Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Appearance settings

Guide to installing Tensorflow with NVIDIA GPU and Deep learning enviroment - Nvidia Drivers/cuda/cuDNN/tensorflow-gpu/中文文档

Notifications You must be signed in to change notification settings

yehengchen/Ubuntu-Deep-Learning-Environment-Setup

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Ubuntu 16.04 / 18.04 Deep Learning Environment Setup

tensorflow-gpu & Nvidia GPU & Cuda & Cudnn 环境配置

Contents


Ubuntu 16.04 配置版本

  • Ubuntu Kernel Version 4.10.09

  • GeForce GTX 1080 Ti

  • NVIDIA 390.87

  • cuda 9.0

  • cuDNN v7.1.4

  • tensorflow-gpu 1.10.0

  • python 3.5


  • Ubuntu Kernel Version 4.15.0

  • GeForce RTX 2080 Ti

  • NVIDIA 410.48

  • cuda 10.0

  • cuDNN v7.5.0

  • tensorflow-gpu 1.13.1

  • python 3.5


0. 更新软件源 & 确认配置版本 - Update and Upgrade

$ sudo apt-get update
$ sudo apt-get upgrade

(Kernel Version 4.10.09)

Install Version: NVIDIA-Linux-x86_64-390.87.run

Download Nvidia Drivers: [Nvidia Link]


1. 卸载所有原驱动 - uninstall all original drivers for safety

$ sudo apt-get purge nvidia*

2. 禁用nouveau - Disabling Nouvea

• 新建-blacklist-nouveau.conf 输⼊指令:(Create a blacklist file)

$ sudo vim /etc/modprobe.d/blacklist-nouveau.conf

• 往文件中写⼊-input :(with the following contents)

blacklist nouveau
options nouveau modeset=0

禁 Ubuntu自带开源驱动nouveau,写入后 After above 重启系统 - Disabling Nouveau

$ sudo reboot 

在终端执行行命令:(Terminal)

$ lsmod | grep nouveau

查看nouveau模块是否被加载,若无输出,则执行下一步 - If no output go to the next step.


3. 安装Nvidia驱动 - Install the Drivers

Ctrl + Alt + F1-( Enter virtual consoles )进入tty1命令行界面 
Ctrl + Alt + F7-( Return back to GUI )回到桌面系统界面

禁⽤X服务 - Kill your current X server session by typing

$ sudo service lightdm stop

给驱动run文件赋予执行权限(根据版本执行 - Check your NVIDIA version)

$ sudo chmod a+x NVIDIA-Linux-x86_64-390.87.run
$ sudo ./NVIDIA-Linux-x86_64-390.87.run -no-opengl-files -no-x-check -no-nouveau-check

[Tips] (登录界面循环问题 - Login loop issue)

  • -no-opengl-files 只安装驱动文件,不安装OpenGL文件 (no install OpenGL file)
  • -no-x-check 安装驱动时不检查X服务器 (no check X server)
  • -no-nouveau-check 安装驱动时不检查nouveau模块 (no check nouveau module)

安装驱动时 (Downloading)

“Would you like to run the nvidia-xconfig utility to automatically update your X configuration file...”
Choose No.
After above: $sudo reboot

4. Nvidia驱动安装完成 - Check Driver was successfully installed

$ nvidia-smi

5. 安装CUDA - CUDA Toolkit 9.0 Downloads

Download Installer for Linux Ubuntu 16.04 x86_64

Download CUDA: cuda_9.0.176_384.81_linux.run [CUDA Link]



Install CUDA

$ sudo ./cuda_9.0.176_384.81_linux.run --no-opengl-libs
...
[accept] #同意安装
[n]      #安装Driver,将自动安装CUDA版本相匹配的Nvidia驱动, - No install Driver
[y]      #安装CUDA Toolkit install
<Enter>  #安装到默认目录
[y]      #创建安装目录的软链接
[n]      #不复制Samples,因为在安装目录下有/samples
A. vim 打开.bashrc 在末行加⼊以下命令 - Add following lines to .bashrc
export PATH="/usr/local/cuda/bin:$PATH"
export LD_LIBRARY_PATH="/usr/local/cuda/lib64:$LD_LIBRARY_PATH"
执行指令更新 .bashrc 文件 - Reload .bashrc with
$ source .bashrc
B. 安装及路径测试,查看CUDA版本 CUDA Sample Testing:
$ nvcc -V

编译并测试设备 deviceQuery:

$ cd /usr/local/cuda-9.0/samples/1_Utilities/deviceQuery
$ sudo make
$ ./deviceQuery

编译并测试带宽 bandwidthTest:

$ cd ../bandwidthTest
$ sudo make
$ ./bandwidthTest

如果两个测试的结果都是 Result = PASS CUDA 安装成功 - Install successed

 $ cd /usr/local/cuda-9.0/samples/1_Utilities/deviceQuery
 $ sudo make
 $ ./deviceQuery
 $ cd ../bandwidthTest
 $ sudo make
 $ ./bandwidthTest

6. 安装cuDNN - Download cuDNN

Download Version: cuDNN v7.1.4 (May 16, 2018), for CUDA 9.0 [cuDNN Link]

cudnn

解压后的 cudnn-9.0-linux-x64-v7.1.tgz ⽂文件cuda,执行以下指令安装:-Install cudnn
$ tar -zxvf cudnn-9.0-linux-x64-v7.1.tgz
$ cd cuda 
$ sudo cp lib64/lib* /usr/local/cuda/lib64/
$ sudo cp include/cudnn.h /usr/local/cuda/include/
然后更新网络连接:-Updata Network Connection
$ cd /usr/local/cuda/lib64/ 
$ sudo chmod +r libcudnn.so.7.1.4
$ sudo ln -sf libcudnn.so.7.1.4 libcudnn.so.7
$ sudo ln -sf libcudnn.so.7 libcudnn.so 
$ sudo ldconfig

7. 安装Tensorflow-gpu - Install Tensorflow-gpu

注意这里 tensorflow-gpu 的版本 cuda 会报错误

CUDA 9.0 - tensorflow-gpu==1.10.0
CUDA 10.0 - tensorflow-gpu==1.13.1

$ sudo pip3 uninstall tensorflow
$ pip3 install --user tensorflow-gpu==1.10.0

8. 测试 - Testing


9. 常见配置问题 - Issues

登⼊界⾯死循环问题: Login loop issue

1. 进入文本界面: CTRL+ALT+F1

2. Uninstall any previous drivers: - 删除 nvidia 相关文件

$ sudo apt-get remove nvidia-*
$ sudo apt-get autoremove       

3. Uninstall the drivers from the .run file: - 卸载 nvidia 驱动

$ sudo nvidia-uninstall

4. 此时,重启 - Reboot -> login normally

5. 驱动重新安装 - Driver reinstall


NVIDIA-SMI has failed because it couldn't communicate with the NVIDIA driver. Make sure that the latest NVIDIA driver is installed and running issue

0. 确认 Kernel 版本是否高于 4.10

$ uname -a

#目前使用版本为 4.15
Linux CAI 4.15.0-50-generic #54~16.04.1-Ubuntu SMP Wed May 8 15:55:19 UTC 2019 x86_64 x86_64 x86_64 GNU/Linux

若版本高于 4.10 必须升级, 降级方法如下

wget http://kernel.ubuntu.com/~kernel-ppa/mainline/v4.15.7/linux-headers-4.15.7-041507_4.15.7-041507.201802280530_all.deb

wget http://kernel.ubuntu.com/~kernel-ppa/mainline/v4.15.7/linux-headers-4.15.7-041507-generic_4.15.7-041507.201802280530_amd64.deb

wget http://kernel.ubuntu.com/~kernel-ppa/mainline/v4.15.7/linux-image-4.15.7-041507-generic_4.15.7-041507.201802280530_amd64.deb

sudo dpkg -i *.deb

升级完成后 nvidia-smi 出现 GPU 使用狀況栏可不用重新安装 Driver, 若未出现可按步骤重新安装 Driver

1. 确认是否插入显卡

$ lspci | grep 'VGA'

#找到卡后,显示显卡讯息
01:00.0 VGA compatible controller: NVIDIA Corporation Device 1b06 (rev a1)

2. 确认 security boot 是否为disable的状态

a. 开机后, 进入Bios 设定画面(若是Acer的电脑, 按Del 或是F2 即可进入Bios)
b. 改成disable 后, 重新开机

调整屏幕分辨率: Display resolution issue

METHOD1:

1.添加 /etc/X11/xorg.conf 文件,将此模式保存为默认分辨率。

$ sudo gedit /etc/X11/xorg.conf

2.粘贴以下内容: - copy below -> paste to xorg.conf

Section "Monitor"
Identifier "Configured Monitor"
Modeline "1920x1080_60.00" 173.00 1920 2048 2248 2576 1080
1083 1088 1120 -hsync +vsync
Option "PreferredMode" "1920x1080_60.00"
EndSection
Section "Screen"
Identifier "Default Screen"
Monitor "Configured Monitor"
Device "Configured Video Device"
EndSection
Section "Device"
Identifier "Configured Video Device"
EndSection

METHOD2:

1.生成指定分辨率 (one-off)

$ cvt 1920 1080
# 1920x1080 59.96 Hz (CVT 2.07M9) hsync: 67.16 kHz; pclk: 173.00 MHz
Modeline "1920x1080_60.00"  173.00  1920 2048 2248 2576  1080 1083 1088 1120 -hsync +vsync

2.使用xrandr创建new mode (make newmode)

$ sudo xrandr --newmode "1920x1080_60.00"  173.00  1920 2048 2248 2576  1080 1083 1088 1120 -hsync +vsync

3.添加newmode,终端输入xrand查看显示器名称 (add mode)

$ sudo xrand --addmode [THE NAME OF YOUR DISPLAY] "1920x1080_60.00"

4.将分辨率应用到输出设备 (output display)

$ sudo xrand --output [THE NAME OF YOUR DISPLAY] --mode "1920x1080_60.00"

Uninstall - 卸载

卸载 nvidia - uninstall nvidia

$ sudo apt-get purge nvidia*

卸载 Cuda - uninstall Cuda:

$ cd /usr/local/cuda/bin 
$ sudo ./uninstall_cuda_7.5.pl

卸载 Cudnn - uninstall Cudnn:

$ sudo rm -rf /usr/local/cuda/include/cudnn.h
$ sudo rm -rf /usr/local/cuda/lib64/libcudnn

国内 pip 速度问题换源 (阿里云pip源)

cd ~
mkdir .pip
sudo vim .pip/pip.conf

写入:

[global]
index-url = http://mirrors.aliyun.com/pypi/simple/
[install]
trusted-host = mirrors.aliyun.com
  • Ubuntu 18.04 - GTX 1080 / RTX 2080 CUDA 和 NVIDIA 驱动同时安装 [中文文档]

  • Ubuntu 16.04 - GTX 1080 / RTX 2080 CUDA 和 NVIDIA 驱动同时安装 [中文文档]

  • Ubuntu 16.04 - GTX 1080 / RTX 2080 CUDA 和 NVIDIA 驱动单独安装 [中文文档]

References

CUDA Toolkit Documentation v9.0

CUDA Toolkit Documentation v10.0

About

Guide to installing Tensorflow with NVIDIA GPU and Deep learning enviroment - Nvidia Drivers/cuda/cuDNN/tensorflow-gpu/中文文档

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published
Morty Proxy This is a proxified and sanitized view of the page, visit original site.