensitive to γ-secretase inhibitors. Blood 112, 3373–3382 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Nowell, C. S. & Radtke, F. Notch as a tumour suppressor. Nat. Rev. Cancer 17, 145–159 (2017).

    Article  CAS  PubMed  Google Scholar 

  136. Nicolas, M. et al. Notch1 functions as a tumor suppressor in mouse skin. Nat. Genet. 33, 416–421 (2003).

    Article  CAS  PubMed  Google Scholar 

  137. Lopez-Arribillaga, E. et al. Manic Fringe deficiency imposes Jagged1 addiction to intestinal tumor cells. Nat. Commun. 9, 2992 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Wu, B. et al. Stiff matrix induces exosome secretion to promote tumour growth. Nat. Cell Biol. 25, 415–424 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Sansone, P. et al. Self-renewal of CD133hi cells by IL6/Notch3 signalling regulates endocrine resistance in metastatic breast cancer. Nat. Commun. 7, 10442 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Guest, R. V. et al. Notch3 drives development and progression of cholangiocarcinoma. Proc. Natl Acad. Sci. USA 113, 12250–12255 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Zheng, Y. et al. A rare population of CD24+ITGB4+Notchhi cells drives tumor propagation in NSCLC and requires Notch3 for self-renewal. Cancer Cell 24, 59–74 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Bellavia, D. et al. Combined expression of pTα and Notch3 in T cell leukemia identifies the requirement of preTCR for leukemogenesis. Proc. Natl Acad. Sci. USA 99, 3788–3793 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Ohashi, S. et al. NOTCH1 and NOTCH3 coordinate esophageal squamous differentiation through a CSL-dependent transcriptional network. Gastroenterology 139, 2113–2123 (2010).

    Article  CAS  PubMed  Google Scholar 

  144. Choi, S. H. et al. The common oncogenomic program of NOTCH1 and NOTCH3 signaling in T-cell acute lymphoblastic leukemia. PLoS ONE 12, e0185762 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Ramsey, K. M. & Barrick, D. Unraveling paralog-specific Notch signaling through thermodynamics of ternary complex formation and transcriptional activation of chimeric receptors. Protein Sci. 33, e4947 (2024).

    Article  CAS  PubMed  Google Scholar 

  146. Jung, J. G. et al. Notch3 interactome analysis identified WWP2 as a negative regulator of Notch3 signaling in ovarian cancer. PLoS Genet. 10, e1004751 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Chen, X. et al. Defining NOTCH3 target genes in ovarian cancer. Cancer Res. 72, 2294–2303 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Aburjania, Z. et al. The role of Notch3 in cancer. Oncologist 23, 900–911 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Dou, X. W. et al. Notch3 maintains luminal phenotype and suppresses tumorigenesis and metastasis of breast cancer via trans-activating estrogen receptor-alpha. Theranostics 7, 4041–4056 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Chung, W. C., Egan, S. E. & Xu, K. A tumor-suppressive function for Notch3 in the parous mammary gland. Development 149, dev200913 (2022).

    Article  CAS  PubMed  Google Scholar 

  151. Ling, H., Sylvestre, J. R. & Jolicoeur, P. Cyclin D1-dependent induction of luminal inflammatory breast tumors by activated Notch3. Cancer Res. 73, 5963–5973 (2013).

    Article  CAS  PubMed  Google Scholar 

  152. Meurette, O. & Mehlen, P. Notch signaling in the tumor microenvironment. Cancer Cell 34, 536–548 (2018).

    Article  CAS  PubMed  Google Scholar 

  153. Parmigiani, E. et al. Interferon-γ resistance and immune evasion in glioma develop via Notch-regulated co-evolution of malignant and immune cells. Dev. Cell 57, 1847–1865.e1849 (2022). The authors show that suppression of Notch signaling alters cytokine production and enables gliomas to evade immune surveillance and increases aggressiveness, illustrating how Notch activity contributes to regulation of the microenvironment.

    Article  CAS  PubMed  Google Scholar 

  154. Allen, G. M. et al. Synthetic cytokine circuits that drive T cells into immune-excluded tumors. Science 378, eaba1624 (2022). In this study, the authors explore the use of synNotch for therapeutic strategies in cancers.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Nandagopal, N. et al. Dynamic ligand discrimination in the notch signaling pathway. Cell 172, 869–880.e819 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Troost, T., Binshtok, U., Sprinzak, D. & Klein, T. Cis-inhibition suppresses basal Notch signaling during sensory organ precursor selection. Proc. Natl Acad. Sci. USA 120, e2214535120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Tveriakhina, L. et al. Temporal dynamics and stoichiometry in human Notch signaling from Notch synaptic complex formation to nuclear entry of the Notch intracellular domain. Dev. Cell 59, 1425–1438.e1428 (2024).

    Article  CAS  PubMed  Google Scholar 

  158. Lee, C., Shin, H. & Kimble, J. Dynamics of Notch-dependent transcriptional bursting in its native context. Dev. Cell 50, 426–435.e424 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Sternberg, P. W. Lateral inhibition during vulval induction in Caenorhabditis elegans. Nature 335, 551–554 (1988).

    Article  CAS  PubMed  Google Scholar 

  160. Luca, V. C. et al. Notch–Jagged complex structure implicates a catch bond in tuning ligand sensitivity. Science 355, 1320–1324 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Dallas, M. H., Varnum-Finney, B., Martin, P. J. & Bernstein, I. D. Enhanced T-cell reconstitution by hematopoietic progenitors expanded ex vivo using the Notch ligand Delta1. Blood 109, 3579–3587 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Trotman-Grant, A. C. et al. DL4-μbeads induce T cell lineage differentiation from stem cells in a stromal cell-free system. Nat. Commun. 12, 5023 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Smyrlaki, I. et al. Soluble and multivalent Jag1 DNA origami nanopatterns activate Notch without pulling force. Nat. Commun. 15, 465 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Petcherski, A. G. & Kimble, J. Mastermind is a putative activator for Notch. Curr. Biol. 10, R471–R473 (2000).

    Article  CAS  PubMed  Google Scholar 

  165. Kovall, R. A. & Blacklow, S. C. Mechanistic insights into Notch receptor signaling from structural and biochemical studies. Curr. Top. Dev. Biol. 92, 31–71 (2010).

    Article  CAS  PubMed  Google Scholar 

  166. D’Souza, B., Miyamoto, A. & Weinmaster, G. The many facets of Notch ligands. Oncogene 27, 5148–5167 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank our research groups and our colleagues for inspiring discussions. We apologise that the brevity of the review means that we have had to select a few examples from the literature to illustrate the points made. Our research is supported by funding from UKRI Medical Research Council, Wellcome Trust, Instituto de Salud Carlos III, Instituto National de Investigacion, Agencia Estatal de Investigación (AEI) and AGAUR (Generalitat de Catalunya).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Sarah J. Bray.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Molecular Cell Biology thanks Emma Andersson, Stephen Blacklow and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Adaptor protein complexes

Multiprotein complexes that mediate vesicle formation and trafficking by linking cargo proteins to the vesicle coat.

β-Catenin

A key intracellular component in the Wnt signalling pathway. Wnt binding to its receptor prevents β-catenin degradation, allowing it to regulate gene expression.

Cell transformation

The process whereby normal cells become cancerous acquiring uncontrolled growth and division.

Club cells

Non-ciliated epithelial cells in the airway that play a role in detoxification, secretion of protective proteins and airway regeneration.

E3-ligase

An enzyme that tags proteins with ubiquitin altering their interactions with other adaptor proteins in the cell and in some cases targeting them for degradation by the proteasome.

Enhancer decommissioning

The process of shutting down active enhancers, often by removing transcriptional machinery of histone modifications, to regulate gene expression.

Exosomes

Small extracelluar vesicles released by cells to carry proteins, lipids and nucleic acids, important for cell communication in processes such as immune response and tumour progression.

Extracellular matrix

A network of proteins and polysaccharides surrounding cells, providing structural support and signals for cell adhesion, migration or differentiation.

Genetically mosaic tissues

Tissues composed of cells with different genetic makeups, often resulting from mutations, genetic recombination or experimental manipulation.

IL-7R

Receptor protein for the cytokine interleukin 7 (IL-7). Binding of IL-7 activates other downstream pathways and regulates the development, proliferation and survival of immune T and B lymphocytes.

Immunosuppressive tumour environments

A complex networks of cancer cells, immune cells and signalling molecules that suppresses immune activity, allowing tumours to evade immune.destruction. Key contributions include regulatory T cells, myeloid-derived suppressor cells and immunosuppressive cytokines.

Lateral inhibition

A process in which a cell becomes selected from a group of equivalent cells and inhibits its neighbouring cells from adopting the same fate. Promotes the formation of distinct cell types in tissues.

Mediator-associated kinase CDK8

(cyclin-dependent kinase 8). Regulatory subunit of the Mediator complex that regulates gene expression by phosphorylating transcription factors and RNA polymerase II. Linked to cancer progression.

Mucociliary cell

Ciliated epithelial cells in the respiratory track that secrete mucus aiding in the clearance of particles and pathogens.

Muscle satellite cells

Stem cells located beneath the basal lamina of muscle fibres, responsible for muscle growth, repair and regeneration.

NFkB

(nuclear factor kappa-light-chain-enhancer of activated B cells) pathway. Controls immune responses, inflammation, cell survival and proliferation. Activation leads to NFkB moving to the nucleus to induce inflammatory and survival genes. Chronic activation is linked to disease.

Paraxial mesoderm

A region of the mesoderm located on either side of the neural tube that forms somites and contributes to the musculoskeletal system.

PI3K

(phosphatidylinositol 3-kinase). Kinase enzyme that regulates cell growth, survival and metabolism. PI3K activation triggers protein kinase B (PKB, or Akt) signalling, which promotes cell survival and inhibits apoptosis. Dysregulated in cancer and metabolic diseases.

Prolyl-isomerase Pin1

Peptidyl-prolyl isomerases are enzymes that regulate the stability, localization and activity of proteins. Pin1 recognizes and isomerises the phosphorylated serine/threonine–proline (pSer/Thr–Pro) motif.

Somites

Segmented structures from the paraxial mesoderm that give rise to the vertebrae, skeletal, muscles and dermis.

Translocation

Movement of a chromosome segment to a new location in the genome, within the same or a different chromosome, may be associated with cancer.

Wing imaginal discs

The wing primordia, epithelial structures in insect larvae that develop into adult wings during metamorphosis.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bray, S.J., Bigas, A. Modes of Notch signalling in development and disease. Nat Rev Mol Cell Biol (2025). https://doi.org/10.1038/s41580-025-00835-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41580-025-00835-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing
Morty Proxy This is a proxified and sanitized view of the page, visit original site.