Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Appearance settings
#

ensemble-learning

Here are 1,359 public repositories matching this topic...

H2O is an Open Source, Distributed, Fast & Scalable Machine Learning Platform: Deep Learning, Gradient Boosting (GBM) & XGBoost, Random Forest, Generalized Linear Modeling (GLM with Elastic Net), K-Means, PCA, Generalized Additive Models (GAM), RuleFit, Support Vector Machine (SVM), Stacked Ensembles, Automatic Machine Learning (AutoML), etc.

  • Updated Oct 18, 2025
  • Jupyter Notebook

It is my belief that you, the postgraduate students and job-seekers for whom the book is primarily meant will benefit from reading it; however, it is my hope that even the most experienced researchers will find it fascinating as well.

  • Updated Aug 22, 2025
awesome-decision-tree-papers

A collection of anomaly detection methods (iid/point-based, graph and time series) including active learning for anomaly detection/discovery, bayesian rule-mining, description for diversity/explanation/interpretability. Analysis of incorporating label feedback with ensemble and tree-based detectors. Includes adversarial attacks with Graph Convol…

  • Updated May 22, 2024
  • Python

Code for IDS-ML: intrusion detection system development using machine learning algorithms (Decision tree, random forest, extra trees, XGBoost, stacking, k-means, Bayesian optimization..)

  • Updated Aug 6, 2025
  • Jupyter Notebook

Improve this page

Add a description, image, and links to the ensemble-learning topic page so that developers can more easily learn about it.

Curate this topic

Add this topic to your repo

To associate your repository with the ensemble-learning topic, visit your repo's landing page and select "manage topics."

Learn more

Morty Proxy This is a proxified and sanitized view of the page, visit original site.