Skip to main content

Part of the book series: Developments in Mathematics ((DEVM,volume 18))

  • 2081 Accesses

Summary

The aim of this paper is to survey and extend some results concerning multiples of (quadratic, hermitian, bilinear…) forms.

To my friend Parimala

2010 Mathematics subject classification. Primary: 12G05. Secondary: 12F99.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. E. Bayer–Fluckiger, Principe de Hasse faible pour les systèmes de formes quadratiques, J. Reine Angew. Math. 378 (1987), 53–59.

    Google Scholar 

  2. E. Bayer–Fluckiger, Galois cohomology and the trace form, Jahresber. DMV 96 (1994), 35–55.

    Google Scholar 

  3. E. Bayer–Fluckiger, Multiples of trace forms and algebras with involution, IMRN (2007), no 23, Art. ID rnm112, 15 pp.

    Google Scholar 

  4. E. Bayer–Fluckiger, M. Monsurrò, R. Parimala, R. Schoof, Trace forms of Galois algebras over fields of cohomological dimension ≤ 2, Pacific J. Math., 217 (2004), 29–43.

    Google Scholar 

  5. E. Bayer–Fluckiger and R. Parimala, Galois cohomology of the classical groups over fields of cohomolgical dimension ≤ 2, Invent. Math. 122 (1995), 195–229.

    Google Scholar 

  6. G. Berhuy, Cohomological invariants of quaternionic skew-hermitian forms, Archiv. Math. 88 (2007), 434–447.

    Google Scholar 

  7. Ph. Chabloz, Anneau de Witt des G-formes et produit des G-formes trace par des formes quadratiques, J. Algebra 266 (2003), 338–361.

    Google Scholar 

  8. D. Orlov, A. Vishik, V. Voedovsky, An exact sequence for Milnor’s K-theory with applications to quadratic forms, Ann. Math. 165 (2007), 1–13.

    Google Scholar 

  9. R. Parimala, R. Sridharan and V. Suresh, Hermitian analogue of a theorem of Springer, J. Algebra 243 (2001), 780–789.

    Google Scholar 

  10. W. Scharlau, Quadratic and Hermitian Forms, Grundlehren der Math. Wiss, Springer–Verlag, Berlin (1985).

    Google Scholar 

  11. J-P. Serre, Cohomologie galoisienne, Lecture Notes in Mathematics, Springer–Verlag, Berlin (1964 and 1994).

    Google Scholar 

  12. J-P. Serre, Corps locaux, Hermann (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Bayer-Fluckiger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer New York

About this chapter

Cite this chapter

Bayer-Fluckiger, E. (2010). Multiples of forms. In: Colliot-Thélène, JL., Garibaldi, S., Sujatha, R., Suresh, V. (eds) Quadratic Forms, Linear Algebraic Groups, and Cohomology. Developments in Mathematics, vol 18. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6211-9_1

Download citation

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Publish with us

Policies and ethics

Morty Proxy This is a proxified and sanitized view of the page, visit original site.