Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Appearance settings

sauriii98/Deep-Learning-algorithms

Repository files navigation

Deep-Learning-algorithms

Implementation of all basic algorithms needed in Deep Learning

  1. Logistic_regression_using_NN.ipynb

    • It is a simple logistic regression algorithm developed using NN (Neural Networks) with zero hidden layers
    • In this notebook, binary classification is done on the dataset of cats(cat or not cat)
  2. NN_with_1_hidden_layer.py

    • It's a python script file which contains all functions required to develop NN (Neural Networks) with one hidden layer
    • function designed are:
      • sigmoid(z)
      • initialize(n_x,n_h1,n_y)
      • forword_propagation(X,parameters)
      • evaluate_cost(A2,Y, parameters, lambd)
      • backword_propagation(X,Y,cache,parameters,lambd)
      • update_parameters(parameters,grads,learning_rate)
      • predict(parameters, X)
      • model(X_train, Y_train, X_test, Y_test,n_h1, num_iterations, learning_rate,lambd)
      • plot_cost(costs)
  3. deep_NN_with_L_layers.py

    • It's a python script file which contains all functions required to develop NN (Neural networks) with 'n' hidden layer
    • It's the generalized algorithm for CNN
    • Functions designed are:
      • sigmoid(Z)
      • relu(Z)
      • sigmoid_backward(dA, cache)
      • relu_backward(dA, cache)
      • initialize_parameters(layer_dims)
      • linear_forward(A, W, b)
      • linear_activation_forward(A_prev, W, b, activation)
      • L_model_forward(X, parameters)
      • compute_cost(AL, Y)
      • linear_backward(dZ, cache)
      • linear_activation
      • linear_activation_backward(dA, cache, activation)
      • L_model_backward(AL, Y, caches)
      • update_parameters(parameters, grads, learning_rate)
      • predict(X, parameters)
      • L_layer_model(X, Y, layers_dims, learning_rate, num_iterations, print_cost)
      • plot_cost(costs)
Morty Proxy This is a proxified and sanitized view of the page, visit original site.