Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Clinical Studies

A prognostic microRNA-based signature for localized clear cell renal cell carcinoma: the Bio-miR study

Abstract

Background

Two thirds of renal cell carcinoma (RCC) patients have localized disease at diagnosis. A significant proportion of these patients will relapse. There is a need for prognostic biomarkers to improve risk-stratification and specific treatments for patients that relapse. The objective of this study is to determine the clinical utility of microRNA signatures as prognostic biomarkers in localized clear cell RCC (ccRCC) and propose new therapeutic targets in patients with a high-risk of relapse.

Patients and methods

The microRNA profiles from a discovery cohort of 71 T1-T2 ccRCC patients (n = 88) were analyzed using microarrays. MicroRNAs prognostic value was established, and a microRNAs signature predicting relapse for T1b-T3 disease was defined. Independent validation was carried out by qPCR in cohorts from UK (n = 75) and Spain (n = 180), and the TCGA cohort (n = 175). In the Spanish validation cohort, proteomics experiments were done. Proteins were extracted from FFPE tissue and analyzed using by data-independent acquisition mass spectrometry. Additionally, ccRCC TCGA RNA-seq data was also analyzed. Both protein and RNA-seq data was analyzed using Significance Analysis of Micorarrays (SAM) and probabilistic graphical models, which allow the identification of relevant biological processes between low and high-risk tumors.

Results

A 9-microRNAs signature, Bio-miR, classified patients into low- and high-risk with disease-free survival (DFS) at 5 years of 87.12 vs. 54.17% respectively (p = 0.0086, HR = 3.58, 95%CI: 1.37-8.3). Results were confirmed in the validation cohorts with 5-year DFS rates of 94% vs. 62% in the UK cohort (HR = 7.14, p = 0.001), 82.9% vs. 58.7% in the Spanish cohort (HR = 2.46, p = 0.0013), and 5-year overall survival rates of 72.7% vs. 44.5% in the TCGA cohort (HR = 2.43, p = 0.0012). Among low-risk patients according to adjuvant immunotherapy clinical trial criteria, Bio-miR identified a high-risk group. Maybe those patients ought to be considered to receive adjuvant therapy. Proteins overexpressed in the high-risk group were mainly related to focal adhesion, serine and inositol metabolism, and angiogenesis. Probabilistic graphical models defined eight functional nodes related to specific biological processes. Differences between low- and high-risk tumors were detected in complement activation and translation functional nodes. In ccRCC TCGA cohort, 676 genes were differentially expressed between low and high-risk patients, mainly related to complement activation, adhesion, and chemokine and cytokine cascades. In this case, probabilistic graphical models defined ten functional nodes. Calcium binding, membrane, adhesion, extracellular matrix, blood microparticle, inflammatory response and immune response had higher functional node activity, and metabolism node, containing genes related to retinol and xenobiotic and CYP450 metabolism, had lower activity in the high-risk group.

Conclusions

Bio-miR dichotomizes ccRCC patients with non-metastatic disease into those with low- and high-risk of relapse. This has implications for treatment and follow-up, identifying patients most likely to benefit from adjuvant treatment in clinical trials, preventing unnecessary exposure to side-effects, and providing health economics benefits. Additionally, promising therapeutic targets, as angiogenesis, immune response, metabolism, or complement activation, were found deregulated in high-risk ccRCC patients defined by Bio-miR. These findings may be useful to select patients for tailored, molecularly-driven clinical trials.

Patient summary

Identifying which patients with kidney cancer are most at risk of their cancer coming back after surgery is critical, so that they can be prioritized for early treatment. We have identified a combination of biomarkers present in the cancer tissue (called BiomiR) which can help to do this.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5: Disease-free survival in Bio-miR Spanish validation cohort according to eligibility to receive pembrolizumab as per KN564 criteria.
Fig. 6: Differential expressed proteins between Bio-miR low and high-risk ccRCC patients from the Spanish BiomiR validation cohort.
Fig. 7: Systems Biology analyses in ccRCC Spanish Bio-miR validation cohort.
Fig. 8: Differential gene expression between Bio-miR low and high-risk patients in ccRCC TCGA cohort.
Fig. 9: Systems Biology analysis of ccRCC TCGA cohort.

Similar content being viewed by others

Data availability

Proteomics raw data are available in the ProteomeXchange Consortium via the PRIDE (http://www.ebi.ac.uk/pride) partner repository with the data set identifier PXD039258.

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer J Clin. 2021;71:7–33.

    Article  PubMed  Google Scholar 

  2. Janzen NK, Kim HL, Figlin RA, Belldegrun AS. Surveillance after radical or partial nephrectomy for localized renal cell carcinoma and management of recurrent disease. Urol Clin North Am. 2003;30:843–52.

    Article  PubMed  Google Scholar 

  3. Janowitz T, Welsh SJ, Zaki K, Mulders P, Eisen T. Adjuvant therapy in renal cell carcinoma-past, present, and future. Semin Oncol. 2013;40:482–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dabestani S, Beisland C, Stewart GD, Bensalah K, Gudmundsson E, Lam TB, et al. Long-term outcomes of follow-up for initially localised clear cell renal cell carcinoma: RECUR database analysis. Eur Urol Focus. 2019;5:857–66.

    Article  PubMed  Google Scholar 

  5. Choueiri TK, Tomczak P, Park SH, Venugopal B, Ferguson T, Chang YH, et al. Adjuvant pembrolizumab after nephrectomy in renal-cell carcinoma. N Engl J Med. 2021;385:683–94.

    Article  CAS  PubMed  Google Scholar 

  6. Powles T, Tomczak P, Park SH, Venugopal B, Ferguson T, Symeonides SN, et al. Pembrolizumab versus placebo as post-nephrectomy adjuvant therapy for clear cell renal cell carcinoma (KEYNOTE-564): 30-month follow-up analysis of a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2022;23:1133–44.

    Article  CAS  PubMed  Google Scholar 

  7. Correa AF, Jegede O, Haas NB, Flaherty KT, Pins MR, Messing EM, et al. Predicting Renal Cancer Recurrence: Defining Limitations of Existing Prognostic Models With Prospective Trial-Based Validation. J Clin Oncol. 2019;37:2062–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Vasudev NS, Hutchinson M, Trainor S, Ferguson R, Bhattarai S, Adeyoju A, et al. UK multicenter prospective evaluation of the leibovich score in localized renal cell carcinoma: performance has altered over time. Urology. 2020;136:162–8.

    Article  PubMed  Google Scholar 

  9. Wang WT, Chen YQ. Circulating miRNAs in cancer: from detection to therapy. J Hematol Oncol. 2014;7:86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kakimoto Y, Tanaka M, Kamiguchi H, Ochiai E, Osawa M. MicroRNA stability in FFPE tissue samples: dependence on GC Content. PLoS One. 2016;11:e0163125.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Song Y, Zhong L, Zhou J, Lu M, Xing T, Ma L, et al. Data-independent acquisition-based quantitative proteomic analysis reveals potential biomarkers of kidney Cancer. Proteomics Clin Appl. 2017;11(11-12).

  12. Clark DJ, Dhanasekaran SM, Petralia F, Pan J, Song X, Hu Y, et al. Integrated proteogenomic characterization of clear cell renal cell carcinoma. Cell. 2019;179:964–83.e31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ricketts CJ, De Cubas AA, Fan H, Smith CC, Lang M, Reznik E, et al. The cancer genome atlas comprehensive molecular characterization of renal cell carcinoma. Cell Rep. 2018;23:313–26.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics. 2012;28:882–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods. 2016;13:731–40.

    Article  CAS  PubMed  Google Scholar 

  16. Simon R. Roadmap for developing and validating therapeutically relevant genomic classifiers. J Clin Oncol. 2005;23:7332–41.

    Article  CAS  PubMed  Google Scholar 

  17. Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M, et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med. 2004;351:2817–26.

    Article  CAS  PubMed  Google Scholar 

  18. Sánchez-Navarro I, Gámez-Pozo A, Pinto A, Hardisson D, Madero R, López R, et al. An 8-gene qRT-PCR-based gene expression score that has prognostic value in early breast cancer. BMC Cancer. 2010;10:336.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bair E, Tibshirani R. Semi-supervised methods to predict patient survival from gene expression data. PLoS Biol. 2004;2:E108.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Sánchez-Navarro I, Gámez-Pozo A, González-Barón M, Pinto-Marín A, Hardisson D, López R, et al. Comparison of gene expression profiling by reverse transcription quantitative PCR between fresh frozen and formalin-fixed, paraffin-embedded breast cancer tissues. Biotechniques. 2010;48:389–97.

    Article  PubMed  Google Scholar 

  21. Rappsilber J, Mann M, Ishihama Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc. 2007;2:1896–906.

    Article  CAS  PubMed  Google Scholar 

  22. Turker CA, F, Joho D, Panse B, Oesterreicher B, Rehrauer H, Schlapbach R. B-Fabric: The Swiss Army Knife for Life Sciences. Lausanne, Switzerland EDBT; 2010.

  23. Perez-Riverol Y, Bai J, Bandla C, García-Seisdedos D, Hewapathirana S, Kamatchinathan S, et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 2022;50:D543–D52.

    Article  CAS  PubMed  Google Scholar 

  24. Gámez-Pozo A, Berges-Soria J, Arevalillo JM, Nanni P, López-Vacas R, Navarro H, et al. Combined label-free quantitative proteomics and microRNA expression analysis of breast cancer unravel molecular differences with clinical implications. Cancer Res; 2015;75:2243–53.

  25. Lauritzen S Graphical Models. Oxford,UK.: Oxford University Press1996.

  26. Abreu G, Edwards D, Labouriau R High-Dimensional Graphical Model Search with the gRapHD R Package Journal of Statistical Software2010. p. 1-18.

  27. Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44–57.

    Article  CAS  PubMed  Google Scholar 

  28. Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, et al. TM4: a free, open-source system for microarray data management and analysis. Biotechniques. 2003;34:374–8.

    Article  CAS  PubMed  Google Scholar 

  29. Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA. 2001;98:5116–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kattan MW, Reuter V, Motzer RJ, Katz J, Russo P. A postoperative prognostic nomogram for renal cell carcinoma. J Urol. 2001;166:63–7.

    Article  CAS  PubMed  Google Scholar 

  31. Karakiewicz PI, Briganti A, Chun FK, Trinh QD, Perrotte P, Ficarra V, et al. Multi-institutional validation of a new renal cancer-specific survival nomogram. J Clin Oncol. 2007;25:1316–22.

    Article  PubMed  Google Scholar 

  32. Zisman A, Pantuck AJ, Dorey F, Said JW, Shvarts O, Quintana D, et al. Improved prognostication of renal cell carcinoma using an integrated staging system. J Clin Oncol. 2001;19:1649–57.

    Article  CAS  PubMed  Google Scholar 

  33. Leibovich BC, Blute ML, Cheville JC, Lohse CM, Frank I, Kwon ED, et al. Prediction of progression after radical nephrectomy for patients with clear cell renal cell carcinoma: a stratification tool for prospective clinical trials. Cancer. 2003;97:1663–71.

    Article  PubMed  Google Scholar 

  34. Rini BI, Escudier B, Martini JF, Magheli A, Svedman C, Lopatin M, et al. Validation of the 16-gene recurrence score in patients with locoregional, high-risk renal cell carcinoma from a phase iii trial of adjuvant sunitinib. Clin Cancer Res. 2018;24:4407–15.

    Article  CAS  PubMed  Google Scholar 

  35. Brooks SA, Brannon AR, Parker JS, Fisher JC, Sen O, Kattan MW, et al. ClearCode34: A prognostic risk predictor for localized clear cell renal cell carcinoma. Eur Urol. 2014;66:77–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Morgan TM, Mehra R, Tiemeny P, Wolf JS, Wu S, Sangale Z, et al. A multigene signature based on cell cycle proliferation improves prediction of mortality within 5 yr of radical nephrectomy for renal cell carcinoma. Eur Urol. 2018;73:763–9.

    Article  CAS  PubMed  Google Scholar 

  37. Lázaro M, Valderrama BP, Suárez C, de-Velasco G, Beato C, Chirivella I, et al. SEOM clinical guideline for treatment of kidney cancer (2019). Clin Transl Oncol. 2020;22:256–69.

    Article  PubMed  Google Scholar 

  38. Escudier B, Porta C, Schmidinger M, Rioux-Leclercq N, Bex A, Khoo V, et al. Renal cell carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up†. Ann Oncol. 2019;30:706–20.

    Article  CAS  PubMed  Google Scholar 

  39. Parker WP, Cheville JC, Frank I, Zaid HB, Lohse CM, Boorjian SA, et al. Application of the Stage, Size, Grade, and Necrosis (SSIGN) Score for Clear Cell Renal Cell Carcinoma in Contemporary Patients. Eur Urol. 2017;71:665–73.

    Article  PubMed  Google Scholar 

  40. Frank I, Blute ML, Cheville JC, Lohse CM, Weaver AL, Zincke H. An outcome prediction model for patients with clear cell renal cell carcinoma treated with radical nephrectomy based on tumor stage, size, grade and necrosis: the SSIGN score. J Urol. 2002;168:2395–400.

    Article  PubMed  Google Scholar 

  41. de Martino M, Klatte T, Seemann C, Waldert M, Haitel A, Schatzl G, et al. Validation of serum C-reactive protein (CRP) as an independent prognostic factor for disease-free survival in patients with localised renal cell carcinoma (RCC). BJU Int. 2013;111:E348–53.

    Article  PubMed  Google Scholar 

  42. Sim SH, Messenger MP, Gregory WM, Wind TC, Vasudev NS, Cartledge J, et al. Prognostic utility of pre-operative circulating osteopontin, carbonic anhydrase IX and CRP in renal cell carcinoma. Br J Cancer. 2012;107:1131–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Vasudev NS, Scelo G, Glennon KI, Wilson M, Letourneau L, Eveleigh R, et al. Application of genomic sequencing to refine patient stratification for adjuvant therapy in renal cell carcinoma. Clin Cancer Res. 2023;29:1220–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Brannon AR, Reddy A, Seiler M, Arreola A, Moore DT, Pruthi RS, et al. Molecular stratification of clear cell renal cell carcinoma by consensus clustering reveals distinct subtypes and survival patterns. Genes Cancer. 2010;1:152–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Petillo D, Kort EJ, Anema J, Furge KA, Yang XJ, Teh BT. MicroRNA profiling of human kidney cancer subtypes. Int J Oncol. 2009;35:109–14.

    Article  CAS  PubMed  Google Scholar 

  46. Ge YZ, Wu R, Xin H, Zhu M, Lu TZ, Liu H, et al. A tumor-specific microRNA signature predicts survival in clear cell renal cell carcinoma. J Cancer Res Clin Oncol. 2015;141:1291–9.

    Article  CAS  PubMed  Google Scholar 

  47. Huang M, Zhang T, Yao ZY, Xing C, Wu Q, Liu YW, et al. MicroRNA related prognosis biomarkers from high throughput sequencing data of kidney renal clear cell carcinoma. BMC Med Genomics. 2021;14:72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Xu C, Zeng H, Fan J, Huang W, Yu X, Li S, et al. A novel nine-microRNA-based model to improve prognosis prediction of renal cell carcinoma. BMC Cancer. 2022;22:264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Haas NB, Manola J, Uzzo RG, Flaherty KT, Wood CG, Kane C, et al. Adjuvant sunitinib or sorafenib for high-risk, non-metastatic renal-cell carcinoma (ECOG-ACRIN E2805): a double-blind, placebo-controlled, randomised, phase 3 trial. Lancet. 2016;387:2008–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ravaud A, Motzer RJ, Pandha HS, George DJ, Pantuck AJ, Patel A, et al. Adjuvant sunitinib in high-risk renal-cell carcinoma after nephrectomy. N Engl J Med. 2016;375:2246–54.

    Article  CAS  PubMed  Google Scholar 

  51. Motzer RJ, Ravaud A, Patard JJ, Pandha HS, George DJ, Patel A, et al. Adjuvant sunitinib for high-risk renal cell carcinoma after nephrectomy: subgroup analyses and updated overall survival results. Eur Urol. 2018;73:62–8.

    Article  CAS  PubMed  Google Scholar 

  52. Staehler M, Motzer RJ, George DJ, Pandha HS, Donskov F, Escudier B, et al. Adjuvant sunitinib in patients with high-risk renal cell carcinoma: safety, therapy management, and patient-reported outcomes in the S-TRAC trial. Ann Oncol. 2018;29:2098–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gatto F, Nookaew I, Nielsen J. Chromosome 3p loss of heterozygosity is associated with a unique metabolic network in clear cell renal carcinoma. Proc Natl Acad Sci USA. 2014;111:E866–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yoshino H, Nohata N, Miyamoto K, Yonemori M, Sakaguchi T, Sugita S, et al. PHGDH as a key enzyme for serine biosynthesis in HIF2α-targeting therapy for renal cell carcinoma. Cancer Res. 2017;77:6321–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gatto F, Miess H, Schulze A, Nielsen J. Flux balance analysis predicts essential genes in clear cell renal cell carcinoma metabolism. Sci Rep. 2015;5:10738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Corrales L, Ajona D, Rafail S, Lasarte JJ, Riezu-Boj JI, Lambris JD, et al. Anaphylatoxin C5a creates a favorable microenvironment for lung cancer progression. J Immunol. 2012;189:4674–83.

    Article  CAS  PubMed  Google Scholar 

  57. Markiewski MM, DeAngelis RA, Benencia F, Ricklin-Lichtsteiner SK, Koutoulaki A, Gerard C, et al. Modulation of the antitumor immune response by complement. Nat Immunol. 2008;9:1225–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Nunez-Cruz S, Gimotty PA, Guerra MW, Connolly DC, Wu YQ, DeAngelis RA, et al. Genetic and pharmacologic inhibition of complement impairs endothelial cell function and ablates ovarian cancer neovascularization. Neoplasia. 2012;14:994–1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Reese B, Silwal A, Daugherity E, Daugherity M, Arabi M, Daly P, et al. Complement as prognostic biomarker and potential therapeutic target in renal cell carcinoma. J Immunol. 2020;205:3218–29.

    Article  CAS  PubMed  Google Scholar 

  60. Ajona D, Ortiz-Espinosa S, Moreno H, Lozano T, Pajares MJ, Agorreta J, et al. A Combined PD-1/C5a blockade synergistically protects against lung cancer growth and metastasis. Cancer Discov. 2017;7:694–703.

    Article  CAS  PubMed  Google Scholar 

  61. Xia ZN, Wang XY, Cai LC, Jian WG, Zhang C. IGLL5 is correlated with tumor-infiltrating immune cells in clear cell renal cell carcinoma. FEBS Open Bio. 2021;11:898–910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Cimadamore A, Scarpelli M, Piva F, Massari F, Gasparrini S, Doria A, et al. Activity of chemokines in prostate and renal tumors and their potential role as future therapeutic targets. Future Oncol. 2017;13:1105–14.

    Article  CAS  PubMed  Google Scholar 

  63. Bi K, He MX, Bakouny Z, Kanodia A, Napolitano S, Wu J, et al. Tumor and immune reprogramming during immunotherapy in advanced renal cell carcinoma. Cancer Cell. 2021;39:649–61.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Li HJ, Li WX, Dai SX, Guo YC, Zheng JJ, Liu JQ, et al. Identification of metabolism-associated genes and pathways involved in different stages of clear cell renal cell carcinoma. Oncol Lett. 2018;15:2316–22.

    PubMed  Google Scholar 

  65. Parihar JS, Tunuguntla HS. Role of chemokines in renal cell carcinoma. Rev Urol. 2014;16:118–21.

    PubMed  PubMed Central  Google Scholar 

  66. Zheng S, Shen T, Liu Q, Liu T, Tuerxun A, Zhang Q, et al. CXCL6 fuels the growth and metastases of esophageal squamous cell carcinoma cells both in vitro and in vivo through upregulation of PD-L1 via activation of STAT3 pathway. J Cell Physiol. 2021;236:5373–86.

    Article  CAS  PubMed  Google Scholar 

  67. Shi Q, Xu R, Song G, Lu H, Xue D, He X, et al. GATA3 suppresses human fibroblasts-induced metastasis of clear cell renal cell carcinoma via an anti-IL6/STAT3 mechanism. Cancer Gene Ther. 2020;27:726–38.

    Article  CAS  PubMed  Google Scholar 

  68. Zhan C, Xu C, Chen J, Shen C, Li J, Wang Z, et al. Development and Validation of an IL6/JAK/STAT3-Related Gene Signature to Predict Overall Survival in Clear Cell Renal Cell Carcinoma. Front Cell Dev Biol. 2021;9:686907.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Gao X, Yang J, Chen Y. Identification of a four immune-related genes signature based on an immunogenomic landscape analysis of clear cell renal cell carcinoma. J Cell Physiol. 2020;235:9834–50.

    Article  CAS  PubMed  Google Scholar 

  70. Struyf S, Burdick MD, Proost P, Van Damme J, Strieter RM. Platelets release CXCL4L1, a nonallelic variant of the chemokine platelet factor-4/CXCL4 and potent inhibitor of angiogenesis. Circ Res. 2004;95:855–7.

    Article  CAS  PubMed  Google Scholar 

  71. Zhang Y, Kumar P, Adashek JJ, Skelton WP, Li J, Vosoughi A, et al. Adding cyclooxygenase inhibitors to immune checkpoint inhibitors did not improve outcomes in metastatic renal cell carcinoma. Cells. 2022;11:2505.

  72. Dai S, Zeng H, Liu Z, Jin K, Jiang W, Wang Z, et al. Intratumoral CXCL13+CD8+T cell infiltration determines poor clinical outcomes and immunoevasive contexture in patients with clear cell renal cell carcinoma. J Immunother Cancer. 2021;9:e001823.

  73. Zheng Z, Cai Y, Chen H, Chen Z, Zhu D, Zhong Q, et al. CXCL13/CXCR5 Axis Predicts Poor Prognosis and Promotes Progression Through PI3K/AKT/mTOR Pathway in Clear Cell Renal Cell Carcinoma. Front Oncol. 2018;8:682.

    Article  PubMed  Google Scholar 

  74. Xie Y, Chen Z, Zhong Q, Zheng Z, Chen Y, Shangguan W, et al. M2 macrophages secrete CXCL13 to promote renal cell carcinoma migration, invasion, and EMT. Cancer Cell Int. 2021;21:677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Jiao F, Sun H, Yang Q, Wang Z, Liu M, Chen J. Association of CXCL13 and immune cell infiltration signature in clear cell renal cell carcinoma. Int J Med Sci. 2020;17:1610–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Diegmann J, Junker K, Loncarevic IF, Michel S, Schimmel B, Von Eggeling F. Immune escape for renal cell carcinoma: CD70 mediates apoptosis in lymphocytes. Neoplasia. 2006;8:933–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Massard C, Soria JC, Krauss J, Gordon M, Lockhart AC, Rasmussen E, et al. First-in-human study to assess safety, tolerability, pharmacokinetics, and pharmacodynamics of the anti-CD27L antibody-drug conjugate AMG 172 in patients with relapsed/refractory renal cell carcinoma. Cancer Chemother Pharm. 2019;83:1057–63.

    Article  CAS  Google Scholar 

  78. Phillips T, Barr PM, Park SI, Kolibaba K, Caimi PF, Chhabra S, et al. A phase 1 trial of SGN-CD70A in patients with CD70-positive diffuse large B cell lymphoma and mantle cell lymphoma. Invest N. Drugs. 2019;37:297–306.

    Article  CAS  Google Scholar 

  79. Benhamouda N, Sam I, Epaillard N, Gey A, Phan L, Pham HP, et al. Plasma CD27, a surrogate of the intratumoral CD27-CD70 interaction, correlates with immunotherapy resistance in renal cell carcinoma. Clin Cancer Res. 2022.

  80. Xu F, Guan Y, Zhang P, Xue L, Yang X, Gao K, et al. The impact of TNFSF14 on prognosis and immune microenvironment in clear cell renal cell carcinoma. Genes Genomics. 2020;42:1055–66.

    Article  CAS  PubMed  Google Scholar 

  81. Ju SA, Park SM, Joe Y, Chung HT, An WG, Kim BS. Anti-4-1BB antibody-based combination therapy augments antitumor immunity by enhancing CD11c. Oncol Lett. 2022;23:43.

    Article  CAS  PubMed  Google Scholar 

  82. Li Y, Wang Z, Jiang W, Zeng H, Liu Z, Lin Z, et al. Tumor-infiltrating TNFRSF9. Oncoimmunology. 2020;9:1838141.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Motzer RJ, Rini BI, McDermott DF, Arén Frontera O, Hammers HJ, Carducci MA, et al. Nivolumab plus ipilimumab versus sunitinib in first-line treatment for advanced renal cell carcinoma: extended follow-up of efficacy and safety results from a randomised, controlled, phase 3 trial. Lancet Oncol. 2019;20:1370–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zhao W, Zhao F, Yang K, Lu Y, Zhang Y, Wang W, et al. An immunophenotyping of renal clear cell carcinoma with characteristics and a potential therapeutic target for patients insensitive to immune checkpoint blockade. J Cell Biochem. 2019;120:13330–41.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We want acknowledge the Biobank of Hospital La Paz, Basque Biobank for Research O + EHUN, and the SSPA Biobank, integrated in the Spanish National Biobanks Network for their collaboration. We want to particularly acknowledge the patients who participated in this study.

Funding

This work was supported by EPIC-XS, project number 823839, funded by the Horizon 2020 programme of the European Union. CDTI IDI-20200073, PTQ2018-009760 (MICINN), EPIC-XS, project number 823839, funded by the Horizon 2020 programme of the European Union.

Author information

Authors and Affiliations

Authors

Contributions

AP-M, JM-P, NSV, NM, AP, GdV, DC, and EE participated in data curation. NV, EG-F, RL-V, MW, EL-C, AD, LK, JB, YP-J, PG-P, and REB contributed to methodology. LT-F, NSV, MW, EL-C, AZ-M, JAFV, and AG-P performed formal analysis. AP-M and LT-F wrote the original draft. AG-P reviewed and corrected the manuscript. AP-M, EE, JAFV and AG-P participated in the conceptualization and design of the study. AG-P obtained resources for doing this study.

Corresponding authors

Correspondence to Álvaro Pinto-Marín or Angelo Gámez-Pozo.

Ethics declarations

Competing interests

AP: Research funding: Pfizer, BMS Advisory boards: Pfizer, Novartis, Ipsen, BMS, Janssen, Astellas, Sanofi, Bayer, Clovis, Roche, MSD, Pierre Fabre, Merck Clinical trial payments: Pfizer, Bayer, Janssen, MSD, Clovis, Pharmacyclics, BMS, Sanofi, Astra Zeneca, Roche, Eisai, Aveo. Travel arrangements: Janssen, Roche, Pfizer, BMS, Ipsen. EE: Biomedica Molecular Medicine Shares, Bio-miR patent, Courses: BMS, MSD, Pierre Fabré and Novartis. AGP: Biomedica Molecular Medicine Shares, Bio-miR patent. JAFV: Biomedica Molecular Medicine Shares, Bio-miR patent. NV: Research funding: BMS Advisory boards: BMS, Pfizer, Merck Speaker fees: Ipsen, BMS, Eisai, EUSA pharma.

Ethical approval and consent to participate

In all cases, written informed consent was obtained from patients and ethical approvals were obtained, specifically Hospital Doce de Octubre Ethical Committee (17/214) for the discovery cohort, Leeds East Research Ethics Committee (20/YH/0103) for the Leeds validation cohort and Hospital La Paz Ethical Committee (PI-3310) for the Spanish validation cohort. All methods were performed in accordance with the relevant guidelines and regulations.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary files

41416_2025_3008_MOESM2_ESM.txt

List pf proteins overexpressed in BiomiR high-risk group in the Spanish validation cohort according to a Significance Analysis of Microarrays and their gene ontology

41416_2025_3008_MOESM3_ESM.txt

Functional nodes identified in the protein network built using probabilistic graphical models and proteomics data from the Spanish validation cohort

41416_2025_3008_MOESM4_ESM.txt

List of proteins overexpressed in BiomiR high-risk group in the ccRCC TCGA cohort according to a Significance Analysis of Microarrays and their gene ontology

41416_2025_3008_MOESM5_ESM.txt

Functional nodes identified in the protein network built using probabilistic graphical models and proteomics data from the ccRCC TCGA cohort

Sup.tab13

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pinto-Marín, Á., Trilla-Fuertes, L., Miranda Poma, J. et al. A prognostic microRNA-based signature for localized clear cell renal cell carcinoma: the Bio-miR study. Br J Cancer (2025). https://doi.org/10.1038/s41416-025-03008-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41416-025-03008-2

Search

Quick links

Morty Proxy This is a proxified and sanitized view of the page, visit original site.