Skip to content

Navigation Menu

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Appearance settings

ildoonet/pytorch-randaugment

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

pytorch-randaugment

Unofficial PyTorch Reimplementation of RandAugment. Most of codes are from Fast AutoAugment.

Introduction

Models can be trained with RandAugment for the dataset of interest with no need for a separate proxy task. By only tuning two hyperparameters(N, M), you can achieve competitive performances as AutoAugments.

Install

$ pip install git+https://github.com/ildoonet/pytorch-randaugment

Usage

from torchvision.transforms import transforms
from RandAugment import RandAugment

transform_train = transforms.Compose([
    transforms.RandomCrop(32, padding=4),
    transforms.RandomHorizontalFlip(),
    transforms.ToTensor(),
    transforms.Normalize(_CIFAR_MEAN, _CIFAR_STD),
])

# Add RandAugment with N, M(hyperparameter)
transform_train.transforms.insert(0, RandAugment(N, M))

Experiment

We use same hyperparameters as the paper mentioned. We observed similar results as reported.

You can run an experiment with,

$ python RandAugment/train.py -c confs/wresnet28x10_cifar10_b256.yaml --save cifar10_wres28x10.pth

CIFAR-10 Classification

Model Paper's Result Ours
Wide-ResNet 28x10 97.3 97.4
Shake26 2x96d 98.0 98.1
Pyramid272 98.5

CIFAR-100 Classification

Model Paper's Result Ours
Wide-ResNet 28x10 83.3 83.3

SVHN Classification

Model Paper's Result Ours
Wide-ResNet 28x10 98.9 98.8

ImageNet Classification

I have experienced some difficulties while reproducing paper's result.

Issue : #9

Model Paper's Result Ours
ResNet-50 77.6 / 92.8 TODO
EfficientNet-B5 83.2 / 96.7 TODO
EfficientNet-B7 84.4 / 97.1 TODO

References

Morty Proxy This is a proxified and sanitized view of the page, visit original site.