Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Appearance settings

🚀 InterpolatePy: A fast and precise Python library for production-ready trajectory planning, offering 20+ algorithms for C² continuous splines, jerk-limited S-curves, and quaternion interpolation for robotics, animation, and scientific computing.

License

Notifications You must be signed in to change notification settings

GiorgioMedico/InterpolatePy

Open more actions menu

Repository files navigation

InterpolatePy

Python PyPI Downloads pre-commit ci-test License: MIT

Production-ready trajectory planning and interpolation for robotics, animation, and scientific computing.

InterpolatePy provides 20+ algorithms for smooth trajectory generation with precise control over position, velocity, acceleration, and jerk. From cubic splines and B-curves to quaternion interpolation and S-curve motion profiles — everything you need for professional motion control.

⚡ Fast: Vectorized NumPy operations, ~1ms for 1000-point cubic splines
🎯 Precise: Research-grade algorithms with C² continuity and bounded derivatives
📊 Visual: Built-in plotting for every algorithm
🔧 Complete: Splines, motion profiles, quaternions, and path planning in one library


Installation

pip install InterpolatePy

Requirements: Python ≥3.10, NumPy ≥2.0, SciPy ≥1.15, Matplotlib ≥3.10

Development Installation
git clone https://github.com/GiorgioMedico/InterpolatePy.git
cd InterpolatePy
pip install -e '.[all]'  # Includes testing and development tools

Quick Start

import numpy as np
import matplotlib.pyplot as plt
from interpolatepy import CubicSpline, DoubleSTrajectory, StateParams, TrajectoryBounds

# Smooth spline through waypoints
t_points = [0.0, 5.0, 10.0, 15.0]
q_points = [0.0, 2.0, -1.0, 3.0]
spline = CubicSpline(t_points, q_points, v0=0.0, vn=0.0)

# Evaluate at any time
position = spline.evaluate(7.5)
velocity = spline.evaluate_velocity(7.5)
acceleration = spline.evaluate_acceleration(7.5)

# Built-in visualization
spline.plot()

# S-curve motion profile (jerk-limited)
state = StateParams(q_0=0.0, q_1=10.0, v_0=0.0, v_1=0.0)
bounds = TrajectoryBounds(v_bound=5.0, a_bound=10.0, j_bound=30.0)
trajectory = DoubleSTrajectory(state, bounds)

print(f"Duration: {trajectory.get_duration():.2f}s")

# Manual plotting (DoubleSTrajectory doesn't have built-in plot method)
t_eval = np.linspace(0, trajectory.get_duration(), 100)
results = [trajectory.evaluate(t) for t in t_eval]
positions = [r[0] for r in results]
velocities = [r[1] for r in results]

plt.figure(figsize=(10, 6))
plt.subplot(2, 1, 1)
plt.plot(t_eval, positions)
plt.ylabel('Position')
plt.title('S-Curve Trajectory')
plt.subplot(2, 1, 2)
plt.plot(t_eval, velocities)
plt.ylabel('Velocity')
plt.xlabel('Time')

plt.show()

Algorithm Overview

Category Algorithms Key Features Use Cases
🔵 Splines Cubic, B-Spline, Smoothing C² continuity, noise-robust Waypoint interpolation, curve fitting
⚡ Motion Profiles S-curves, Trapezoidal, Polynomial Bounded derivatives, time-optimal Industrial automation, robotics
🔄 Quaternions SLERP, SQUAD, Splines Smooth rotations, no gimbal lock 3D orientation control, animation
🎯 Path Planning Linear, Circular, Frenet frames Geometric primitives, tool orientation Path following, machining

📚 Complete Algorithms Reference →
Detailed technical documentation, mathematical foundations, and implementation details for all 22 algorithms

Complete Algorithm List

Spline Interpolation

  • CubicSpline – Natural cubic splines with boundary conditions
  • CubicSmoothingSpline – Noise-robust splines with smoothing parameter
  • CubicSplineWithAcceleration1/2 – Bounded acceleration constraints
  • BSpline – General B-spline curves with configurable degree
  • ApproximationBSpline, CubicBSpline, InterpolationBSpline, SmoothingCubicBSpline

Motion Profiles

  • DoubleSTrajectory – S-curve profiles with bounded jerk
  • TrapezoidalTrajectory – Classic trapezoidal velocity profiles
  • PolynomialTrajectory – 3rd, 5th, 7th order polynomials
  • LinearPolyParabolicTrajectory – Linear segments with parabolic blends

Quaternion Interpolation

  • Quaternion – Core quaternion operations with SLERP
  • QuaternionSpline – C²-continuous rotation trajectories
  • SquadC2 – Enhanced SQUAD with zero-clamped boundaries
  • LogQuaternion – Logarithmic quaternion methods

Path Planning & Utilities

  • SimpleLinearPath, SimpleCircularPath – 3D geometric primitives
  • FrenetFrame – Frenet-Serret frame computation along curves
  • LinearInterpolation – Basic linear interpolation
  • TridiagonalInverse – Efficient tridiagonal system solver

Advanced Examples

Quaternion Rotation Interpolation
import matplotlib.pyplot as plt
from interpolatepy import QuaternionSpline, Quaternion

# Define rotation waypoints
orientations = [
    Quaternion.identity(),
    Quaternion.from_euler_angles(0.5, 0.3, 0.1),
    Quaternion.from_euler_angles(1.0, -0.2, 0.8)
]
times = [0.0, 2.0, 5.0]

# Smooth quaternion trajectory with C² continuity
quat_spline = QuaternionSpline(times, orientations, interpolation_method="squad")

# Evaluate at any time
orientation, segment = quat_spline.interpolate_at_time(3.5)
# For angular velocity, use interpolate_with_velocity
orientation_with_vel, angular_velocity, segment = quat_spline.interpolate_with_velocity(3.5)

# QuaternionSpline doesn't have built-in plotting - manual visualization needed
plt.show()
B-Spline Curve Fitting
import numpy as np
import matplotlib.pyplot as plt
from interpolatepy import CubicSmoothingSpline

# Fit smooth curve to noisy data
t = np.linspace(0, 10, 50)
q = np.sin(t) + 0.1 * np.random.randn(50)

# Use CubicSmoothingSpline with correct parameter name 'mu'
spline = CubicSmoothingSpline(t, q, mu=0.01)
spline.plot()
plt.show()
Industrial Motion Planning
import numpy as np
import matplotlib.pyplot as plt
from interpolatepy import DoubleSTrajectory, StateParams, TrajectoryBounds

# Jerk-limited S-curve for smooth industrial motion
state = StateParams(q_0=0.0, q_1=50.0, v_0=0.0, v_1=0.0)
bounds = TrajectoryBounds(v_bound=10.0, a_bound=5.0, j_bound=2.0)

trajectory = DoubleSTrajectory(state, bounds)
print(f"Duration: {trajectory.get_duration():.2f}s")

# Evaluate trajectory
t_eval = np.linspace(0, trajectory.get_duration(), 1000)
results = [trajectory.evaluate(t) for t in t_eval]
positions = [r[0] for r in results]
velocities = [r[1] for r in results]

# Manual plotting
plt.figure(figsize=(12, 8))
plt.subplot(2, 1, 1)
plt.plot(t_eval, positions)
plt.ylabel('Position')
plt.title('Industrial S-Curve Motion Profile')
plt.grid(True)
plt.subplot(2, 1, 2)
plt.plot(t_eval, velocities)
plt.ylabel('Velocity')
plt.xlabel('Time')
plt.grid(True)
plt.show()

Who Should Use InterpolatePy?

🤖 Robotics Engineers: Motion planning, trajectory optimization, smooth control
🎬 Animation Artists: Smooth keyframe interpolation, camera paths, character motion
🔬 Scientists: Data smoothing, curve fitting, experimental trajectory analysis
🏭 Automation Engineers: Industrial motion control, CNC machining, conveyor systems


Performance & Quality

  • Fast: Vectorized NumPy operations, optimized algorithms
  • Reliable: 85%+ test coverage, continuous integration
  • Modern: Python 3.10+, strict typing, dataclass-based APIs
  • Research-grade: Peer-reviewed algorithms from robotics literature

Typical Performance:

  • Cubic spline (1000 points): ~1ms
  • B-spline evaluation (10k points): ~5ms
  • S-curve trajectory planning: ~0.5ms

Development

Development Setup
git clone https://github.com/GiorgioMedico/InterpolatePy.git
cd InterpolatePy
pip install -e '.[all]'
pre-commit install

# Run tests
python -m pytest tests/

# Run tests with coverage
python -m pytest tests/ --cov=interpolatepy --cov-report=html --cov-report=term

# Code quality
ruff format interpolatepy/
ruff check interpolatepy/
mypy interpolatepy/

Contributing

Contributions welcome! Please:

  1. Fork the repo and create a feature branch
  2. Install dev dependencies: pip install -e '.[all]'
  3. Follow existing patterns and add tests
  4. Run pre-commit run --all-files before submitting
  5. Open a pull request with clear description

For major changes, open an issue first to discuss the approach.


Support the Project

Star the repo if InterpolatePy helps your work!
🐛 Report issues on GitHub Issues
💬 Join discussions to share your use cases and feedback


License & Citation

MIT License – Free for commercial and academic use. See LICENSE for details.

If you use InterpolatePy in research, please cite:

@misc{InterpolatePy,
  author = {Giorgio Medico},
  title  = {InterpolatePy: Trajectory Planning and Interpolation for Python},
  year   = {2025},
  url    = {https://github.com/GiorgioMedico/InterpolatePy}
}
Academic References

This library implements algorithms from:

Robotics & Trajectory Planning:

  • Biagiotti & Melchiorri (2008). Trajectory Planning for Automatic Machines and Robots
  • Siciliano et al. (2010). Robotics: Modelling, Planning and Control

Quaternion Interpolation:

  • Parker et al. (2023). "Logarithm-Based Methods for Interpolating Quaternion Time Series"
  • Wittmann et al. (2023). "Spherical Cubic Blends: C²-Continuous Quaternion Interpolation"
  • Dam, E. B., Koch, M., & Lillholm, M. (1998). "Quaternions, Interpolation and Animation"

Built with ❤️ for the robotics and scientific computing community.

About

🚀 InterpolatePy: A fast and precise Python library for production-ready trajectory planning, offering 20+ algorithms for C² continuous splines, jerk-limited S-curves, and quaternion interpolation for robotics, animation, and scientific computing.

Topics

Resources

License

Contributing

Stars

Watchers

Forks

Sponsor this project

Contributors 2

  •  
  •  

Languages

Morty Proxy This is a proxified and sanitized view of the page, visit original site.