diff --git a/book_figures/chapter10/fig_fft_example.py b/book_figures/chapter10/fig_fft_example.py index b1311f56..2a04112c 100644 --- a/book_figures/chapter10/fig_fft_example.py +++ b/book_figures/chapter10/fig_fft_example.py @@ -11,7 +11,7 @@ The discrete Fourier transform is computed as described in Section 10.2.3. For both noise realizations, the correct frequency f = (2pi)-1 ~ 0.159 is easily discernible in the bottom panel. Note that the height of peaks is the -same for both noise realizations. The large value of |H(f = 0)| for data +same for both noise realizations. The large value of abs(H(f = 0)) for data with larger noise is due to the vertical offset. """ # Author: Jake VanderPlas diff --git a/book_figures/chapter6/fig_correlation_function.py b/book_figures/chapter6/fig_correlation_function.py index 66d9bfdd..593da8ea 100644 --- a/book_figures/chapter6/fig_correlation_function.py +++ b/book_figures/chapter6/fig_correlation_function.py @@ -1,4 +1,4 @@ -""" +r""" Angular Two-point Correlation Function -------------------------------------- Figure 6.17 diff --git a/book_figures/chapter7/fig_PCA_LLE.py b/book_figures/chapter7/fig_PCA_LLE.py index 50956c88..1f693790 100644 --- a/book_figures/chapter7/fig_PCA_LLE.py +++ b/book_figures/chapter7/fig_PCA_LLE.py @@ -51,6 +51,8 @@ data = fetch_sdss_corrected_spectra() coeffs_PCA = data['coeffs'] c_PCA = data['lineindex_cln'] +spec = sdss_corrected_spectra.reconstruct_spectra(data) +color = data['lineindex_cln'] #------------------------------------------------------------ diff --git a/book_figures/chapter8/fig_lasso_ridge.py b/book_figures/chapter8/fig_lasso_ridge.py index 60bbbb55..f5fb7644 100644 --- a/book_figures/chapter8/fig_lasso_ridge.py +++ b/book_figures/chapter8/fig_lasso_ridge.py @@ -7,7 +7,7 @@ regularization (LASSO regression) and the left panel L2 regularization (ridge regularization). The ellipses indicate the posterior distribution for no prior or regularization. The solid lines show the constraints due to -regularization (limiting theta^2 for ridge regression and |theta| for LASSO +regularization (limiting theta^2 for ridge regression and abs(theta) for LASSO regression). The corners of the L1 regularization create more opportunities for the solution to have zeros for some of the weights. """ diff --git a/doc/conf.py b/doc/conf.py index 0ec5cc96..a7d09ba8 100644 --- a/doc/conf.py +++ b/doc/conf.py @@ -83,9 +83,9 @@ # built documents. # # The short X.Y version. -version = '0.1' +version = '0.2' # The full version, including alpha/beta/rc tags. -release = '0.1' +release = '0.2' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. diff --git a/doc/themes/astroML/layout.html b/doc/themes/astroML/layout.html index 6d293450..bf388f16 100644 --- a/doc/themes/astroML/layout.html +++ b/doc/themes/astroML/layout.html @@ -155,7 +155,8 @@

News

November 2013: astroML 0.2 has been released! Get the source on Github

-

Our + +

Our Introduction to astroML paper received the CIDU 2012 best paper award.

{% endif %} @@ -178,7 +179,9 @@

Videos

Citing

If you use the software, please consider - citing astroML.

+ + + citing astroML.

{% if pagename == 'index' %}