@@ -109,7 +109,7 @@ def test_random_choice_csc(n_samples=10000, random_state=24):
109
109
class_probabilities = [np .array ([0.5 , 0.5 ]), np .array ([0.6 , 0.1 , 0.3 ])]
110
110
111
111
got = _random_choice_csc (n_samples , classes , class_probabilities ,
112
- random_state )
112
+ random_state )
113
113
assert sp .issparse (got )
114
114
115
115
for k in range (len (classes )):
@@ -121,8 +121,8 @@ def test_random_choice_csc(n_samples=10000, random_state=24):
121
121
class_probabilities = [np .array ([0.5 , 0.5 ]), np .array ([0 , 1 / 2 , 1 / 2 ])]
122
122
123
123
got = _random_choice_csc (n_samples = n_samples ,
124
- classes = classes ,
125
- random_state = random_state )
124
+ classes = classes ,
125
+ random_state = random_state )
126
126
assert sp .issparse (got )
127
127
128
128
for k in range (len (classes )):
@@ -131,10 +131,10 @@ def test_random_choice_csc(n_samples=10000, random_state=24):
131
131
132
132
# Edge case probabilities 1.0 and 0.0
133
133
classes = [np .array ([0 , 1 ]), np .array ([0 , 1 , 2 ])]
134
- class_probabilities = [np .array ([1 .0 , 0 .0 ]), np .array ([0.0 , 1.0 , 0.0 ])]
134
+ class_probabilities = [np .array ([0 .0 , 1 .0 ]), np .array ([0.0 , 1.0 , 0.0 ])]
135
135
136
136
got = _random_choice_csc (n_samples , classes , class_probabilities ,
137
- random_state )
137
+ random_state )
138
138
assert sp .issparse (got )
139
139
140
140
for k in range (len (classes )):
@@ -147,8 +147,8 @@ def test_random_choice_csc(n_samples=10000, random_state=24):
147
147
class_probabilities = [np .array ([0.0 , 1.0 ]), np .array ([1.0 ])]
148
148
149
149
got = _random_choice_csc (n_samples = n_samples ,
150
- classes = classes ,
151
- random_state = random_state )
150
+ classes = classes ,
151
+ random_state = random_state )
152
152
assert sp .issparse (got )
153
153
154
154
for k in range (len (classes )):
0 commit comments