Jump to content

Kenmotsu manifold

From Wikipedia, the free encyclopedia

In the mathematical field of differential geometry, a Kenmotsu manifold is an almost-contact manifold endowed with a certain kind of Riemannian metric. They are named after the Japanese mathematician Katsuei Kenmotsu.

Definitions

[edit]

Let {\displaystyle (M,\varphi ,\xi ,\eta )} be an almost-contact manifold. One says that a Riemannian metric {\displaystyle g} on {\displaystyle M} is adapted to the almost-contact structure {\displaystyle (\varphi ,\xi ,\eta )} if: {\displaystyle {\begin{aligned}g_{ij}\xi ^{j}&=\eta _{i}\\g_{pq}\varphi _{i}^{p}\varphi _{j}^{q}&=g_{ij}-\eta _{i}\eta _{j}.\end{aligned}}} That is to say that, relative to {\displaystyle g_{p},} the vector {\displaystyle \xi _{p}} has length one and is orthogonal to {\displaystyle \ker \left(\eta _{p}\right);} furthermore the restriction of {\displaystyle g_{p}} to {\displaystyle \ker \left(\eta _{p}\right)} is a Hermitian metric relative to the almost-complex structure {\displaystyle \varphi _{p}{\big \vert }_{\ker \left(\eta _{p}\right)}.} One says that {\displaystyle (M,\varphi ,\xi ,\eta ,g)} is an almost-contact metric manifold.[1]

An almost-contact metric manifold {\displaystyle (M,\varphi ,\xi ,\eta ,g)} is said to be a Kenmotsu manifold if[2] {\displaystyle \nabla _{i}\varphi _{j}^{k}=-\eta _{j}\varphi _{i}^{k}-g_{ip}\varphi _{j}^{p}\xi ^{k}.}

References

[edit]
  1. ^ Blair 2010, p. 44.
  2. ^ Blair 2010, p. 98.

Sources

  • Blair, David E. (2010). Riemannian geometry of contact and symplectic manifolds. Progress in Mathematics. Vol. 203 (Second edition of 2002 original ed.). Boston, MA: Birkhäuser Boston, Ltd. doi:10.1007/978-0-8176-4959-3. ISBN 978-0-8176-4958-6. MR 2682326. Zbl 1246.53001.
  • Kenmotsu, Katsuei (1972). "A class of almost contact Riemannian manifolds". Tohoku Mathematical Journal. Second Series. 24 (1): 93–103. doi:10.2748/tmj/1178241594. MR 0319102. Zbl 0245.53040.


Kenmotsu manifold
Morty Proxy This is a proxified and sanitized view of the page, visit original site.