Jump to content

Affine bundle

From Wikipedia, the free encyclopedia

In mathematics, an affine bundle is a fiber bundle whose typical fiber, fibers, trivialization morphisms and transition functions are affine.[1]

Formal definition

[edit]

Let {\displaystyle {\overline {\pi }}:{\overline {Y}}\to X} be a vector bundle with a typical fiber a vector space {\displaystyle {\overline {F}}}. An affine bundle modelled on a vector bundle {\displaystyle {\overline {\pi }}:{\overline {Y}}\to X} is a fiber bundle {\displaystyle \pi :Y\to X} whose typical fiber {\displaystyle F} is an affine space modelled on {\displaystyle {\overline {F}}} so that the following conditions hold:

(i) Every fiber {\displaystyle Y_{x}} of {\displaystyle Y} is an affine space modelled over the corresponding fibers {\displaystyle {\overline {Y}}_{x}} of a vector bundle {\displaystyle {\overline {Y}}}.

(ii) There is an affine bundle atlas of {\displaystyle Y\to X} whose local trivializations morphisms and transition functions are affine isomorphisms.

Dealing with affine bundles, one uses only affine bundle coordinates {\displaystyle (x^{\mu },y^{i})} possessing affine transition functions

{\displaystyle y'^{i}=A_{j}^{i}(x^{\nu })y^{j}+b^{i}(x^{\nu }).}

There are the bundle morphisms

{\displaystyle Y\times _{X}{\overline {Y}}\longrightarrow Y,\qquad (y^{i},{\overline {y}}^{i})\longmapsto y^{i}+{\overline {y}}^{i},}
{\displaystyle Y\times _{X}Y\longrightarrow {\overline {Y}},\qquad (y^{i},y'^{i})\longmapsto y^{i}-y'^{i},}

where {\displaystyle ({\overline {y}}^{i})} are linear bundle coordinates on a vector bundle {\displaystyle {\overline {Y}}}, possessing linear transition functions {\displaystyle {\overline {y}}'^{i}=A_{j}^{i}(x^{\nu }){\overline {y}}^{j}}.

Properties

[edit]

An affine bundle has a global section, but in contrast with vector bundles, there is no canonical global section of an affine bundle. Let {\displaystyle \pi :Y\to X} be an affine bundle modelled on a vector bundle {\displaystyle {\overline {\pi }}:{\overline {Y}}\to X}. Every global section {\displaystyle s} of an affine bundle {\displaystyle Y\to X} yields the bundle morphisms

{\displaystyle Y\ni y\to y-s(\pi (y))\in {\overline {Y}},\qquad {\overline {Y}}\ni {\overline {y}}\to s(\pi (y))+{\overline {y}}\in Y.}

In particular, every vector bundle {\displaystyle Y} has a natural structure of an affine bundle due to these morphisms where {\displaystyle s=0} is the canonical zero-valued section of {\displaystyle Y}. For instance, the tangent bundle {\displaystyle TX} of a manifold {\displaystyle X} naturally is an affine bundle.

An affine bundle {\displaystyle Y\to X} is a fiber bundle with a general affine structure group {\displaystyle GA(m,\mathbb {R} )} of affine transformations of its typical fiber {\displaystyle V} of dimension {\displaystyle m}. This structure group always is reducible to a general linear group {\displaystyle GL(m,\mathbb {R} )}, i.e., an affine bundle admits an atlas with linear transition functions.

By a morphism of affine bundles is meant a bundle morphism {\displaystyle \Phi :Y\to Y'} whose restriction to each fiber of {\displaystyle Y} is an affine map. Every affine bundle morphism {\displaystyle \Phi :Y\to Y'} of an affine bundle {\displaystyle Y} modelled on a vector bundle {\displaystyle {\overline {Y}}} to an affine bundle {\displaystyle Y'} modelled on a vector bundle {\displaystyle {\overline {Y}}'} yields a unique linear bundle morphism

{\displaystyle {\overline {\Phi }}:{\overline {Y}}\to {\overline {Y}}',\qquad {\overline {y}}'^{i}={\frac {\partial \Phi ^{i}}{\partial y^{j}}}{\overline {y}}^{j},}

called the linear derivative of {\displaystyle \Phi }.

See also

[edit]

Notes

[edit]
  1. ^ Kolář, Ivan; Michor, Peter; Slovák, Jan (1993), Natural operators in differential geometry (PDF), Springer-Verlag, archived from the original (PDF) on 2017-03-30, retrieved 2013-05-28. (page 60)

References

[edit]
Affine bundle
Morty Proxy This is a proxified and sanitized view of the page, visit original site.