Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Supplementary Figure 2: Mechanotranduction properties in c.216AA mice. | Nature Biotechnology

Supplementary Figure 2: Mechanotranduction properties in c.216AA mice.

From: Gene therapy restores auditory and vestibular function in a mouse model of Usher syndrome type 1c

Supplementary Figure 2

(a-e) Analysis of mechanotransduction in neonatal OHCs from middle and mid-apical turns of the cochlea, P3-P6. Representative current traces from ~Po= 0.5 were fit with a double exponential decay function to assess adaptation in c.216GA and c.216AA mutant (a). Fits were used to generate fast (c) and slow (d) time constants as well as the extent of adaptation (e). The 10-90% operating range was estimated from the second-order Boltzmann fits and was not significantly (NS) altered (b). Extent of adaptation, measured at Popen= 0.5, was significantly less in c.216AA mice than for heterozygous OHCs as shown in this scatter plot (e). (f-j) Analysis of mechanotransduction in neonatal IHCs. 10-90% operating range values were smaller in c.216GA versus c.216AA IHCs (g). Adaptation was always present albeit slightly slower and with a significant lesser extent in c.216AA IHCs (h-j). Statistical analysis is indicated in each plot: *P<0.05, **P<0.01 and ***P<0.001, one-way ANOVA.

Back to article page

Search

Quick links

Morty Proxy This is a proxified and sanitized view of the page, visit original site.