Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Machine learning

A generalist model for enhancing brain MRIs

Training a model on fetal and paediatric magnetic resonance images with synthesized artefacts enhances the model’s generalization across downstream tasks and patient populations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A generalist machine-learning model for enhancing MRIs.

References

  1. Coupé, P. et al. Hum. Brain Mapp. 36, 4758–4770 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Pardoe, H. R., Hiess, R. K. & Kuzniecky, R. NeuroImage 135, 177–185 (2016).

    Article  PubMed  Google Scholar 

  3. Kruggel, F., Turner, J., Muftuler, L. T. & Alzheimer’s Disease Neuroimaging Initiative. NeuroImage 49, 2123–2133 (2010).

    Article  PubMed  Google Scholar 

  4. Johnson, P. M. et al. in Proc. Machine Learning for Medical Image Reconstruction: 4th International Workshop (eds Haq, N. et al.) 25–34 (Springer, 2021).

  5. Iglesias, J. E. et al. Sci. Adv. 9, eadd3607 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sun, Y., Wang, L., Li, G., Lin, W. & Wang, L. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-024-01283-7 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Vernooij, M. W. et al. Neuroradiology 61, 633–642 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Moor, M. et al. Nature 616, 259–265 (2023).

    Article  CAS  PubMed  Google Scholar 

  9. Stallone, M. et al. Preprint at https://arxiv.org/abs/2407.13739 (2024).

  10. Zhou, Y. et al. Nature 622, 156–163 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lu, M. Y. et al. Nat. Med. 30, 863–874 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Huang, K. et al. Nat. Med. 30, 3601–3613 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Billot, B. et al. Proc. Natl Acad. Sci. USA 120, e2216399120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Khosravi, B. et al. eBioMedicine 104, 105174 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Seyyed-Kalantari, L. et al. Nat. Med. 27, 2176–2182 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yael Balbastre.

Ethics declarations

Competing interests

B.F. is an advisor to DeepHealth, a company whose medical pursuits focus on medical imaging and measurement technologies. His interests were reviewed and are managed by Massachusetts General Hospital and Partners HealthCare in accordance with their conflict-of-interest policies. Y.B. has no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balbastre, Y., Fischl, B. A generalist model for enhancing brain MRIs. Nat. Biomed. Eng 9, 441–442 (2025). https://doi.org/10.1038/s41551-024-01320-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-024-01320-5

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics
Morty Proxy This is a proxified and sanitized view of the page, visit original site.