Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Appearance settings

The official implementation of the ACM MM'21 paper Co-learning: Learning from noisy labels with self-supervision.

Notifications You must be signed in to change notification settings

chengtan9907/Co-learning

Open more actions menu

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Co-learning: Learning from noisy labels with self-supervision

This repository contains a unified framework for co-training-based noisy label learning methods.

The official implementation of the paper Co-learning: Learning from noisy labels with self-supervision is also included.


Introduction

Supported algorithms
Supported datasets:
  • CIFAR-10
  • CIFAR-100
Supported synthetic noise types:
  • 'sym' (Symmetric noisy labels)
  • 'asym' (Asymmetric noisy labels)
  • 'ins' (Instance-dependent noisy labels)

Dependency

  • numpy
  • torch, torchvision
  • scipy
  • addict
  • matplotlib

Citation

If you are interested in our repository and our paper, please cite the following paper:

@inproceedings{tan2021co,
  title={Co-learning: Learning from noisy labels with self-supervision},
  author={Tan, Cheng and Xia, Jun and Wu, Lirong and Li, Stan Z},
  booktitle={Proceedings of the 29th ACM International Conference on Multimedia},
  pages={1405--1413},
  year={2021}
}

About

The official implementation of the ACM MM'21 paper Co-learning: Learning from noisy labels with self-supervision.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

Morty Proxy This is a proxified and sanitized view of the page, visit original site.