Skip to main content

Advertisement

Log in

Insights from the COVID-19 Pandemic: A Survey of Data Mining and Beyond

  • Published:
Applied Spatial Analysis and Policy Aims and scope Submit manuscript

Abstract

The global health crisis of COVID-19 has ushered in an era of unprecedented data generation, encompassing the virus’s transmission patterns, societal consequences, and governmental responses. Data mining has emerged as a pivotal tool for extracting invaluable insights from this voluminous dataset, offering critical support for informed decision-making. While existing surveys primarily explore methodologies for detecting COVID-19 in medical imagery and official sources, this article comprehensively examines the pandemic through big data mining. We emphasize the significance of social network analysis, shedding light on the pandemic’s profound influence on community socio-economic behavior. Additionally, we illuminate advancements in diverse domains, encompassing behavioral impact analysis on social media, contact tracing implications, early disease screening through medical imaging, and insights derived from health-related time-series data analytics. Our study further organizes the literature by categorizing it based on data sources, dataset types, analytical approaches, techniques, and application scenarios. Finally, we delineate prevailing challenges and forthcoming research prospects, charting the course for future investigations.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Data Availibility Statement

Data is available from the authors upon reasonable request.

Notes

  1. https://www.who.int/health-topics/infodemic

References

  • Abdalla, W., Renukappa, S., & Suresh, S. (2023). Managing covid-19-related knowledge: A smart cities perspective. Knowledge and Process Management, 30(1), 87–109.

    Google Scholar 

  • Abd-Alrazaq, A., Alhuwail, D., Househ, M., Hamdi, M., & Shah, Z. (2020). Top concerns of tweeters during the covid-19 pandemic: Infoveillance study. Journal of Medical Internet Research, 22(4), e19016.

    Google Scholar 

  • Abd-Alrazaq, A., Alhuwail, D., Househ, M., Hamdi, M., & Shah, Z. (2020). Top concerns of tweeters during the covid-19 pandemic: Infoveillance study. Journal of Medical Internet Research, 22(4), e19016.

    Google Scholar 

  • Abdul-Mageed, M., & Diab, M. T. (2011). Subjectivity and sentiment annotation of modern standard arabic newswire. In: Proceedings of the 5th linguistic annotation workshop, pp. 110–118.

  • Abdul-Mageed, M., & Diab, M., (2014) SANA: A large scale multi-genre, multi-dialect lexicon for Arabic subjectivity and sentiment analysis. In: Proceedings of the ninth international conference on Language Resources and Evaluation (LREC’14), European Language Resources Association (ELRA), Reykjavik, Iceland, pp. 1162–1169.

  • Abuhammad, S., Khabour, O. F., & Alzoubi, K. H. (2020). Covid-19 contact-tracing technology: Acceptability and ethical issues of use. Patient Preference and Adherence, 14, 1639.

    Google Scholar 

  • Adly, A. S., Adly, A. S., & Adly, M. S. (2020). Approaches based on artificial intelligence and the internet of intelligent things to prevent the spread of covid-19: Scoping review. Journal of Medical Internet Research, 22(8), e19104.

    Google Scholar 

  • Agarwal, A., Salehundam, P., Padhee, S., Romine, W. L., & Banerjee, T. (2020). Leveraging natural language processing to mine issues on twitter during the covid-19 pandemic. arXiv:2011.00377

  • Ahmed, N., Michelin, R. A., Xue, W., Ruj, S., Malaney, R., Kanhere, S. S., Seneviratne, A., Hu, W., Janicke, H., & Jha, S. K. (2020). A survey of covid-19 contact tracing apps. IEEE Access, 8, 134577–134601.

    Google Scholar 

  • Ahmed, N., Michelin, R. A., Xue, W., Ruj, S., Malaney, R., Kanhere, S. S., Seneviratne, A., Hu, W., Janicke, H., & Jha, S. K. (2020). A survey of covid-19 contact tracing apps. IEEE Access, 8, 134577–134601.

    Google Scholar 

  • Ajaz, F., Naseem, M., Sharma, S., Shabaz, M., & Dhiman, G. (2022). Covid-19: Challenges and its technological solutions using iot. Current Medical Imaging, 18(2), 113–123.

    Google Scholar 

  • Alamoodi, A., Zaidan, B., Zaidan, A., Albahri, O., Mohammed, K., Malik, R., Almahdi, E., Chyad, M., Tareq, Z., Albahri, A., et al. (2020). Sentiment analysis and its applications in fighting covid-19 and infectious diseases: A systematic review. Expert Systems with Applications, 114155.

  • Alanazi, E., Alashaikh, A., Alqurashi, S., & Alanazi, A. (2020). Identifying and ranking common covid-19 symptoms from tweets in Arabic: Content analysis. Journal of Medical Internet Research, 22(11), e21329.

    Google Scholar 

  • Alarabi, L., Basalamah, S., Hendawi, A., Abdalla, M. (2021). Traceall: A real-time processing for contact tracing using indoor trajectories. Information, 12(5). https://doi.org/10.3390/info12050202, https://www.mdpi.com/2078-2489/12/5/202

  • Alelyani, M., Alghamdi, A., Shubayr, N., Alashban, Y., Almater, H., Alamri, S., & Alghamdi, A. J. (2021). The impact of the covid-19 pandemic on medical imaging case volumes in aseer region: A retrospective study. Medicines, 8(11), 70.

    Google Scholar 

  • Alqurashi, S., Alhindi, A., & Alanazi, E. (2020). Large arabic twitter dataset on covid-19, arXiv:2004.04315

  • Alqurashi, S., Alhindi, A., & Alanazi, E. (2020). Large arabic twitter dataset on covid-19. arXiv:2004.04315

  • Al-Rawi, A., & Shukla, V. (2020). Bots as active news promoters: A digital analysis of covid-19 tweets. Information, 11(10), 461.

    Google Scholar 

  • Al-Rawi, A., & Shukla, V. (2020). Bots as active news promoters: A digital analysis of covid-19 tweets. Information, 11(10), 461.

    Google Scholar 

  • Alsudias, L., & Rayson, P. (2020). Covid-19 and arabic twitter: How can arab world governments and public health organizations learn from social media?. In: Proceedings of the 1st workshop on NLP for COVID-19 at ACL 2020.

  • Alsudias, L., & Rayson, P. (2020). COVID-19 and Arabic Twitter: How can Arab world governments and public health organizations learn from social media? In: Proceedings of the 1st workshop on NLP for COVID-19 at ACL 2020, Association for Computational Linguistics, Online. https://www.aclweb.org/anthology/2020.nlpcovid19-acl.16

  • Alzahrani, S. I., Aljamaan, I. A., & Al-Fakih, E. A. (2020) Forecasting the spread of them covid-19 pandemic in Saudi Arabia using arima prediction model under current public health interventions. Journal of Infection and Public Health, 13(7) 914–919.

  • Alzahrani, S. I., Aljamaan, I. A., & Al-Fakih, E. A. (2020). Forecasting the spread of the covid-19 pandemic in Saudi Arabia using arima prediction model under current public health interventions. Journal of Infection and Public Health, 13(7), 914–919.

    Google Scholar 

  • Amram, O., Amiri, S., Lutz, R. B., Rajan, B., & Monsivais, P. (2020). Development of a vulnerability index for diagnosis with the novel coronavirus, covid-19, in Washington State, USA. Health & Place.

  • Anastassopoulou, C., Russo, L., Tsakris, A., & Siettos, C. (2020). Data-based analysis, modelling and forecasting of the covid-19 outbreak. PloS one, 15(3), e0230405.

    Google Scholar 

  • Annas, S., Pratama, M. I., Rifandi, M., Sanusi, W., & Side, S. (2020). Stability analysis and numerical simulation of seir model for pandemic covid-19 spread in Indonesia. Chaos, Solitons & Fractals, 139, 110072.

    Google Scholar 

  • Anshari, M., Hamdan, M., Ahmad, N., Ali, E., & Haidi, H. (2023). Covid-19, artificial intelligence, ethical challenges and policy implications. Ai & Society, 38(2), 707–720.

    Google Scholar 

  • Apuke, O. D., & Omar, B.(2021). Fake news and covid-19: Modelling the predictors of fake news sharing among social media users. Telematics and Informatics, 56, 101475.

  • Arunmozhi, M., Persis, J., Sreedharan, V. R., Chakraborty, A., Zouadi, T., & Khamlichi, H. (2022). Managing the resource allocation for the covid-19 pandemic in healthcare institutions: A pluralistic perspective. International Journal of Quality & Reliability Management, 39(9), 2184–2204.

    Google Scholar 

  • Ayoub, J., Yang, X. J., & Zhou, F. (2021). Combat covid-19 infodemic using explainable natural language processing models. Information Processing & Management, 58(4), 102569. https://doi.org/10.1016/j.ipm.2021.102569, https://www.sciencedirect.com/science/article/pii/S0306457321000704

  • Aytaç, U. C., Güneş, A., & Ajlouni, N. (2022). A novel adaptive momentum method for medical image classification using convolutional neural network. BMC Medical Imaging, 22(1), 1–12.

    Google Scholar 

  • Bahja, M., Hammad, R., Kuhail, M. A. (2020). Capturing public concerns about coronavirus using arabic tweets: An nlp-driven approach. In: 2020 IEEE/ACM 13th International Conference on Utility and Cloud Computing (UCC), IEEE, pp. 310–315.

  • Bayham, J., & Fenichel, E. P. (2020). The impact of school closure for covid-19 on the us healthcare workforce and the net mortality effects. Available at SSRN 3555259.

  • Beare, B. K., & Toda, A. A. (2020). On the emergence of a power law in the distribution of covid-19 cases. Physica D: Nonlinear Phenomena, 412, 132649.

    Google Scholar 

  • Bentotahewa, V., Hewage, C., & Williams, J. (2021). Solutions to big data privacy and security challenges associated with covid-19 surveillance systems. Frontiers in Big Data, 4, 645204.

    Google Scholar 

  • Bhattacharjee, S. (2020). Statistical investigation of relationship between spread of coronavirus disease (covid-19) and environmental factors based on study of four mostly affected places of China and five mostly affected places of Italy. arXiv:2003.11277

  • Bhattacharya, S., Maddikunta, P. K. R., Pham, Q.-V., Gadekallu, T. R., Chowdhary, C. L., Alazab, M., Piran, M. J., et al. (2021). Deep learning and medical image processing for coronavirus (covid-19) pandemic: A survey. Sustainable Cities and Society, 65, 102589.

    Google Scholar 

  • Born, J., Beymer, D., Rajan, D., Coy, A., Mukherjee, V. V., Manica, M., Prasanna, P., Ballah, D., Guindy, M., Shaham, D. et al. (2021). On the role of artificial intelligence in medical imaging of covid-19. Patterns, 2(6).

  • Boyle, F., & Sherman, D. (2006). Scopus ™: The product and its development. The Serials Librarian, 49(3), 147–153.

    Google Scholar 

  • Bradshaw, W. J., Alley, E. C., Huggins, J. H., Lloyd, A. L., & Esvelt, K. M. (2021). Bidirectional contact tracing could dramatically improve covid-19 control. Nature Communications, 12(1), 1–9.

    Google Scholar 

  • Braithwaite, I., Callender, T., Bullock, M., & Aldridge, R. W. (2020). Automated and partly automated contact tracing: A systematic review to inform the control of covid-19. The Lancet Digital Health, 2(11).

  • Capasso, A., Kim, S., Ali, S. H., Jones, A. M., DiClemente, R. J., & Tozan, Y. (2022). Employment conditions as barriers to the adoption of covid-19 mitigation measures: How the covid-19 pandemic may be deepening health disparities among low-income earners and essential workers in the united states. BMC Public Health, 22(1), 1–13.

    Google Scholar 

  • Castex, G., Dechter, E., & Lorca, M. (2020). Covid-19: The impact of social distancing policies, cross-country analysis. Economics of Disasters and Climate Change, 1–25.

  • Castro, M. C., de Carvalho, L. R., Chin, T., Kahn, R., Franca, G. V., Macario, E. M., & de Oliveira, W. K. (2020). Demand for hospitalization services for covid-19 patients in Brazil. MedRxiv.

  • Chakraborty, K., Bhatia, S., Bhattacharyya, S., Platos, J., Bag, R., & Hassanien, A. E. (2020). Sentiment analysis of covid-19 tweets by deep learning classifiers-a study to show how popularity is affecting accuracy in social media. Applied Soft Computing, 97, 106754.

    Google Scholar 

  • Chakraborty, K., Bhatia, S., Bhattacharyya, S., Platos, J., Bag, R., & Hassanien, A. E. (2020). Sentiment analysis of covid-19 tweets by deep learning classifiers-a study to show how popularity is affecting accuracy in social media. Applied Soft Computing, 97, 106754.

    Google Scholar 

  • Chan, E. Y., & Saqib, N. U. (2021). Privacy concerns can explain unwillingness to download and use contact tracing apps when covid-19 concerns are high. Computers in Human Behavior, 119, 106718.

    Google Scholar 

  • Chao, H., Fang, X., Zhang, J., Homayounieh, F., Arru, C. D., Digumarthy, S. R., Babaei, R., Mobin, H. K., Mohseni, I., Saba, L., et al. (2021). Integrative analysis for covid-19 patient outcome prediction. Medical Image Analysis, 67, 101844.

    Google Scholar 

  • Chen, T., Rong, J., Peng, L., Yang, J., Cong, G., Fang, J. (2021). Analysis of social effects on employment promotion policies for college graduates based on data mining for online use review in china during the covid-19 pandemic. In: Healthcare, Multidisciplinary Digital Publishing Institute, 9, p. 846.

  • Chen, E., Lerman, K., & Ferrara, E. (2020). Tracking social media discourse about the covid-19 pandemic: Development of a public coronavirus twitter data set. JMIR Public Health and Surveillance, 6(2), e19273.

    Google Scholar 

  • Chernozhukov, V., Kasahara, H., & Schrimpf, P. (2021). Causal impact of masks, policies, behavior on early covid-19 pandemic in the US. Journal of Econometrics, 220(1), 23–62.

    Google Scholar 

  • Chieregato, M., Frangiamore, F., Morassi, M., Baresi, C., Nici, S., Bassetti, C., Bnà, C., & Galelli, M. (2022). A hybrid machine learning/deep learning covid-19 severity predictive model from ct images and clinical data. Scientific Reports, 12(1), 1–15.

    Google Scholar 

  • Chiroma, H., Ezugwu, A. E., Jauro, F., Al-Garadi, M. A., Abdullahi, I. N., & Shuib, L. (2020). Early survey with bibliometric analysis on machine learning approaches in controlling covid-19 outbreaks. PeerJ Computer Science, 6, e313.

    Google Scholar 

  • Cho, H., Ippolito, D., & Yu, Y. W. (2020). Contact tracing mobile apps for covid-19: Privacy considerations and related trade-offs. arXiv:2003.11511

  • Chowdhury, N. K., Rahman, M. M., & Kabir, M. A. (2020). Pdcovidnet: A parallel-dilated convolutional neural network architecture for detecting covid-19 from chest x-ray images. Health Information Science and Systems, 8(1), 1–14.

    Google Scholar 

  • Cinelli, M., Quattrociocchi, W., Galeazzi, A., Valensise, C. M., Brugnoli, E., Schmidt, A. L., Zola, P., Zollo, F., & Scala, A. (2020). The covid-19 social media infodemic. Scientific Reports, 10(1), 1–10.

    Google Scholar 

  • Colizza, V., Grill, E., Mikolajczyk, R., Cattuto, C., Kucharski, A., Riley, S., Kendall, M., Lythgoe, K., Bonsall, D., Wymant, C., et al. (2021). Time to evaluate covid-19 contact-tracing apps. Nature Medicine, 27(3), 361–362.

    Google Scholar 

  • Connor, C., De Valliere, N., Warwick, J., Stewart-Brown, S., & Thompson, A. (2022). The cov-ed survey: Exploring the impact of learning and teaching from home on parent/carers’ and teachers’ mental health and wellbeing during covid-19 lockdown. BMC Public Health, 22(1), 1–15.

    Google Scholar 

  • Cortés-Martínez, K. V., Estrada-Esquivel, H., Martínez-Rebollar, A., Hernández-Pérez, Y., & Ortiz-Hernández, J. (2022). The state of the art of data mining algorithms for predicting the covid-19 pandemic. Axioms, 11(5), 242.

    Google Scholar 

  • COVID, T. I., Reiner, R., Barber, R., & Collins, J. (2020). Modeling covid-19 scenarios for the United States. Nature medicine.

  • Cuan-Baltazar, J. Y., Muñoz-Perez, M. J., Robledo-Vega, C., Pérez-Zepeda, M. F., & Soto-Vega, E. (2020). Misinformation of covid-19 on the internet: Infodemiology study. JMIR Public Health and Surveillance, 6(2), e18444.

    Google Scholar 

  • Cuello-Garcia, C., Pérez-Gaxiola, G., & van Amelsvoort, L. (2020). Social media can have an impact on how we manage and investigate the covid-19 pandemic. Journal of Clinical Epidemiology,127, 198–201.

  • Dar, A. B., Lone, A. H., Zahoor, S., Khan, A. A., & Naaz, R. (2020). Applicability of mobile contact tracing in fighting pandemic (covid-19): Issues, challenges and solutions. Computer Science Review,38, 100307. https://doi.org/10.1016/j.cosrev.2020.100307, www.sciencedirect.com/science/article/pii/S157401372030407X

  • Dash, S., Chakraborty, C., Giri, S. K., & Pani, S. K. (2021). Intelligent computing on time-series data analysis and prediction of covid-19 pandemics. Pattern Recognition Letters, 151, 69–75.

    Google Scholar 

  • de Figueiredo, C. S., Sandre, P. C., Portugal, L. C. L., Mázala-de Oliveira, T., da Silva Chagas, L., Raony, Í., Ferreira, E. S., Giestal-de Araujo, E., Dos Santos, A. A., & Bomfim, P.O.-S. (2021). Covid-19 pandemic impact on children and adolescents’ mental health: Biological, environmental, and social factors. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 106, 110171.

    Google Scholar 

  • De Santis, E., Martino, A., & Rizzi, A. (2020). An infoveillance system for detecting and tracking relevant topics from Italian tweets during the covid-19 event. IEEE Access, 8, 132527–132538.

    Google Scholar 

  • Desai, P. S. (2021). News sentiment informed time-series analyzing ai (sitala) to curb the spread of covid-19 in Houston. Expert Systems with Applications,180, 115104. https://doi.org/10.1016/j.eswa.2021.115104, www.sciencedirect.com/science/article/pii/S0957417421005455

  • Devi, V. A., & Nayyar, A. (2021). Evaluation of geotagging twitter data using sentiment analysis during covid-19. In: Proceedings of the second international conference on information management and machine intelligence, Springer, pp. 601–608.

  • Devi, V. A., & Nayyar, A. (2021). Evaluation of geotagging twitter data using sentiment analysis during covid-19. In: Proceedings of the second international conference on information management and machine intelligence, Springer, pp. 601–608.

  • Dimitrov, D., Baran, E., Fafalios, P., Yu, R., Zhu, X., Zloch, M., & Dietze, S. (2020). Tweetscov19-a knowledge base of semantically annotated tweets about the covid-19 pandemic. In: Proceedings of the 29th ACM international conference on information & knowledge management, pp. 2991–2998.

  • Dimitrov, D., Baran, E., Fafalios, P., Yu, R., Zhu, X., Zloch, M., & Dietze, S. (2020). Tweetscov19-a knowledge base of semantically annotated tweets about the covid-19 pandemic. In: Proceedings of the 29th ACM international conference on information & knowledge management, pp. 2991–2998.

  • Durowaye, T. D., Rice, A. R., Konkle, A., & Phillips, K. P. (2022). Public health perinatal promotion during covid-19 pandemic: A social media analysis. BMC Public Health, 22(1), 1–12.

    Google Scholar 

  • Elnagar, A., Al-Debsi, R., & Einea, O. (2020). Arabic text classification using deep learning models. Information Processing & Management, 57(1), 102121.

    Google Scholar 

  • Elsheikh, A. H., Saba, A. I., Abd Elaziz, M., Lu, S., Shanmugan, S., Muthuramalingam, T., Kumar, R., Mosleh, A. O., Essa, F., & Shehabeldeen, T. A. (2021). Deep learning-based forecasting model for covid-19 outbreak in Saudi Arabia. Process Safety and Environmental Protection, 149, 223–233.

    Google Scholar 

  • Ferguson, N. M. Laydon, D., Nedjati-Gilani, G., Imai, N., Ainslie, K., Baguelin, M., Bhatia, S., Boonyasiri, A., Cucunubá, Z., Cuomo-Dannenburg, G., et al. (2020). Impact of non-pharmaceutical interventions (npis) to reduce covid-19 mortality and healthcare demand. imperial college covid-19 response team. Imperial College COVID-19 Response Team, 20.

  • Gao, J., Zheng, P., Jia, Y., Chen, H., Mao, Y., Chen, S., Wang, Y., Fu, H., & Dai, J. (2020). Mental health problems and social media exposure during covid-19 outbreak. Plos one, 15(4), e0231924.

    Google Scholar 

  • Gencoglu, O. (2020). Large-scale, language-agnostic discourse classification of tweets during covid-19. Machine Learning and Knowledge Extraction, 2(4), 603–616.

    Google Scholar 

  • Gencoglu, O. (2020). Large-scale, language-agnostic discourse classification of tweets during covid-19. Machine Learning and Knowledge Extraction, 2(4), 603–616.

    Google Scholar 

  • Ghosh, S., & Das, L. C. (2022). Using data mining techniques for covid-19: A systematic. Science and Technology, 8(2), 36–42.

    Google Scholar 

  • Giordano, G., Blanchini, F., Bruno, R., Colaneri, P., Di Filippo, A., Di Matteo, A., Colaneri, M. (2020). Modelling the covid-19 epidemic and implementation of population-wide interventions in Italy. Nature Medicine26(6), 855–860.

  • Gozes, O., Frid-Adar, M., Greenspan, H., Browning, P. D., Zhang, H., Ji, W., Bernheim, A., & Siegel, E. (2020). Rapid ai development cycle for the coronavirus (covid-19) pandemic: Initial results for automated detection & patient monitoring using deep learning ct image analysis. arXiv:2003.05037

  • Grasselli, G., Pesenti, A., & Cecconi, M. (2020). Critical care utilization for the covid-19 outbreak in Lombardy, Italy: early experience and forecast during an emergency response. Jama, 323(16), 1545–1546.

    Google Scholar 

  • Guntuku, S. C., Sherman, G., Stokes, D. C., Agarwal, A. K., Seltzer, E., Merchant, R. M., & Ungar, L. H. (2020). Tracking mental health and symptom mentions on twitter during covid-19. Journal of General Internal Medicine, 35(9), 2798–2800.

    Google Scholar 

  • Gupta, R., Ibraheim, M. K., & Doan, H. Q. (2020). Teledermatology in the wake of covid-19: Advantages and challenges to continued care in a time of disarray. Journal of the American Academy of Dermatology, 83(1), 168–169.

    Google Scholar 

  • Hamzah, F. B., Lau, C., Nazri, H., Ligot, D., Lee, G., Tan, C., Shaib, M., Zaidon, U., Abdullah, A., Chung, M., et al. (2020). Coronatracker: Worldwide covid-19 outbreak data analysis and prediction. Bull World Health Organ, 1(32).

  • Haouari, F., Hasanain, M., Suwaileh, R., & Elsayed, T. (2021). ArCOV-19: The first Arabic COVID-19 Twitter dataset with propagation networks. In: Proceedings of the sixth arabic natural language processing workshop, association for computational linguistics, pp. 82–91.

  • Heikal, M., Torki, M., & El-Makky, N. (2018). Sentiment analysis of arabic tweets using deep learning. Procedia Computer Science, 142, 114–122.

    Google Scholar 

  • Hernandez-Matamoros, A., Fujita, H., Hayashi, T., & Perez-Meana, H. (2020). Forecasting of covid19 per regions using arima models and polynomial functions. Applied Soft Computing, 96, 106610–106610.

    Google Scholar 

  • Ho, K. K., Chiu, D. K., & Sayama, K. C. (2023). When privacy, distrust, and misinformation cause worry about using covid-19 contact-tracing apps. IEEE Internet Computing, 01, 1–7.

    Google Scholar 

  • Hossain, M., Junus, A., Zhu, X., Jia, P., Wen, T. -H., Pfeiffer, D., & Yuan, H. -Y. (2020). The effects of border control and quarantine measures on global spread of covid-19, Alvin and Zhu, Xiaolin and Jia, Pengfei and Wen, Tzai-Hung and Pfeiffer, Dirk and Yuan, Hsiang-Yu. The Effects of Border Control and Quarantine Measures on Global Spread of COVID-19 (3/6/2020).

  • Hou, K., Hou, T., & Cai, L. (2021). Public attention about covid-19 on social media: An investigation based on data mining and text analysis. Personality and Individual Differences, 175, 110701.

    Google Scholar 

  • Hussain, A., & Sheikh, A. (2021). Opportunities for artificial intelligence–enabled social media analysis of public attitudes toward covid-19 vaccines. NEJM Catalyst Innovations in Care Delivery, 2(1).

  • Ibrahim, H. S., Abdou, S. M., & Gheith, M. (2015). Sentiment analysis for modern standard arabic and colloquial. arXiv:1505

  • Ilyas, M., Rehman, H., & Naït-Ali, A. (2020). Detection of covid-19 from chest x-ray images using artificial intelligence: An early review. arXiv:2004.05436

  • Iwendi, C., Mohan, S., Ibeke, E., Ahmadian, A., Ciano, T., et al. (2022). Covid-19 fake news sentiment analysis. Computers and Electrical Engineering, 101, 107967.

    Google Scholar 

  • Jain, R., Gupta, M., Taneja, S., & Hemanth, D. J. (2020). Deep learning based detection and analysis of covid-19 on chest x-ray images. Applied Intelligence, 1–11.

  • Jamieson, J., Yamashita, N., Epstein, D. A., & Chen, Y. (2021). Deciding if and how to use a covid-19 contact tracing app: Influences of social factors on individual use in Japan. Proceedings of the ACM on Human-Computer Interaction, 5(CSCW2), 1–30.

    Google Scholar 

  • Janarthanan, S., Rajendran, M., Biju, T. S., Ravi, N., Sundaramoorthy, K., & Nandan Mohanty, S. (2021). Artificial intelligence (ai) combined with medical imaging enables rapid diagnosis for covid-19. In: Applications of artificial intelligence in COVID-19, Springer, pp. 55–72.

  • Kabir, M. Y., & Madria, S. (2021). Emocov: Machine learning for emotion detection, analysis and visualization using covid-19 tweets. Online Social Networks and Media,23, 100135. https://doi.org/10.1016/j.osnem.2021.100135, https://www.sciencedirect.com/science/article/pii/S2468696421000197

  • Kang, E., Lee, S. Y., Jung, H., Kim, M. S., Cho, B., & Kim, Y. S. (2020). Operating protocols of a community treatment center for isolation of patients with coronavirus disease, South Korea. Emerging Infectious Diseases, 26(10), 2329.

    Google Scholar 

  • Katris, C. (2021). A time series-based statistical approach for outbreak spread forecasting: Application of covid-19 in Greece. Expert Systems with Applications, 166, 114077.

    Google Scholar 

  • Kiamari, M., Ramachandran, G., Nguyen, Q., Pereira, E., Holm, J., & Krishnamachari, B. (2020). Covid-19 risk estimation using a time-varying sir-model In: Proceedings of the 1st ACM SIGSPATIAL international workshop on modeling and understanding the spread of COVID-19, pp. 36–42.

  • Kim, K.-M., & Rhee, H.-S. (2022). Influential factors for covid-19 related distancing in daily life: A distinct focus on ego-gram. BMC Public Health, 22(1), 1–13.

    Google Scholar 

  • Koh, J. X., & Liew, T. M. (2020). How loneliness is talked about in social media during covid-19 pandemic: Text mining of 4,492 twitter feeds. Journal of Psychiatric Research. https://doi.org/10.1016/j.jpsychires.2020.11.015, www.sciencedirect.com/science/article/pii/S0022395620310748

  • Koh, J. X., & Liew, T. M. (2020). How loneliness is talked about in social media during covid-19 pandemic: Text mining of 4,492 twitter feeds. Journal of Psychiatric Research.

  • Kucharski, A. J., Russell, T. W., Diamond, C., Liu, Y., Edmunds, J., Funk, S., Eggo, R. M., Sun, F., Jit, M., Munday, J. D., et al. (2020). Early dynamics of transmission and control of covid-19: A mathematical modelling study. The Lancet Infectious Diseases, 20(5), 553–558.

    Google Scholar 

  • Kuo, C.-P., & Fu, J. S. (2021). Evaluating the impact of mobility on covid-19 pandemic with machine learning hybrid predictions. Science of The Total Environment, 758, 144151.

    Google Scholar 

  • Lai, S., Bogoch, I. I., Ruktanonchai, N. W., Watts, A., Lu, X., Yang, W., Yu, H., Khan, K., & Tatem, A. J. (2020). Assessing spread risk of wuhan novel coronavirus within and beyond China, January-April : A travel network-based modelling study, MedRxiv.

  • Lamsal, R. (2020). Coronavirus (covid-19) geo-tagged tweets dataset. https://doi.org/10.21227/fpsb-jz61

  • Lamsal, R. (2020). Coronavirus (covid-19) tweets dataset. https://doi.org/10.21227/781w-ef42

  • Lamsal, R. (2020). Design and analysis of a large-scale covid-19 tweets dataset. Applied Intelligence, 1–15.

  • Lazarus, J. V., Ratzan, S. C., Palayew, A., Gostin, L. O., Larson, H. J., Rabin, K., Kimball, S., & El-Mohandes, A. (2021). A global survey of potential acceptance of a covid-19 vaccine. Nature Medicine, 27(2), 225–228.

    Google Scholar 

  • Lee, H. S. (2020). Exploring the initial impact of covid-19 sentiment on us stock market using big data. Sustainability, 12(16), 6648.

    Google Scholar 

  • Leung, C. K., Kaufmann, T. N., Wen, Y., Zhao, C., & Zheng, H. (2022). Revealing covid-19 data by data mining and visualization, in: Advances in Intelligent Networking and Collaborative Systems: The 13th International Conference on Intelligent Networking and Collaborative Systems (INCoS-2021), Springer, 13 pp. 70–83.

  • Leung, K., Wu, J. T., Liu, D., & Leung, G. M. (2020). First-wave covid-19 transmissibility and severity in China outside hubei after control measures, and second-wave scenario planning: A modelling impact assessment. The Lancet, 395(10233), 1382–1393.

    Google Scholar 

  • Li, L., Yang, Z., Dang, Z., Meng, C., Huang, J., Meng, H., Wang, D., Chen, G., Zhang, J., Peng, H., et al. (2020). Propagation analysis and prediction of the covid-19. Infectious Disease Modelling, 5, 282–292.

    Google Scholar 

  • Li, C., Chen, L. J., Chen, X., Zhang, M., Pang, C. P., & Chen, H. (2020). Retrospective analysis of the possibility of predicting the covid-19 outbreak from internet searches and social media data, China, 2020. Eurosurveillance, 25(10), 2000199.

    Google Scholar 

  • Liang, W., Fan, Y., Li, K.-C., Zhang, D., & Gaudiot, J.-L. (2020). Secure data storage and recovery in industrial blockchain network environments. IEEE Transactions on Industrial Informatics, 16(10), 6543–6552.

    Google Scholar 

  • Lin, L., & Hou, Z. (2020). Combat covid-19 with artificial intelligence and big data. Journal of Travel Medicine, 27(5), taaa080.

  • Liu, P., Beeler, P., & Chakrabarty, R. K. (2020). Covid-19 progression timeline and effectiveness of response-to-spread interventions across the united states, medRxiv.

  • Liu, M., Zhang, Z., Chai, W., & Wang, B. (2023). Privacy-preserving covid-19 contact tracing solution based on blockchain. Computer Standards & Interfaces, 83, 103643.

    Google Scholar 

  • López, V., & Čukić, M. (2021). A dynamical model of sars-cov-2 based on people flow networks. Safety Science, 134, 105034.

    Google Scholar 

  • Lucivero, F., Hallowell, N., Johnson, S., Prainsack, B., Samuel, G., & Sharon, T. (2020). Covid-19 and contact tracing apps: Ethical challenges for a social experiment on a global scale. Journal of Bioethical Inquiry, 17(4), 835–839.

    Google Scholar 

  • Luo, Y., Li, W., Zhao, T., Yu, X., Zhang, L., Li, G., & Tang, N. (2020). Deeptrack: Monitoring and exploring spatio-temporal data: A case of tracking covid-19. Proceedings of the VLDB Endowment, 13(12), 2841–2844.

    Google Scholar 

  • Luz, E., Silva, P., Silva, R., Silva, L., Guimarães, J., Miozzo, G., Moreira, G., & Menotti, D. (2021). Towards an effective and efficient deep learning model for covid-19 patterns detection in x-ray images. Research on Biomedical Engineering, 1–14.

  • Mahalle, P., Kalamkar, A. B., Dey, N., Chaki, J., Shinde, G. R., et al. (2020). Forecasting models for coronavirus (covid-19): A survey of the state-of-the-art.

  • Mahmud, T., Rahman, M. A., & Fattah, S. A. (2020). Covxnet: A multi-dilation convolutional neural network for automatic covid-19 and other pneumonia detection from chest x-ray images with transferable multi-receptive feature optimization. Computers in Biology and Medicine, 122, 103869.

    Google Scholar 

  • Mavragani, A. (2020). Tracking covid-19 in europe: Infodemiology approach. JMIR Public Health and Surveillance, 6(2), e18941.

    Google Scholar 

  • Mbunge, E. (2020). Integrating emerging technologies into covid-19 contact tracing: Opportunities, challenges and pitfalls. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 14(6), 1631–1636.

    Google Scholar 

  • Minaee, S., Kafieh, R., Sonka, M., Yazdani, S., & Soufi, G. J. (2020). Deep-covid: Predicting covid-19 from chest x-ray images using deep transfer learning. Medical Image Analysis, 65, 101794.

    Google Scholar 

  • Moghadas, S. M. Shoukat, A. Fitzpatrick, M. C., Wells, C. R., Sah, P., Pandey, A., Sachs, J. D., Wang, Z., Meyers, L. A., Singer, B. H, (2020) et al. Projecting hospital utilization during the covid-19 outbreaks in the United States. Proceedings of the National Academy of Sciences, 117(16) 9122–9126.

  • Mokbel, M., Abbar, S., & Stanojevic, R. (2020). Contact tracing: Beyond the apps. SIGSPATIAL Special, 12(2), 15–24.

    Google Scholar 

  • Mourad, A., & Darwish, K. (2013). Subjectivity and sentiment analysis of modern standard arabic and arabic microblogs. In: Proceedings of the 4th workshop on computational approaches to subjectivity, sentiment and social media analysis, pp. 55–64.

  • Murphy, R., Calugi, S., Cooper, Z., & Dalle Grave, R. (2020). Challenges and opportunities for enhanced cognitive behaviour therapy (cbt-e) in light of covid-19. The Cognitive Behaviour Therapist, 13.

  • Mushtaq, M. F., Fareed, M. M. S., Almutairi, M., Ullah, S., Ahmed, G., & Munir, K. (2022). Analyses of public attention and sentiments towards different covid-19 vaccines using data mining techniques. Vaccines, 10(5), 661.

    Google Scholar 

  • Mutlu, E. C., Oghaz, T., Jasser, J., Tutunculer, E., Rajabi, A., Tayebi, A., Ozmen, O., & Garibay, I. (2020). A stance data set on polarized conversations on twitter about the efficacy of hydroxychloroquine as a treatment for covid-19. Data in brief, 33, 106401.

    Google Scholar 

  • Mutlu, E., Oghaz, T., Jasser, J., Tutunculer, E., Rajabi, A., Tayebi, A., Ozmen, O., & Garibay, I. (2020). A stance data set on polarized conversations on twitter about the efficacy of hydroxychloroquine as a treatment for covid-19. Data in Brief, 33, 106401–106401.

    Google Scholar 

  • Nadim, S. S., Ghosh, I., & Chattopadhyay, J. (2021). Short-term predictions and prevention strategies for covid-19: a model-based study. Applied Mathematics and Computation, 404, 126251.

    Google Scholar 

  • Nakov, P., & Da San Martino, G. (2021). Fake news, disinformation, propaganda, media bias, and flattening the curve of the covid-19 infodemic. In: Proceedings of the 27th ACM SIGKDD conference on knowledge discovery & data mining, pp. 4054–4055.

  • Namasudra, S., Dhamodharavadhani, S., & Rathipriya, R. (2023). Nonlinear neural network based forecasting model for predicting covid-19 cases. Neural Processing Letters, 1–21.

  • Naseem, U., Razzak, I., Khushi, M., Eklund, P. W., & Kim, J. (2021). Covidsenti: A large-scale benchmark twitter data set for covid-19 sentiment analysis. IEEE Transactions on Computational Social Systems.

  • Nemes, L., & Kiss, A. (2021). Social media sentiment analysis based on covid-19. Journal of Information and Telecommunication, 5(1), 1–15.

    Google Scholar 

  • Oehmke, T. B., Post, L. A., Moss, C. B., Issa, T. Z., Boctor, M. J., Welch, S. B., & Oehmke, J. F. (2021). Dynamic panel data modeling and surveillance of covid-19 in metropolitan areas in the united states: Longitudinal trend analysis. Journal of Medical Internet Research, 23(2), e26081.

    Google Scholar 

  • Oliveira, J. F., Jorge, D. C., Veiga, R. V., Rodrigues, M. S., Torquato, M. F., da Silva, N. B., Fiaccone, R. L., Cardim, L. L., Pereira, F. A., de Castro, C. P. et al. (2021). Mathematical modeling of covid-19 in 14.8 million individuals in Bahia, Brazil. Nature Communications12(1), 1–13.

  • Ordun, C., Purushotham, S., & Raff, E. (2020). Exploratory analysis of covid-19 tweets using topic modeling, umap, and digraphs. arXiv:2005.03082

  • Organization, W. H., et al. (2021). Looking back at a year that changed the world: Who’s response to covid-19, 22 January 2021. Tech. rep.: World Health Organization.

  • Ouchicha, C., Ammor, O., & Meknassi, M. (2020). Cvdnet: A novel deep learning architecture for detection of coronavirus (covid-19) from chest x-ray images. Chaos, Solitons & Fractals, 140, 110245–110245.

    Google Scholar 

  • Padhan, R., & Prabheesh, K. (2021). The economics of covid-19 pandemic: A survey. Economic Analysis and Policy, 70, 220–237.

    Google Scholar 

  • Park, Y. J., Choe, Y. J., Park, O., Park, Kim, S.Y., Kim, J., Kweon, S., Woo, Y., Gwack, J., Kim, S. S., et al. (2020). 1440 Contact tracing during coronavirus disease outbreak, South Korea, 2020. Emerging Infectious Diseases,26(10), 2465–2468.

  • Park, J. Y., Mistur, E., Kim, D., Mo, Y., Hoefer, R. (2021). Toward human-centric urban infrastructure: Text mining for social media data to identify the public perception of covid-19 policy in transportation hubs. Sustainable Cities and Society, 103524.

  • Park, Y.-E. (2022). Developing a covid-19 crisis management strategy using news media and social media in big data analytics. Social Science Computer Review, 40(6), 1358–1375.

    Google Scholar 

  • Perumal, V., Narayanan, V., & Rajasekar, S. J. S. (2020). Detection of covid-19 using cxr and ct images using transfer learning and haralick features. Applied Intelligence, 1–18.

  • Pham, D. P. T., Quang, A. H. N., & Duong, D. (2022). The impact of us presidents on market returns: Evidence from trump’s tweets. Research in International Business and Finance, 101681.

  • Pirkis, J., John, A., Shin, S., DelPozo-Banos, M., Arya, V., Analuisa-Aguilar, P., Appleby, L., Arensman, E., Bantjes, J., Baran, A., et al. (2021). Suicide trends in the early months of the covid-19 pandemic: An interrupted time-series analysis of preliminary data from 21 countries. The Lancet Psychiatry, 8(7), 579–588.

    Google Scholar 

  • Qazi, U., Imran, M., & Ofli, F. (2020). Geocov19: A dataset of hundreds of millions of multilingual covid-19 tweets with location information. SIGSPATIAL Special,12(1), 6–15.

  • Qazi, U., Imran, M., & Ofli, F. (2020). Geocov19: A dataset of hundreds of millions of multilingual covid-19 tweets with location information. SIGSPATIAL Special, 12(1), 6–15.

    Google Scholar 

  • Quak, E., Girault, G., Thenint, M. A., Weyts, K., Lequesne, J., & Lasnon, C. (2021). Author gender inequality in medical imaging journals and the covid-19 pandemic. Radiology 204417.

  • Rehouma, R., Buchert, M., & Chen, Y.-P. P. (2021). Machine learning for medical imaging-based covid-19 detection and diagnosis. International Journal of Intelligent Systems, 5085–5115.

  • Rocha Filho, T. M., dos Santos, F. S. G., Gomes, V. B., Rocha, T. A., Croda, J. H., Ramalho, W. M., Araujo, W. N. (2020). Expected impact of covid-19 outbreak in a major metropolitan area in Brazil. MedRxiv.

  • Rovetta, A., & Bhagavathula, A. S. (2020). Covid-19-related web search behaviors and infodemic attitudes in italy: Infodemiological study. JMIR Public Health and Surveillance, 6(2), e19374.

    Google Scholar 

  • Russo, L., Anastassopoulou, C., Tsakris, A., Bifulco, G., Campana, E., Toraldo, G., Siettos, C., (2020). T. DAY-ZERO, forecasting the fade out of the covid-19 outbreak in lombardy, Italy: A compartmental modelling and numerical optimization approach. MedRxiv.

  • Sadler, T. D., Friedrichsen, P., Zangori, L., & Ke, L. (2020). Technology-supported professional development for collaborative design of covid-19 instructional materials. Journal of Technology and Teacher Education, 28(2), 171–177.

    Google Scholar 

  • Safdari, R., Rezayi, S., Saeedi, S., Tanhapour, M., & Gholamzadeh, M. (2021). Using data mining techniques to fight and control epidemics: A scoping review. Health and Technology, 11(4), 759–771.

    Google Scholar 

  • Samuel, J., Ali, G., Rahman, M., Esawi, E., Samuel, Y., et al. (2020). Covid-19 public sentiment insights and machine learning for tweets classification. Information, 11(6), 314.

    Google Scholar 

  • Samuel, J., Ali, G., Rahman, M., Esawi, E., Samuel, Y., et al. (2020). Covid-19 public sentiment insights and machine learning for tweets classification. Information, 11(6), 314.

    Google Scholar 

  • Schultz, M. J., Sivakorn, C., & Dondorp, A. M. (2020). Challenges and opportunities for lung ultrasound in novel coronavirus disease (covid-19). The American Journal of Tropical Medicine and Hygiene,102(6), 1162.

  • Shaar, S., Alam, F., Da San Martino, G., Nikolov, A., Zaghouani, W., Nakov, P., Feldman, A. (2021). Findings of the nlp4if-2021 shared tasks on fighting the covid-19 infodemic and censorship detection. In: Proceedings of the fourth workshop on NLP for internet freedom: Censorship, Disinformation, and Propaganda, pp. 82–92.

  • Shahi, G. K., Dirkson, A., & Majchrzak, T. A. (2021). An exploratory study of covid-19 misinformation on twitter. Online Social Networks and Media, 22, 100104.

    Google Scholar 

  • Shahid, F., Zameer, A., & Muneeb, M. (2020). Predictions for covid-19 with deep learning models of lstm, gru and bi-lstm. Chaos, Solitons & Fractals, 140(C), 110212.

  • Shakibaei, S., De Jong, G. C., Alpkökin, P., & Rashidi, T. H. (2021). Impact of the covid-19 pandemic on travel behavior in istanbul: A panel data analysis. Sustainable Cities and Society, 65, 102619.

    Google Scholar 

  • Sharma, K., Seo, S., Meng, C., Rambhatla, S., & Liu, Y. (2020). Covid-19 on social media: Analyzing misinformation in twitter conversations. arXiv:2003

  • Sharma, K., Qian, F., Jiang, H., Ruchansky, N., Zhang, M., & Liu, Y. (2019). Combating fake news: A survey on identification and mitigation techniques. ACM Transactions on Intelligent Systems and Technology (TIST), 10(3), 1–42.

    Google Scholar 

  • Shinde, G. R., Kalamkar, A. B., Mahalle, P. N., Dey, N., Chaki, J., & Hassanien, A. E. (2020). Forecasting models for coronavirus disease (covid-19): A survey of the state-of-the-art. SN Computer Science, 1(4), 1–15.

    Google Scholar 

  • Silva, R., Barreira, B., Xavier, F., Saraiva, A., & Cugnasca, C. (2020). Use of econometrics and machine learning models to predict the number of new cases per day of covid-19. In: Anais do XX Simpósio Brasileiro de Computação Aplicada à Saúde, SBC, pp. 332–343.

  • Singh, R. K., Pandey, R., Babu, R. N. (2020). Covidscreen: Explainable deep learning framework for differential diagnosis of covid-19 using chest x-rays. Neural Computing and Applications, 1–22.

  • Siwiak, M. M., Szczesny, P., & Siwiak, M. P. (2020). From a single host to global spread. the global mobility based modelling of the covid-19 pandemic implies higher infection and lower detection rates than current estimates. The Global Mobility Based Modelling of the COVID-19 Pandemic Implies Higher Infection and Lower Detection Rates than Current Estimates (3/23/2020).

  • Soomro, T. A., Zheng L., Afifi, A. J., Ali, A., Yin, M., & Gao, J. (2022). Artificial intelligence (ai) for medical imaging to combat coronavirus disease (covid-19): A detailed review with direction for future research. Artificial Intelligence Review, 1–31.

  • Sun, X., Andoh, E. A., & Yu, H. (2021). A simulation-based analysis for effective distribution of covid-19 vaccines: A case study in Norway. Transportation Research Interdisciplinary Perspectives, 11, 100453.

    Google Scholar 

  • Tabik, S., Gómez-Ríos, A., Martín-Rodríguez, J. L., Sevillano-García, I., Rey-Area, M., Charte, D., Guirado, E., Suárez, J. L., Luengo, J., Valero-González, M., et al. (2020). Covidgr dataset and covid-sdnet methodology for predicting covid-19 based on chest x-ray images. IEEE Journal of Biomedical and Health Informatics, 24(12), 3595–3605.

    Google Scholar 

  • Tamal, M., Alshammari, M., Alabdullah, M., Hourani, R., Alola, H. A., & Hegazi, T. M. (2021). An integrated framework with machine learning and radiomics for accurate and rapid early diagnosis of covid-19 from chest x-ray. Expert Systems with Applications,180, 115152. https://doi.org/10.1016/j.eswa.2021.115152, www.sciencedirect.com/science/article/pii/S0957417421005935

  • Tan, C., & Lin, J. (2023). A new qoe-based prediction model for evaluating virtual education systems with covid-19 side effects using data mining. Soft Computing, 27(3), 1699–1713.

    Google Scholar 

  • Tang, Y., & Wang, S. (2020). Mathematic modeling of covid-19 in the United States. Emerging Microbes & Infections, 9(1), 827–829.

    Google Scholar 

  • Teng, S., Jiang, N., & Khong, K. W. (2022). Using big data to understand the online ecology of covid-19 vaccination hesitancy. Humanities and Social Sciences Communications, 9(1), 1–15.

    Google Scholar 

  • Torres, T. S., Hoagland, B., Bezerra, D. R., Garner, A., Jalil, E. M., Coelho, L. E., Benedetti, M., Pimenta, C., Grinsztejn, B., Veloso, V. G. (2020). Impact of covid-19 pandemic on sexual minority populations in Brazil: An analysis of social/racial disparities in maintaining social distancing and a description of sexual behavior. AIDS and Behavior, 1–12.

  • Traini, M. C., Caponi, C., & De Socio, G. V. (2020). Modelling the epidemic 2019-ncov event in italy: A preliminary note. MedRxiv.

  • Tran, C. D., & Nguyen, T. T. (2021). Health vs. privacy? the risk-risk tradeoff in using covid-19 contact-tracing apps. Technology in Society, 67, 101755.

  • Turkoglu, M. (2020). Covidetectionet: Covid-19 diagnosis system based on x-ray images using features selected from pre-learned deep features ensemble. Applied Intelligence, 1–14.

  • Ulhaq, A., Born, J., Khan, A., Gomes, D. P. S., Chakraborty, S., & Paul, M. (2020). Covid-19 control by computer vision approaches: A survey. IEEE Access, 8, 179437–179456.

    Google Scholar 

  • Umer, M., Ashraf, I., Ullah, S., Mehmood, A., & Choi, G. S. (2021). Covinet: A convolutional neural network approach for predicting covid-19 from chest x-ray images. Journal of Ambient Intelligence and Humanized Computing, 1–13.

  • Vafea, M. T., Atalla, E., Georgakas, J., Shehadeh, F., Mylona, E. K., Kalligeros, M., & Mylonakis, E. (2020). Emerging technologies for use in the study, diagnosis, and treatment of patients with covid-19. Cellular and Molecular Bioengineering, 13(4), 249–257.

    Google Scholar 

  • Vandeput, N. (2021). 2 forecast kpi. In: Data Science for Supply Chain Forecasting, De Gruyter, pp. 10–26.

  • Vecino-Ortiz, A. I., Villanueva Congote, J., Zapata Bedoya, S., & Cucunuba, Z. M. (2021). Impact of contact tracing on covid-19 mortality: An impact evaluation using surveillance data from Colombia. Plos one,16(3), e0246987.

  • Verbeek, H., Gerritsen, D. L., Backhaus, R., de Boer, B. S., Koopmans, R. T., & Hamers, J. P. (2020). Allowing visitors back in the nursing home during the covid-19 crisis: A dutch national study into first experiences and impact on well-being. Journal of the American Medical Directors Association, 21(7), 900–904.

    Google Scholar 

  • Wahid, M. A., Bukhari, S. H. R., Daud, A., Awan, S. E., & Raja, M. A. Z. (2023). Covict: An iot based architecture for covid-19 detection and contact tracing. Journal of Ambient Intelligence and Humanized Computing, 14(6), 7381–7398.

    Google Scholar 

  • Wang, H., Zhang, Y., Lu, S., & Wang, S. (2020). Tracking and forecasting milepost moments of the epidemic in the early-outbreak: Framework and applications to the covid-19, F1000Research 9.

  • Wang, Q., Wang, X., & Lin, H. (2020). The role of triage in the prevention and control of covid-19. Infection Control & Hospital Epidemiology, 41(7), 772–776.

    Google Scholar 

  • Windsor, L., Benoit, E., Pinto, R. M., & Sarol, J. (2022). Optimization of a new adaptive intervention using the smart design to increase covid-19 testing among people at high risk in an urban community. Trials, 23(1), 1–16.

    Google Scholar 

  • Wu, J., Wang, K., He, C., Huang, X., & Dong, K. (2021). Characterizing the patterns of China’s policies against covid-19: A bibliometric study. Information Processing & Management,58(4), https://doi.org/10.1016/j.ipm.2021.102562, www.sciencedirect.com/science/article/pii/S0306457321000650

  • Yao, Z., Tang, P., Fan, J., & Luan, J. (2021). Influence of online social support on the public’s belief in overcoming covid-19. Information Processing & Management, 58(4), 102583.

    Google Scholar 

  • Yasaka, T. M., Lehrich, B. M., & Sahyouni, R. (2020). Peer-to-peer contact tracing: development of a privacy-preserving smartphone app. JMIR mHealth and uHealth, 8(4), e18936.

    Google Scholar 

  • Yih, W. K., Daley, M. F., Duffy, J., Fireman, B., McClure, D., Nelson, J., Qian, L., Smith, N., Vazquez-Benitez, G., Weintraub, E., et al. (2023). A broad assessment of covid-19 vaccine safety using tree-based data-mining in the vaccine safety datalink. Vaccine, 41(3), 826–835.

    Google Scholar 

  • Zebin, T., & Rezvy, S. (2020). Covid-19 detection and disease progression visualization: Deep learning on chest x-rays for classification and coarse localization. Applied Intelligence, 1–12.

  • Zebin, T., & Rezvy, S. (2020). Covid-19 detection and disease progression visualization: Deep learning on chest x-rays for classification and coarse localization. Applied Intelligence, 1–12.

  • Zeemering, E. S. (2021). Functional fragmentation in city hall and twitter communication during the covid-19 pandemic: Evidence from Atlanta, San Francisco, and Washington, DC. Government Information Quarterly, 38(1), 101539.

    Google Scholar 

  • Zeroual, A., Harrou, F., Dairi, A., & Sun, Y. (2020). Deep learning methods for forecasting covid-19 time-series data: A comparative study. Chaos, Solitons, and Fractals, 140, 110121–110121.

    Google Scholar 

  • Zhang, C., Xu, S., Li, Z., & Hu, S. (2021). Understanding concerns, sentiments, and disparities among population groups during the covid-19 pandemic via twitter data mining: Large-scale cross-sectional study. Journal of Medical Internet Research, 23(3), e26482.

    Google Scholar 

  • Zhao, Y., Cheng, S., Yu, X., & Xu, H.(2020). Chinese public’s attention to the covid-19 epidemic on social media: Observational descriptive study. Journal of Medical Internet Research, 22(5), e18825.

  • Zheng, H., Goh, D.H.-L., Lee, C. S., Lee, E. W., & Theng, Y. L. (2020). Uncovering temporal differences in covid-19 tweets. Proceedings of the Association for Information Science and Technology, 57(1), e233.

    Google Scholar 

  • Zheng, H., Goh, D.H.-L., Lee, C. S., Lee, E. W., & Theng, Y. L. (2020). Uncovering temporal differences in covid-19 tweets. Proceedings of the Association for Information Science and Technology, 57(1), e233.

    Google Scholar 

  • Zhong, B., Huang, Y., & Liu, Q. (2021). Mental health toll from the coronavirus: Social media usage reveals wuhan residents’ depression and secondary trauma in the covid-19 outbreak. Computers in Human Behavior, 114, 106524.

    Google Scholar 

  • Zhou, C., Su, F., Pei, T., Zhang, A., Du, Y., Luo, B., Cao, Z., Wang, J., Yuan, W., Zhu, Y., et al. (2020). Covid-19: Challenges to gis with big data. Geography and Sustainability, 1(1), 77–87.

    Google Scholar 

  • Zhu, X., Zhang, A., Xu, S., Jia, P., Tan, X., Tian, J., Wei, T., Quan, Z., & Yu, J. (2020). Spatially explicit modeling of 2019-ncov epidemic trend based on mobile phone data in mainland China MedRxiv.

  • Zivkovic, M., Bacanin, N., Venkatachalam, K., Nayyar, A., Djordjevic, A., Strumberger, I., & Al-Turjman, F. (2021). Covid-19 cases prediction by using hybrid machine learning and beetle antennae search approach. Sustainable Cities and Society, 66, 102669.

Download references

Funding

Not Applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors contribute equally.

Corresponding author

Correspondence to Laith Abualigah.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afyouni, I., Hashim, I., Aghbari, Z. et al. Insights from the COVID-19 Pandemic: A Survey of Data Mining and Beyond. Appl. Spatial Analysis 17, 1359–1411 (2024). https://doi.org/10.1007/s12061-024-09588-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12061-024-09588-5

Keywords

Morty Proxy This is a proxified and sanitized view of the page, visit original site.