1932

Abstract

Scenarios to stabilize global climate and meet international climate agreements require rapid reductions in human carbon dioxide (CO) emissions, often augmented by substantial carbon dioxide removal (CDR) from the atmosphere. While some ocean-based removal techniques show potential promise as part of a broader CDR and decarbonization portfolio, no marine approach is ready yet for deployment at scale because of gaps in both scientific and engineering knowledge. Marine CDR spans a wide range of biotic and abiotic methods, with both common and technique-specific limitations. Further targeted research is needed on CDR efficacy, permanence, and additionality as well as on robust validation methods—measurement, monitoring, reporting, and verification—that are essential to demonstrate the safe removal and long-term storage of CO. Engineering studies are needed on constraints including scalability, costs, resource inputs, energy demands, and technical readiness. Research on possible co-benefits, ocean acidification effects, environmental and social impacts, and governance is also required.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-040523-014702
2025-01-16
2025-05-16
Loading full text...

Full text loading...

/deliver/fulltext/marine/17/1/annurev-marine-040523-014702.html?itemId=/content/journals/10.1146/annurev-marine-040523-014702&mimeType=html&fmt=ahah

Literature Cited

  1. Albright R, Caldeira L, Hosfelt J, Kwiatkowski L, Maclaren JK, et al. 2016.. Reversal of ocean acidification enhances net coral reef calcification. . Nature 531::36265. https://doi.org/10.1038/nature17155
    [Crossref] [Google Scholar]
  2. Archer D, Eby M, Brovkin V, Ridgwell A, Cao L, et al. 2009.. Atmospheric lifetime of fossil fuel carbon dioxide. . Annu. Rev. Earth Planet. Sci. 37::11734. https://doi.org/10.1146/annurev.earth.031208.100206
    [Crossref] [Google Scholar]
  3. Arcusa S, Sprenkle-Hyppolite S. 2022.. Snapshot of the carbon dioxide removal certification and standards ecosystem (2021–2022). . Clim. Policy 22::131932. https://doi.org/10.1080/14693062.2022.2094308
    [Crossref] [Google Scholar]
  4. Aumont O, Bopp L. 2006.. Globalizing results from ocean in situ iron fertilization studies. . Glob. Biogeochem. Cycles 20::GB2017. https://doi.org/10.1029/2005GB002591
    [Crossref] [Google Scholar]
  5. Bach LT, Ho DT, Boyd PW, Tyka MD. 2023.. Toward a consensus framework to evaluate air-sea CO2 equilibration for marine CO2 removal. . Limnol. Oceanogr. Lett. 8::68591. https://doi.org/10.1002/lol2.10330
    [Crossref] [Google Scholar]
  6. Balwada D, LaCasce JH, Speer KG, Ferrari R. 2021.. Relative dispersion in the Antarctic Circumpolar Current. . J. Phys. Oceanogr. 51::55374. https://doi.org/10.1175/JPO-D-19-0243.1
    [Crossref] [Google Scholar]
  7. Bar-On YM, Phillips R, Milo R. 2018.. The biomass distribution on Earth. . PNAS 115::650611. https://doi.org/10.1073/pnas.1711842115
    [Crossref] [Google Scholar]
  8. Battaglia G, Steinacher M, Joos F. 2016.. A probabilistic assessment of calcium carbonate export and dissolution in the modern ocean. . Biogeosciences 13:(9):282348. https://doi.org/10.5194/bg-13-2823-2016
    [Crossref] [Google Scholar]
  9. Beerling DJ. 2017.. Enhanced rock weathering: biological climate change mitigation with co-benefits for food security?. Biol. Lett. 13::20170149. https://doi.org/10.1098/rsbl.2017.0149
    [Crossref] [Google Scholar]
  10. Beerling DJ, Leake JR, Long SP, Scholes JD, Ton J, et al. 2018.. Farming with crops and rocks to address global climate, food and soil security. . Nat. Plants 4::13847. https://doi.org/10.1038/s41477-018-0108-y
    [Crossref] [Google Scholar]
  11. Berger M, Kwiatkowski L, Ho DT, Bopp L. 2023.. Ocean dynamics and biological feedbacks limit the potential of macroalgae carbon dioxide removal. . Environ. Res. Lett. 18::024039. https://doi.org/10.1088/1748-9326/acb06e
    [Crossref] [Google Scholar]
  12. Berner RA. 1991.. A model for atmospheric CO2 over Phanerozoic time. . Am. J. Sci. 291::33976. https://doi.org/10.2475/ajs.291.4.339
    [Crossref] [Google Scholar]
  13. Bertagni MB, Porporato A. 2022.. The carbon-capture efficiency of natural water alkalinization: implications for enhanced weathering. . Sci. Total Environ. 838::156524. https://doi.org/10.1016/j.scitotenv.2022.156524
    [Crossref] [Google Scholar]
  14. Bianchi D, Carozza DA, Galbraith ED, Guiet J, DeVries T. 2021.. Estimating global biomass and biogeochemical cycling of marine fish with and without fishing. . Sci. Adv. 7::eabd7554. https://doi.org/10.1126/sciadv.abd7554
    [Crossref] [Google Scholar]
  15. Bindoff NL, Cheung WWL, Kairo JG, Arístegui J, Guinder VA, et al. 2019.. Changing ocean, marine ecosystems, and dependent communities. . In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, ed. H-O Pörtner, DC Roberts, V Masson-Delmotte, P Zhai, M Tignor , et al., pp. 447587. Cambridge, UK:: Cambridge Univ. Press. https://doi.org/10.1017/9781009157964.007
    [Google Scholar]
  16. Blackford J, Romanak K, Huvenne VAI, Lichtschlag A, Strong JA, et al. 2021.. Efficient marine environmental characterisation to support monitoring of geological CO2 storage. . Int. J. Greenh. Gas Control 109::103388. https://doi.org/10.1016/j.ijggc.2021.103388
    [Crossref] [Google Scholar]
  17. Boyd PW, Jickells T, Law CS, Blain S, Boyle EA, et al. 2007.. Mesoscale iron enrichment experiments 1993–2005: synthesis and future directions. . Science 315::61217. https://doi.org/10.1126/science.1131669
    [Crossref] [Google Scholar]
  18. Brantley SL, Kubicki JD, White AF, eds. 2008.. Kinetics of Water-Rock Interaction. New York:: Springer. https://doi.org/10.1007/978-0-387-73563-4
    [Google Scholar]
  19. Buck HJ, Fuhrman JG, Morrow DR, Sanchez DL, Wang FM. 2020.. Adaptation and carbon removal. . One Earth 3::42535. https://doi.org/10.1016/j.oneear.2020.09.008
    [Crossref] [Google Scholar]
  20. Buesseler KO, Doney SC, Karl DM, Boyd PM, Caldeira K, et al. 2008.. Ocean iron fertilization: moving forward in a sea of uncertainty. . Science 319::162. https://doi.org/10.1126/science.1154305
    [Crossref] [Google Scholar]
  21. Buschmann AH, Camus C, Infante J, Neori A, Israel Á, et al. 2017.. Seaweed production: overview of the global state of exploitation, farming and emerging research activity. . Eur. J. Phycol. 52::391406. https://doi.org/10.1080/09670262.2017.1365175
    [Crossref] [Google Scholar]
  22. Bushinsky SM, Landschützer P, Rödenbeck C, Gray AR, Baker D, et al. 2019a.. Reassessing Southern Ocean air-sea CO2 flux estimates with the addition of biogeochemical float observations. . Glob. Biogeochem. Cycles 33::137088. https://doi.org/10.1029/2019GB006176
    [Crossref] [Google Scholar]
  23. Bushinsky SM, Takeshita Y, Williams NL. 2019b.. Observing changes in ocean carbonate chemistry: our autonomous future. . Curr. Clim. Change Rep. 5::20720. https://doi.org/10.1007/s40641-019-00129-8
    [Crossref] [Google Scholar]
  24. Cai W-J, Jiao N. 2022.. Wastewater alkalinity addition as a novel approach for ocean negative carbon emissions. . Innovation 3::100272. https://doi.org/10.1016/j.xinn.2022.100272
    [Google Scholar]
  25. Canadell JG, Monteiro PMS, Costa MH, Cotrim da Cunha L, Cox PM, et al. 2021.. Global carbon and other biogeochemical cycles and feedbacks. . In Climate Change 2021: The Physical Science Basis; Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, ed. V Masson-Delmotte, P Zhai, A Pirani, SL Connors, C Péan , et al., pp. 673816. Cambridge, UK:: Cambridge Univ. Press. https://doi.org/10.1017/9781009157896.007
    [Google Scholar]
  26. Caserini S, Pagano D, Campo F, Abbà A, De Marco S, et al. 2021.. Potential of maritime transport for ocean liming and atmospheric CO2 removal. . Front. Clim. 3::575900. https://www.frontiersin.org/articles/10.3389/fclim.2021.575900
    [Crossref] [Google Scholar]
  27. Christianson A, Cabre A, Bernal B, Baez SK, Leung S, et al. 2022.. The promise of blue carbon climate solutions: where the science supports ocean-climate policy. . Front. Mar. Sci. 9::851448. https://doi.org/10.3389/fmars.2022.851448
    [Crossref] [Google Scholar]
  28. Ciais P, Sabine C, Bala G, Bopp L, Brovkin V, et al. 2013.. Carbon and other biogeochemical cycles. . In Climate Change 2013: The Physical Science Basis; Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, ed. TF Stocker, D Qin, G-K Plattner, M Tignor, SK Allen , et al., pp. 465570. Cambridge, UK:: Cambridge Univ. Press. https://www.ipcc.ch/site/assets/uploads/2018/02/WG1AR5_Chapter06_FINAL.pdf
    [Google Scholar]
  29. Cooley SR, Klinsky S, Morrow DR, Satterfield T. 2023.. Sociotechnical considerations about ocean carbon dioxide removal. . Annu. Rev. Mar. Sci. 15::4166. https://doi.org/10.1146/annurev-marine-032122-113850
    [Crossref] [Google Scholar]
  30. Cooley SR, Schoeman D, Bopp L, Boyd P, Donner S, et al. 2022.. Oceans and coastal ecosystems and their services. . In Climate Change 2022: Impacts, Adaptation and Vulnerability; Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, ed. H-O Pörtner, DC Roberts, M Tignor, ES Poloczanska, K Mintenbeck , et al., pp. 379550. Cambridge, UK:: Cambridge Univ. Press. https://doi.org/10.1017/9781009325844.005
    [Google Scholar]
  31. Copernic. Mar. Environ. Monit. Serv. 2022.. Global ocean gridded L4 sea surface heights and derived variables reprocessed 1993 ongoing. . Copernicus Marine Environment Monitoring Service. https://doi.org/10.48670/moi-00148
    [Google Scholar]
  32. Cornwall W. 2023.. An alkaline solution. . Science 382::98892. https://doi.org/10.1126/science.zn8487l
    [Crossref] [Google Scholar]
  33. Crooks S, Sutton-Grier AE, Troxler TG, Herold N, Bernal B, et al. 2018.. Coastal wetland management as a contribution to the US National Greenhouse Gas Inventory. . Nat. Clim. Change 8::110912. https://doi.org/10.1038/s41558-018-0345-0
    [Crossref] [Google Scholar]
  34. DaJose L. 2023.. Caltech start-ups capture CO2 at sea. . Caltech Magazine, May 15. https://magazine.caltech.edu/post/carbon-capture-ocean-caltech-startups-calcarea-captura
    [Google Scholar]
  35. Dalsøren SB, Samset BH, Myhre G, Corbett JJ, Minjares R, et al. 2013.. Environmental impacts of shipping in 2030 with a particular focus on the Arctic region. . Atmos. Chem. Phys. 13::194155. https://doi.org/10.5194/acp-13-1941-2013
    [Crossref] [Google Scholar]
  36. Daly A, Zannetti P. 2007.. Air pollution modeling—an overview. . In Ambient Air Pollution, ed. P Zannetti, D Al-Ajmi, S Al-Rashied , pp. 1528. Damascus, Syria, and Reno, NV:: Arab Sch. Sci. Technol. and EnviroComp Inst. http://home.iitk.ac.in/∼anubha/Modeling.pdf
    [Google Scholar]
  37. Davies PA, Yuan Q, De Richter R. 2018.. Desalination as a negative emissions technology. . Environ. Sci. Water Res. Technol. 4::83950. https://doi.org/10.1039/c7ew00502d
    [Crossref] [Google Scholar]
  38. DeVries T. 2014.. The oceanic anthropogenic CO2 sink: storage, air-sea fluxes, and transports over the industrial era. . Glob. Biogeochem. Cycles 28::63147. https://doi.org/10.1002/2013GB004739
    [Crossref] [Google Scholar]
  39. DeVries T. 2022.. The ocean carbon cycle. . Annu. Rev. Environ. Resour. 47::31741. https://doi.org/10.1146/annurev-environ-120920-111307
    [Crossref] [Google Scholar]
  40. DeVries T, Holzer M, Primeau F. 2017.. Recent increase in oceanic carbon uptake driven by weaker upper-ocean overturning. . Nature 542::21518. https://doi.org/10.1038/nature21068
    [Crossref] [Google Scholar]
  41. DeVries T, Yamamoto K, Wanninkhof R, Gruber N, Hauck J, et al. 2023.. Magnitude, trends, and variability of the global ocean carbon sink from 1985–2018. . Glob. Biogeochem. Cycles 37::e2023GB007780. https://doi.org/10.1029/2023GB007780
    [Crossref] [Google Scholar]
  42. Digdaya IA, Sullivan I, Lin M, Han L, Cheng WH, et al. 2020.. A direct coupled electrochemical system for capture and conversion of CO2 from oceanwater. . Nat. Commun. 11::4412. https://doi.org/10.1038/s41467-020-18232-y
    [Crossref] [Google Scholar]
  43. Dobashi R, Ho DT. 2023.. Air-sea gas exchange in a seagrass ecosystem—results from a 3He/SF6 tracer release experiment. . Biogeosciences 20::107587. https://doi.org/10.5194/bg-20-1075-2023
    [Crossref] [Google Scholar]
  44. Doney SC, Busch DS, Cooley SR, Kroeker KJ. 2020.. The impacts of ocean acidification on marine ecosystems and reliant human communities. . Annu. Rev. Environ. Resour. 45::83112. https://doi.org/10.1146/annurev-environ-012320-083019
    [Crossref] [Google Scholar]
  45. Doney SC, Fabry VJ, Feely RA, Kleypas JA. 2009.. Ocean acidification: the other CO2 problem. . Annu. Rev. Mar. Sci. 1::16992. https://doi.org/10.1146/annurev.marine.010908.163834
    [Crossref] [Google Scholar]
  46. Doney SC, Mitchell KA, Henson SA, Cavan E, DeVries T, et al. 2024.. Observational and numerical modeling constraints on the global ocean biological carbon pump. . Glob. Biogeochem. Cycles 38::e2024GB008156. https://doi.org/10.1029/2024GB008156
    [Crossref] [Google Scholar]
  47. Duarte CM, Losada IJ, Hendriks IE, Mazarrasa I, Marbà N. 2013.. The role of coastal plant communities for climate change mitigation and adaptation. . Nat. Clim. Change 3::96168. https://doi.org/10.1038/nclimate1970
    [Crossref] [Google Scholar]
  48. Dutreuil S, Bopp L, Tagliabue A. 2009.. Impact of enhanced vertical mixing on marine biogeochemistry: lessons for geo-engineering and natural variability. . Biogeosciences 6::90112. https://doi.org/10.5194/bg-6-901-2009
    [Crossref] [Google Scholar]
  49. Eisaman MD, Geilert S, Renforth P, Bastianini L, Campbell J, et al. 2023.. Assessing the technical aspects of ocean-alkalinity-enhancement approaches. . In Guide to Best Practices in Ocean Alkalinity Enhancement Research, ed. A Oschlies, A Stevenson, LT Bach, K Fennel, REM Rickaby , et al., chap. 3 . Göttingen, Ger.:: Copernicus. https://doi.org/10.5194/sp-2-oae2023-3-2023
    [Google Scholar]
  50. Eisaman MD, Rivest JLB, Karnitz SD, de Lannoy CF, Jose A, et al. 2018.. Indirect ocean capture of atmospheric CO2: part II. Understanding the cost of negative emissions. . Int. J. Greenh. Gas Control 70::25461. https://doi.org/10.1016/j.ijggc.2018.02.020
    [Crossref] [Google Scholar]
  51. Eke J, Yusuf A, Giwa A, Sodiq A. 2020.. The global status of desalination: an assessment of current desalination technologies, plants and capacity. . Desalination 495::114633. https://doi.org/10.1016/j.desal.2020.114633
    [Crossref] [Google Scholar]
  52. Emerson SR, Hamme RC. 2022.. Chemical Oceanography: Element Fluxes in the Sea. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  53. Feehan CJ, Filbee-Dexter K, Wernberg T. 2021.. Embrace kelp forests in the coming decade. . Science 373::863. https://doi.org/10.1126/science.abl3984
    [Crossref] [Google Scholar]
  54. Feng EY, Keller DP, Koeve W, Oschlies A. 2016.. Could artificial ocean alkalinization protect tropical coral ecosystems from ocean acidification?. Environ. Res. Lett. 11::074008. https://doi.org/10.1088/1748-9326/11/7/074008
    [Crossref] [Google Scholar]
  55. Fennel K, Long MC, Algar C, Carter B, Keller D, et al. 2023.. Modelling considerations for research on ocean alkalinity enhancement (OAE). . In Guide to Best Practices in Ocean Alkalinity Enhancement Research, ed. A Oschlies, A Stevenson, LT Bach, K Fennel, REM Rickaby , et al., chap. 9 . Göttingen, Ger:.: Copernicus. https://doi.org/10.5194/sp-2-oae2023-9-2023
    [Google Scholar]
  56. Fennel K, Mattern JP, Doney SC, Bopp L, Moore AM, et al. 2022.. Ocean biogeochemical modelling. . Nat. Rev. Methods Primers. 2::76. https://doi.org/10.1038/s43586-022-00154-2
    [Crossref] [Google Scholar]
  57. Foteinis S, Campbell JS, Renforth P. 2023.. Life cycle assessment of coastal enhanced weathering for carbon dioxide removal from air. . Environ. Sci. Technol. 57::616978. https://doi.org/10.1021/acs.est.2c08633
    [Crossref] [Google Scholar]
  58. Friedlingstein P, O'Sullivan M, Jones MW, Andrew RM, Gregor L, et al. 2022.. Global carbon budget 2022. . Earth Syst. Sci. Data 14::4811900. https://doi.org/10.5194/essd-14-4811-2022
    [Crossref] [Google Scholar]
  59. Froehlich HE, Afflerbach JC, Frazier M, Halpern BS. 2019.. Blue growth potential to mitigate climate change through seaweed offsetting. . Curr. Biol. 29::308793. https://doi.org/10.1016/j.cub.2019.07.041
    [Crossref] [Google Scholar]
  60. Fuhrman JG, Bergero C, Weber M, Monteith S, Wang FM, et al. 2023.. Diverse carbon dioxide removal approaches could reduce impacts on the energy-water-land system. . Nat. Clim. Change 13::34150. https://doi.org/10.1038/s41558-023-01604-9
    [Crossref] [Google Scholar]
  61. Fuhrman JG, McJeon H, Doney SC, Shobe W, Clarens AF. 2019.. From zero to hero? Why integrated assessment modeling of negative emissions technologies is hard and how we can do better. . Front. Clim. 1::11. https://doi.org/10.3389/fclim.2019.00011
    [Crossref] [Google Scholar]
  62. Fuhrman JG, McJeon H, Patel P, Doney SC, Shobe WM, Clarens AF. 2020.. Food-energy-water implications of negative emission technologies in a +1.5°C future. . Nat. Clim. Change 10::92027. https://doi.org/10.1038/s41558-020-0876-z
    [Crossref] [Google Scholar]
  63. Gattuso J-P, Williamson P, Duarte CM, Magnan AK. 2021.. The potential for ocean-based climate action: negative emissions technologies and beyond. . Front. Clim. 2::37. https://doi.org/10.3389/fclim.2020.575716
    [Crossref] [Google Scholar]
  64. GESAMP (Joint Group Experts Sci. Asp. Mar. Environ. Prot.). 2019.. High level review of a wide range of proposed marine geoengineering techniques. Rep. Stud. 98 , Int. Marit. Organ., London:. http://www.gesamp.org/publications/high-level-review-of-a-wide-range-of-proposed-marine-geoengineering-techniques
    [Google Scholar]
  65. Goll DS, Ciais P, Amann T, Buermann W, Chang J, et al. 2021.. Potential CO2 removal from enhanced weathering by ecosystem responses to powdered rock. . Nat. Geosci. 14::54549. https://doi.org/10.1038/s41561-021-00798-x
    [Crossref] [Google Scholar]
  66. Grorud-Colvert K, Sullivan-Stack J, Roberts C, Constant V, Lubchenco J, et al. 2021.. The MPA Guide: a framework to achieve global goals for the ocean. . Science 373::eabf0861. https://www.science.org/doi/10.1126/science.abf0861
    [Crossref] [Google Scholar]
  67. Gruber N, Bakker DCE, DeVries T, Gregor L, Hauck J, et al. 2023.. Trends and variability in the ocean carbon sink. . Nat. Rev. Earth Environ. 4::11934. https://doi.org/10.1038/s43017-022-00381-x
    [Crossref] [Google Scholar]
  68. Grubler A, Wilson C, Nemet G. 2016.. Apples, oranges, and consistent comparisons of the temporal dynamics of energy transitions. . Energy Res. Soc. Sci. 22::1825. https://doi.org/10.1016/j.erss.2016.08.015
    [Crossref] [Google Scholar]
  69. Hangx SJT, Spiers CJ. 2009.. Coastal spreading of olivine to control atmospheric CO2 concentrations: a critical analysis of viability. . Int. J. Greenh. Gas Control 3::75767. https://doi.org/10.1016/j.ijggc.2009.07.001
    [Crossref] [Google Scholar]
  70. Hansell DA, Carlson CA, Repeta DJ, Schlitzer R. 2009.. Dissolved organic matter in the ocean: new insights stimulated by a controversy. . Oceanography 22:(4):5261. https://doi.org/10.5670/oceanog.2009.109
    [Crossref] [Google Scholar]
  71. Hansen PJ, Lundholm N, Rost B. 2007.. Growth limitation in marine red-tide dinoflagellates: effects of pH versus inorganic carbon availability. . Mar. Ecol. Prog. Ser. 334::6371. https://doi.org/10.3354/meps334063
    [Crossref] [Google Scholar]
  72. Hartin CA, Patel P, Schwarber A, Link RP, Bond-Lamberty BP. 2015.. A simple object-oriented and open-source model for scientific and policy analyses of the global climate system—Hector v1.0. . Geosci. Model Dev. 8::93955. https://doi.org/10.5194/gmd-8-939-2015
    [Crossref] [Google Scholar]
  73. Hartmann J, Suitner N, Lim C, Schneider J, Marín-Samper L, et al. 2023.. Stability of alkalinity in ocean alkalinity enhancement (OAE) approaches—consequences for durability of CO2 storage. . Biogeosciences 20::781802. https://doi.org/10.5194/bg-20-781-2023
    [Crossref] [Google Scholar]
  74. Hartmann J, West AJ, Renforth P, Köhler P, De La Rocha CL, et al. 2013.. Enhanced chemical weathering as a geoengineering strategy to reduce atmospheric carbon dioxide, supply nutrients, and mitigate ocean acidification. . Rev. Geophys. 51::11349. https://doi.org/10.1002/ROG.20004
    [Crossref] [Google Scholar]
  75. Harvey LDD. 2008.. Mitigating the atmospheric CO2 increase and ocean acidification by adding limestone powder to upwelling regions. . J. Geophys. Res. Oceans 113::C04028. https://doi.org/10.1029/2007JC004373
    [Google Scholar]
  76. Hauck J, Gregor L, Nissen C, Patara L, Hague M, et al. 2023.. The Southern Ocean carbon cycle 1985–2018: mean, seasonal cycle, trends, and storage. . Glob. Biogeochem. Cycles 37::e2023GB007848. https://doi.org/10.1029/2023GB007848
    [Crossref] [Google Scholar]
  77. Ho DT, Bopp L, Palter JB, Long MC, Boyd PW, et al. 2023.. Monitoring, reporting, and verification for ocean alkalinity enhancement. . In Guide to Best Practices in Ocean Alkalinity Enhancement Research, ed. A Oschlies, A Stevenson, LT Bach, K Fennel, REM Rickaby , et al., chap. 12 . Göttingen, Ger:.: Copernicus. https://doi.org/10.5194/sp-2-oae2023-12-2023
    [Google Scholar]
  78. Ho DT, Wanninkhof R, Schlosser P, Ullman DS, Hebert D, Sullivan KF. 2011.. Toward a universal relationship between wind speed and gas exchange: gas transfer velocities measured with 3He/SF6 during the Southern Ocean Gas Exchange Experiment. . J. Geophys. Res. 116::C00F04. https://doi.org/10.1029/2010JC006854
    [Google Scholar]
  79. Holmquist JR, Windham-Myers L, Bliss N, Crooks S, Morris JT, et al. 2018.. Accuracy and precision of tidal wetland soil carbon mapping in the conterminous United States. . Sci. Rep. 8::9478. https://doi.org/10.1038/s41598-018-26948-7
    [Crossref] [Google Scholar]
  80. Holz C, Siegel LS, Johnston E, Jones AP, Sterman J. 2018.. Ratcheting ambition to limit warming to 1.5°C-trade-offs between emission reductions and carbon dioxide removal. . Environ. Res. Lett. 13::064028. https://doi.org/10.1088/1748-9326/aac0c1
    [Crossref] [Google Scholar]
  81. IPCC (Intergov. Panel Clim. Change). 2018.. Summary for policymakers. . In Global Warming of 1.5°C: An IPCC Special Report on the Impacts of Global Warming of 1.5°C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty, ed. V Masson-Delmotte, P Zhai, H-O Pörtner, D Roberts, J Skea , et al., pp. 324. Cambridge, UK:: Cambridge Univ. Press. https://doi.org/10.1017/9781009157940.001
    [Google Scholar]
  82. IPCC (Intergov. Panel Clim. Change). 2023.. Summary for policymakers. . In Climate Change 2023: Synthesis Report; Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, ed. H Lee, J Romero , pp. 134. Geneva:: IPCC. https://doi.org/10.59327/IPCC/AR6-9789291691647.001
    [Google Scholar]
  83. Jiang HB, Hutchins DA, Zhang HR, Feng YY, Zhang RF, et al. 2024.. Complexities of regulating climate by promoting marine primary production with ocean iron fertilization. . Earth-Sci. Rev. 249::104675. https://doi.org/10.1016/j.earscirev.2024.104675
    [Crossref] [Google Scholar]
  84. Jiang L-Q, Feely RA, Carter BR, Greeley DJ, Gledhill DK, Arzayus KM. 2015.. Climatological distribution of aragonite saturation state in the global oceans. . Glob. Biogeochem. Cycles 29::165673. https://doi.org/10.1002/2015GB005198
    [Crossref] [Google Scholar]
  85. Jin X, Gruber N, Frenzel H, Doney SC, McWilliams JC. 2008.. The impact on atmospheric CO2 of iron fertilization induced changes in the ocean's biological pump. . Biogeosciences 5::385406. https://doi.org/10.5194/bg-5-385-2008
    [Crossref] [Google Scholar]
  86. Jürchott M, Oschlies A, Koeve W. 2023.. Artificial upwelling—a refined narrative. . Geophys. Res. Lett. 50::e2022GL101870. https://doi.org/10.1029/2022GL101870
    [Crossref] [Google Scholar]
  87. Kantola IB, Masters MD, Beerling DJ, Long SP, DeLucia EH. 2017.. Potential of global croplands and bioenergy crops for climate change mitigation through deployment for enhanced weathering. . Biol. Lett. 13::20160714. https://doi.org/10.1098/rsbl.2016.0714
    [Crossref] [Google Scholar]
  88. Kantzas EP, Val Martin M, Lomas MR, Eufrasio RM, Renforth P, et al. 2022.. Substantial carbon drawdown potential from enhanced rock weathering in the United Kingdom. . Nat. Geosci. 15::38289. https://doi.org/10.1038/s41561-022-00925-2
    [Crossref] [Google Scholar]
  89. Kaplan MB, Solomon S. 2016.. A coming boom in commercial shipping? The potential for rapid growth of noise from commercial ships by 2030. . Mar. Policy 73::11921. https://doi.org/10.1016/j.marpol.2016.07.024
    [Crossref] [Google Scholar]
  90. Khatiwala S, Tanhua T, Mikaloff Fletcher S, Gerber M, Doney SC, et al. 2013.. Global ocean storage of anthropogenic carbon. . Biogeosciences 10::216991. https://doi.org/10.5194/bg-10-2169-2013
    [Crossref] [Google Scholar]
  91. Kheshgi HS. 1995.. Sequestering atmospheric carbon dioxide by increasing ocean alkalinity. . Energy 20::91522. https://doi.org/10.1016/0360-5442(95)00035-F
    [Crossref] [Google Scholar]
  92. Kirwan ML, Megonigal JP, Noyce GL, Smith AJ. 2023.. Geomorphic and ecological constraints on the coastal carbon sink. . Nat. Rev. Earth Environ. 4::393406. https://doi.org/10.1038/s43017-023-00429-6
    [Crossref] [Google Scholar]
  93. Koweek DA. 2022.. Expected limits on the potential for carbon dioxide removal from artificial upwelling. . Front. Mar. Sci. 9::841894. https://doi.org/10.3389/fmars.2022.841894
    [Crossref] [Google Scholar]
  94. Krause-Jensen D, Duarte CM. 2016.. Substantial role of macroalgae in marine carbon sequestration. . Nat. Geosci. 9::73742. https://doi.org/10.1038/ngeo2790
    [Crossref] [Google Scholar]
  95. La Plante EC, Simonetti DA, Wang J, Al-Turki A, Chen X, et al. 2021.. Saline water-based mineralization pathway for gigatonne-scale CO2 management. . ACS Sustain. Chem. Eng. 9::107389. https://doi.org/10.1021/acssuschemeng.0c08561
    [Crossref] [Google Scholar]
  96. Lane J, Greig C, Garnett A. 2021.. Uncertain storage prospects create a conundrum for carbon capture and storage ambitions. . Nat. Clim. Change 11::92536. https://doi.org/10.1038/s41558-021-01175-7
    [Crossref] [Google Scholar]
  97. Macreadie PI, Costa MDP, Atwood TB, Friess DA, Kelleway JJ, et al. 2021.. Blue carbon as a natural climate solution. . Nat. Rev. Earth Environ. 2::82639. https://doi.org/10.1038/s43017-021-00224-1
    [Crossref] [Google Scholar]
  98. Mahadevan A. 2016.. The impact of submesoscale physics on primary productivity of plankton. . Annu. Rev. Mar. Sci. 8::16184. https://doi.org/10.1146/annurev-marine-010814-015912
    [Crossref] [Google Scholar]
  99. Malhotra A, Schmidt TS. 2020.. Accelerating low-carbon innovation. . Joule 4::225967. https://doi.org/10.1016/j.joule.2020.09.004
    [Crossref] [Google Scholar]
  100. Marinov I, Gnanadesikan A, Sarmiento JL, Toggweiler JR, Follows M, Mignone BK. 2008.. Impact of oceanic circulation on biological carbon storage in the ocean and atmospheric pCO2. . Glob. Biogeochem. Cycles 22::GB3007. https://doi.org/10.1029/2007GB002958
    [Crossref] [Google Scholar]
  101. May C, Crimmins AR, Cooley SR, Fleishman E, Grossman EE, et al. 2023.. Focus on blue carbon. . In Fifth National Climate Assessment, ed. AR Crimmins, CW Avery, DR Easterling, KE Kunkel, BC Stewart, TK Maycock, chap. F5 . Washington, DC:: US Glob. Change. Res. Program. https://doi.org/10.7930/NCA5.2023.F5
    [Google Scholar]
  102. McClimans TA, Handå A, Fredheim A, Lien E, Reitan KI. 2010.. Controlled artificial upwelling in a fjord to stimulate non-toxic algae. . Aquac. Eng. 42::14047. https://doi.org/10.1016/j.aquaeng.2010.02.002
    [Crossref] [Google Scholar]
  103. McKee DC, Doney SC, Della Penna A, Boss ES, Gaube P, et al. 2022.. Lagrangian and Eulerian time and length scales of mesoscale ocean chlorophyll from Bio-Argo floats and satellites. . Biogeosciences 19::592752. https://doi.org/10.5194/bg-19-5927-2022
    [Crossref] [Google Scholar]
  104. McLeod E, Chmura GL, Bouillon S, Salm R, Björk M, et al. 2011.. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. . Front. Ecol. Environ. 9::55260. https://doi.org/10.1890/110004
    [Crossref] [Google Scholar]
  105. McWilliams JC. 2016.. Submesoscale currents in the ocean. . Proc. R. Soc. A 472::20160117. https://doi.org/10.1098/rspa.2016.0117
    [Crossref] [Google Scholar]
  106. Meysman FJR, Montserrat F. 2017.. Negative CO2 emissions via enhanced silicate weathering in coastal environments. . Biol. Lett. 13::20160905. https://doi.org/10.1098/rsbl.2016.0905
    [Crossref] [Google Scholar]
  107. Millero FJ. 2007.. The marine inorganic carbon cycle. . Chem. Rev. 107::30841. https://doi.org/10.1021/cr0503557
    [Crossref] [Google Scholar]
  108. Muirhead JR, Minton MS, Miller WA, Ruiz GM. 2015.. Projected effects of the Panama Canal expansion on shipping traffic and biological invasions. . Divers. Distrib. 21::7587. https://doi.org/10.1111/ddi.12260
    [Crossref] [Google Scholar]
  109. NASEM (Natl. Acad. Sci. Eng. Med.). 2019.. Negative emissions technologies and reliable sequestration: a research agenda. Rep., NASEM, Washington, DC:. https://doi.org/10.17226/25259
    [Google Scholar]
  110. NASEM (Natl. Acad. Sci. Eng. Med.). 2022.. A research strategy for ocean-based carbon dioxide removal and sequestration. Rep., NASEM, Washington, DC:. https://doi.org/10.17226/26278
    [Google Scholar]
  111. Nowicki M, DeVries T, Siegel DA. 2022.. Quantifying the carbon export and sequestration pathways of the ocean's biological carbon pump. . Glob. Biogeochem. Cycles 36::e2021GB007083. https://doi.org/10.1029/2021GB007083
    [Crossref] [Google Scholar]
  112. Oreska MPJ, McGlathery KJ, Aoki LR, Berger AC, Berg P, Mullins L. 2020.. The greenhouse gas offset potential from seagrass restoration. . Sci. Rep. 10::7325. https://doi.org/10.1038/s41598-020-64094-1
    [Crossref] [Google Scholar]
  113. Palter JB, Cross J, Long MC, Rafter PA, Reimers CE. 2023.. The science we need to assess marine carbon dioxide removal. . Eos 104:. https://doi.org/10.1029/2023EO230214
    [Crossref] [Google Scholar]
  114. Pan Y, Fan W, Zhang D, Chen J, Huang H, et al. 2016.. Research progress in artificial upwelling and its potential environmental effects. . Sci. China Earth Sci. 59::23648. https://doi.org/10.1007/s11430-015-5195-2
    [Crossref] [Google Scholar]
  115. Patterson BD, Mo F, Borgschulte A, Hillestad M, Joos F, et al. 2019.. Renewable CO2 recycling and synthetic fuel production in a marine environment. . PNAS 116::1221219. https://doi.org/10.1073/PNAS.1902335116
    [Crossref] [Google Scholar]
  116. Queirós AM, Stephens N, Widdicombe S, Tait K, McCoy SJ, et al. 2019.. Connected macroalgal-sediment systems: blue carbon and food webs in the deep coastal ocean. . Ecol. Monogr. 89::e01366. https://doi.org/10.1002/ecm.1366
    [Crossref] [Google Scholar]
  117. Rau GH, Caldeira K. 1999.. Enhanced carbonate dissolution: a means of sequestering waste CO2 as ocean bicarbonate. . Energy Convers. Manag. 40::180313. https://doi.org/10.1016/S0196-8904(99)00071-0
    [Crossref] [Google Scholar]
  118. Rau GH, Knauss KG, Langer WH, Caldeira K. 2007.. Reducing energy-related CO2 emissions using accelerated weathering of limestone. . Energy 32::147177. https://doi.org/10.1016/j.energy.2006.10.011
    [Crossref] [Google Scholar]
  119. Regnier P, Resplandy L, Najjar RG, Ciais P. 2022.. The land-to-ocean loops of the global carbon cycle. . Nature 603::40110. https://doi.org/10.1038/s41586-021-04339-9
    [Crossref] [Google Scholar]
  120. Renforth P. 2019.. The negative emission potential of alkaline materials. . Nat. Commun. 10::1401. https://doi.org/10.1038/s41467-019-09475-5
    [Crossref] [Google Scholar]
  121. Renforth P, Henderson G. 2017.. Assessing ocean alkalinity for carbon sequestration. . Rev. Geophys. 55::63674. https://doi.org/10.1002/2016RG000533
    [Crossref] [Google Scholar]
  122. Resplandy L, Hogikyan A, Bange HW, Bianchi D, Weber T, et al. 2024.. A synthesis of global coastal ocean greenhouse gas fluxes. . Glob. Biogeochem. Cycles 38::e2023GB007803. https://doi.org/10.1029/2023GB007803
    [Crossref] [Google Scholar]
  123. Rimstidt JD, Brantley SL, Olsen AA. 2012.. Systematic review of forsterite dissolution rate data. . Geochim. Cosmochim. Acta 99::15978. https://doi.org/10.1016/j.gca.2012.09.019
    [Crossref] [Google Scholar]
  124. Ross F, Tarbuck P, Macreadie PI. 2022.. Seaweed afforestation at large-scales exclusively for carbon sequestration: critical assessment of risks, viability and the state of knowledge. . Front. Mar. Sci. 9::1015612. https://doi.org/10.3389/fmars.2022.1015612
    [Crossref] [Google Scholar]
  125. Schindler Murray L, Milligan B, Ashford OS, Bonotto E, Cifuentes-Jara M, et al. 2023.. The Blue Carbon Handbook: blue carbon as a nature-based solution for climate action and sustainable development. Rep., High Level Panel Sustain. Ocean Econ., London:. https://oceanpanel.org/publication/blue-carbon
    [Google Scholar]
  126. Schmitz OJ, Wilmers CC, Leroux SJ, Doughty CE, Atwood TB, et al. 2018.. Animals and the zoogeochemistry of the carbon cycle. . Science 362::eaar3213. https://doi.org/10.1126/science.aar3213
    [Crossref] [Google Scholar]
  127. Schuiling RD, Krijgsman P. 2006.. Enhanced weathering: an effective and cheap tool to sequester CO2. . Clim. Change 74::34954. https://doi.org/10.1007/s10584-005-3485-y
    [Crossref] [Google Scholar]
  128. Schulz KG, Bach LT, Dickson AG. 2023.. Seawater carbonate chemistry considerations for ocean alkalinity enhancement research: theory, measurements, and calculations. . In Guide to Best Practices in Ocean Alkalinity Enhancement Research, ed. A Oschlies, A Stevenson, LT Bach, K Fennel, REM Rickaby , et al., chap. 2 . Göttingen, Ger:.: Copernicus. https://doi.org/10.5194/sp-2-oae2023-2-2023
    [Google Scholar]
  129. Service RF. 2024.. Startups aim to curb climate change by pulling carbon dioxide from the ocean—not the air. . Science 383::14001. https://doi.org/10.1126/science.ziiddcx
    [Crossref] [Google Scholar]
  130. Sharma R, Swearer SE, Morris RL, Strain EMA. 2021.. Testing the efficacy of sea urchin exclusion methods for restoring kelp. . Mar. Environ. Res. 170::105439. https://doi.org/10.1016/j.marenvres.2021.105439
    [Crossref] [Google Scholar]
  131. Sharmila GV, Kumar DM, Pugazhendi A, Bajhaiya AK, Gugulothu P, Banu JR. 2021.. Biofuel production from macroalgae: present scenario and future scope. . Bioengineered 12::921638. https://doi.org/10.1080/21655979.2021.1996019
    [Crossref] [Google Scholar]
  132. Siegel DA, DeVries T, Doney SC, Bell T. 2021.. Assessing the sequestration time scales of some ocean-based carbon dioxide reduction strategies. . Environ. Res. Lett. 16::104003. https://doi.org/10.1088/1748-9326/ac0be0
    [Crossref] [Google Scholar]
  133. Sloyan BM, Wanninkhof R, Kramp M, Johnson GC, Talley LD, et al. 2019.. The Global Ocean Ship-Based Hydrographic Investigations Program (GO-SHIP): a platform for integrated multidisciplinary ocean science. . Front. Mar. Sci. 6::445. https://doi.org/10.3389/fmars.2019.00445
    [Crossref] [Google Scholar]
  134. Strefler J, Amann T, Bauer N, Kriegler E, Hartmann J. 2018.. Potential and costs of carbon dioxide removal by enhanced weathering of rocks. . Environ. Res. Lett. 13::034010. https://doi.org/10.1088/1748-9326/AAA9C4
    [Crossref] [Google Scholar]
  135. Strefler J, Bauer N, Humpenöder F, Klein D, Popp A, Kriegler E. 2021.. Carbon dioxide removal technologies are not born equal. . Environ. Res. Lett. 16::074021. https://doi.org/10.1088/1748-9326/ac0a11
    [Crossref] [Google Scholar]
  136. Strong AL, Cullen JJ, Chisholm SW. 2009.. Ocean fertilization: science, policy, and commerce. . Oceanography 22:(3):23661. https://doi.org/10.5670/oceanog.2009.83
    [Crossref] [Google Scholar]
  137. Taylor LL, Quirk J, Thorley RMS, Kharecha PA, Hansen J, et al. 2016.. Enhanced weathering strategies for stabilizing climate and averting ocean acidification. . Nat. Clim. Change 6::4026. https://doi.org/10.1038/nclimate2882
    [Crossref] [Google Scholar]
  138. Tilbrook B, Jewett EB, DeGrandpre MD, Hernandez-Ayon JM, Feely RA, et al. 2019.. An enhanced ocean acidification observing network: from people to technology to data synthesis and information exchange. . Front. Mar. Sci. 6::337. https://doi.org/10.3389/fmars.2019.00337
    [Crossref] [Google Scholar]
  139. Torres O, Kwiatkowski L, Sutton AJ, Dorey N, Orr JC. 2021.. Characterizing mean and extreme diurnal variability of ocean CO2 system variables across marine environments. . Geophys. Res. Lett. 48::e2020GL090228. https://doi.org/10.1029/2020GL090228
    [Crossref] [Google Scholar]
  140. USGS (US Geol. Surv.). 2021.. Mineral commodity summaries 2021. Rep. , USGS, Reston, VA:. https://doi.org/10.3133/mcs2021
    [Google Scholar]
  141. van der Heijden LH, Kamenos NA. 2015.. Reviews and syntheses: calculating the global contribution of coralline algae to total carbon burial. . Biogeosciences 12::642941. https://doi.org/10.5194/bg-12-6429-2015
    [Crossref] [Google Scholar]
  142. Wanninkhof R, Pickers PA, Omar AM, Sutton A, Murata A, et al. 2019.. A surface ocean CO2 reference network, SOCONET and associated marine boundary layer CO2 measurements. . Front. Mar. Sci. 6::400. https://doi.org/10.3389/fmars.2019.00400
    [Crossref] [Google Scholar]
  143. Webb R. 2021.. The law of enhanced weathering for carbon dioxide removal: volume 2—legal issues associated with materials sourcing. Pap., Sabin Cent. Clim. Change Law, Columbia Law Sch., New York:. https://scholarship.law.columbia.edu/sabin_climate_change/40
    [Google Scholar]
  144. White A, Björkman K, Grabowski E, Letelier R, Poulos S, et al. 2010.. An open ocean trial of controlled upwelling using wave pump technology. . J. Atmos. Ocean. Technol. 27::38596. https://doi.org/10.1175/2009JTECHO679.1
    [Crossref] [Google Scholar]
  145. Willauer HD, DiMascio F, Hardy DR, Lewis MK, Williams FW. 2011.. Development of an electrochemical acidification cell for the recovery of CO2 and H2 from seawater. . Ind. Eng. Chem. Res. 50::987682. https://doi.org/10.1021/ie2008136
    [Crossref] [Google Scholar]
  146. Williamson P, Gattuso J. 2022.. Carbon removal using coastal blue carbon ecosystems is uncertain and unreliable, with questionable climatic cost-effectiveness. . Front. Clim. 4::853666. https://doi.org/10.3389/fclim.2022.853666
    [Crossref] [Google Scholar]
  147. Wolf-Gladrow DA, Zeebe RE, Klaas C, Körtzinger A, Dickson AG. 2007.. Total alkalinity: the explicit conservative expression and its application to biogeochemical processes. . Mar. Chem. 106::287300. https://doi.org/10.1016/j.marchem.2007.01.006
    [Crossref] [Google Scholar]
  148. Wolske KS, Raimi KT, Campbell-Arvai V, Hart PS. 2019.. Public support for carbon dioxide removal strategies: the role of tampering with nature perceptions. . Clim. Change 152::34561. https://doi.org/10.1007/s10584-019-02375-z
    [Crossref] [Google Scholar]
  149. Xi F, Davis SJ, Ciais P, Crawford-Brown D, Guan D, et al. 2016.. Substantial global carbon uptake by cement carbonation. . Nat. Geosci. 9::88083. https://doi.org/10.1038/ngeo2840
    [Crossref] [Google Scholar]
  150. Yoon JE, Yoo KC, Macdonald AM, Yoon HI, Park KT, et al. 2018.. Reviews and syntheses: ocean iron fertilization experiments—past, present, and future looking to a future Korean Iron Fertilization Experiment in the Southern Ocean (KIFES) project. . Biogeosciences 15::584789. https://doi.org/10.5194/bg-15-5847-2018
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-marine-040523-014702
Loading
/content/journals/10.1146/annurev-marine-040523-014702
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Morty Proxy This is a proxified and sanitized view of the page, visit original site.