Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Appearance settings

Commit 351af10

Browse filesBrowse files
thomasjpfanglemaitre
authored andcommitted
TST Fixes logistic & partial_dependence test for 32bit wheels (#19402)
1 parent 1e235a4 commit 351af10
Copy full SHA for 351af10

File tree

2 files changed

+7
-10
lines changed
Filter options

2 files changed

+7
-10
lines changed

‎sklearn/inspection/tests/test_partial_dependence.py

Copy file name to clipboardExpand all lines: sklearn/inspection/tests/test_partial_dependence.py
+2-1Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -30,6 +30,7 @@
3030
from sklearn.preprocessing import PolynomialFeatures
3131
from sklearn.preprocessing import StandardScaler
3232
from sklearn.preprocessing import RobustScaler
33+
from sklearn.preprocessing import scale
3334
from sklearn.pipeline import make_pipeline
3435
from sklearn.dummy import DummyClassifier
3536
from sklearn.base import BaseEstimator, ClassifierMixin, clone
@@ -607,7 +608,7 @@ def test_partial_dependence_dataframe(estimator, preprocessor, features):
607608
# check that the partial dependence support dataframe and pipeline
608609
# including a column transformer
609610
pd = pytest.importorskip("pandas")
610-
df = pd.DataFrame(iris.data, columns=iris.feature_names)
611+
df = pd.DataFrame(scale(iris.data), columns=iris.feature_names)
611612

612613
pipe = make_pipeline(preprocessor, estimator)
613614
pipe.fit(df, iris.target)

‎sklearn/linear_model/tests/test_logistic.py

Copy file name to clipboardExpand all lines: sklearn/linear_model/tests/test_logistic.py
+5-9Lines changed: 5 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,4 @@
11
import os
2-
import sys
32
import warnings
43
import numpy as np
54
from numpy.testing import assert_allclose, assert_almost_equal
@@ -1691,9 +1690,9 @@ def test_logistic_regression_path_coefs_multinomial():
16911690

16921691

16931692
@pytest.mark.parametrize('est',
1694-
[LogisticRegression(random_state=0),
1693+
[LogisticRegression(random_state=0, max_iter=500),
16951694
LogisticRegressionCV(random_state=0, cv=3,
1696-
Cs=3, tol=1e-3)],
1695+
Cs=3, tol=1e-3, max_iter=500)],
16971696
ids=lambda x: x.__class__.__name__)
16981697
@pytest.mark.parametrize('solver', ['liblinear', 'lbfgs', 'newton-cg', 'sag',
16991698
'saga'])
@@ -1703,8 +1702,9 @@ def test_logistic_regression_multi_class_auto(est, solver):
17031702
def fit(X, y, **kw):
17041703
return clone(est).set_params(**kw).fit(X, y)
17051704

1706-
X = iris.data[::10]
1707-
X2 = iris.data[1::10]
1705+
scaled_data = scale(iris.data)
1706+
X = scaled_data[::10]
1707+
X2 = scaled_data[1::10]
17081708
y_multi = iris.target[::10]
17091709
y_bin = y_multi == 0
17101710
est_auto_bin = fit(X, y_bin, multi_class='auto', solver=solver)
@@ -1722,10 +1722,6 @@ def fit(X, y, **kw):
17221722
else:
17231723
est_multi_multi = fit(X, y_multi, multi_class='multinomial',
17241724
solver=solver)
1725-
if sys.platform == 'darwin' and solver == 'lbfgs':
1726-
pytest.xfail('Issue #11924: LogisticRegressionCV(solver="lbfgs", '
1727-
'multi_class="multinomial") is nondeterministic on '
1728-
'MacOS.')
17291725
assert_allclose(est_auto_multi.coef_, est_multi_multi.coef_)
17301726
assert_allclose(est_auto_multi.predict_proba(X2),
17311727
est_multi_multi.predict_proba(X2))

0 commit comments

Comments
0 (0)
Morty Proxy This is a proxified and sanitized view of the page, visit original site.