Skip to main content

Advertisement

Log in

Evidence of climate-driven changes on atmospheric, hydrological, and oceanographic variables along the Chilean coastal zone

  • Published:
Climatic Change Aims and scope Submit manuscript

A Correction to this article was published on 28 December 2020

This article has been updated

Abstract

The Chilean coastal zone (CCZ) is subjected to a complex spectrum of anthropogenic, geophysical, biogeochemical, and climate-driven perturbations. Potentially affected variables including atmospheric sea level pressure (Pa), alongshore wind, sea surface temperature (SST), chlorophyll-a, rainfall, river discharge, relative mean sea level (RMSL), and wave climate are studied using in situ and satellite records, hindcasts, and reanalysis datasets. Linear temporal trends and correlations of anomalies are estimated between 18°S and 55°S along the CCZ. The comparison of some of the variables is achieved by means of a strict homogenization procedure on a monthly basis for 35 years. Our findings show that the poleward drift and strengthening of the Southeast Pacific Subtropical Anticyclone (SPSA) partially explains the increase in Pa and reduction in rainfall and river discharge. The enhancement of alongshore winds, also attributable to changes in the SPSA, increases coastal upwelling, which in turn could reduce SST and increase chlorophyll-a. Despite differential latitudinal responses, increasing wave heights and a southward rotation are evidenced. RMSL does not show significant variation as it is presumably affected by seafloor changes during the seismic cycle. Though some correlations are evidenced, the influence of climate variability at decadal scale (PDO, SAM) may be affecting the detected trends due to the short length of available data. Impacts on coastal communities, infrastructure, and ecosystems are discussed, aiming to highlight that coastal vulnerabilities and risk management should be based on the cumulative impacts of these variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Change history

References

  • Aguirre C, Garreaud RD, Rutllant JA (2014) Surface ocean response to synoptic-scale variability in wind stress and heat fluxes off south-central Chile. Dyn Atmos Oceans 65:64–85

    Google Scholar 

  • Aguirre C, Rutllant JA, Falvey M (2017) Wind waves climatology of the Southeast Pacific Ocean. Int J Climatol 37(12):4288–4301

    Google Scholar 

  • Aguirre C, García-Loyola S, Testa G, Silva D, Farias L (2018) Insight into anthropogenic forcing on coastal upwelling off south-central Chile. Elem Sci Anth 6(1)

  • Aguirre C, Rojas M, Garreaud RD, Rahn DA (2019) Role of synoptic activity on projected changes in upwelling-favourable winds at the ocean’s eastern boundaries. npj. Clim Atmos Sci 2(1):1–7

    Google Scholar 

  • Aiken CM, Navarrete SA, Pelegrí JL (2011) Potential changes in larval dispersal and alongshore connectivity on the central Chilean coast due to an altered wind climate. J Geophys Res Biogeosci 116(G4)

  • Albrecht F, Shaffer G (2016) Regional sea-level change along the Chilean Coast in the 21st century. J Coast Res 32(6):1322–1332

    Google Scholar 

  • Ancapichún S, Garcés-Vargas J (2015) Variability of the Southeast Pacific subtropical anticyclone and its impact on sea surface temperature off north-central Chile. Ciencias Marinas 41(1):1–20

    Google Scholar 

  • Aravena JC, Luckman BH (2009) Spatio-temporal rainfall patterns in southern South America. Int J Climatol 29(14):2106–2120

    Google Scholar 

  • Barrientos S (2018) The seismic network of Chile. Seismol Res Lett 89(2A):467–474

    Google Scholar 

  • Belmadani A, Echevin V, Codron F, Takahashi K, Junquas C (2014) What dynamics drive future wind scenarios for coastal upwelling off Peru and Chile? Clim Dyn 43(7–8):1893–1914

    Google Scholar 

  • Beyá J, Álvarez M, Gallardo A, Hidalgo H, Aguirre C, Valdivia J, Parra C, Méndez L, Contreras C, Winckler P, Molina M (2016) Atlas de Oleaje de Chile. ISBN: 978-956-368-194-9. https://oleaje.uv.cl/

  • Beyá J, Álvarez M, Gallardo A et al (2017) Generation and validation of the Chilean Wave Atlas database. Ocean Model 116:16–32

    Google Scholar 

  • Bindoff NL, Cheung WWL, Kairo JG, Arístegui J, Guinder VA, Hallberg R, Hilmi N, Jiao N, Karim MS, Levin L, O’Donoghue S, Purca Cuicapusa SR, Rinkevich B, Suga T, Tagliabue A, Williamson P (2019) Changing ocean, marine ecosystems, and dependent communities. In: IPCC special report on the ocean and cryosphere in a changing climate

    Google Scholar 

  • Boisier JP, Rondanelli R, Garreaud RD, Muñoz F (2016) Anthropogenic and natural contributions to the Southeast Pacific precipitation decline and recent megadrought in central Chile. Geophys Res Lett 43(1):413–421

    Google Scholar 

  • Boisier JP, Alvarez-Garretón C, Cordero RR et al (2018) Anthropogenic drying in central-southern Chile evidenced by long-term observations and climate model simulations. Elem Sci Anth 6(1)

  • Bonino G, Di Lorenzo E, Masina S, Iovino D (2019) Interannual to decadal variability within and across the major Eastern Boundary Upwelling Systems. Sci Rep 9(1):1–4

    Google Scholar 

  • Cameron WM, Pritchard DW (1963) Estuaries, the sea, vol 2. Wiley, pp 306–324

  • Camus P, Losada IJ, Izaguirre C et al (2017) Statistical wave climate projections for coastal impact assessments. Earth’s Future 5(9):918–933

    Google Scholar 

  • Castilla JC (1988) Earthquake-caused coastal uplift and its effects on rocky intertidal kelp communities. Science 242(4877):440–443

    Google Scholar 

  • CC-COP25 (2019). Propuesta de un Sistema Integrado de Observación del Océano Chileno (SIOOC), Santiago, Chile. Comité Científico COP25, Ministerio de Ciencias, Chile

  • Church JA, Clark PU, Cazenave A et al (2013) Sea level change. In: Stocker TF, Qin D, Plattner G-K et al (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • CIESIN (2013) Low elevation coastal zone (LECZ) urban-rural population and land area estimates, version 2. Palisades, NY: NASA socioeconomic data and applications center (SEDAC). Columbia University. https://doi.org/10.7927/H4MW2F2J. Accessed 25/12/2017

  • Clemente M (2001) La red española de medida y registro de oleaje (REMRO): Un proyecto en continuo desarrollo. Ing. Civ. 121, 117e126. Data available at http://www.puertos.es/es-es/oceanografia/Paginas/portus.aspx

  • Combes V, Di Lorenzo E, Gómez F et al (2009) Modeling interannual and decadal variability in the Humboldt current upwelling system. J Phys Oceanogr

  • Comte D, Eisenberg A, Lorca E, Pardo M, Ponce L, Saragoni R, Singh SK, Suárez G (1986) The 1985 central Chile earthquake: a repeat of previous great earthquakes in the region? Science. 233(4762):449–453

    Google Scholar 

  • CR2 (2019) Explorador climático. (CR)2 Center For Climate and Resilience Research. http://explorador.cr2.cl/. Accessed 24/03/2019

  • Cubillos L, Núñez S, Arcos D (1998) Primary production required to sustain the Chilean pelagic fisheries. Investig Mar 26:83–96

    Google Scholar 

  • Dasgupta S, Laplante B, Meisner C, Wheeler D, Yan J (2007) The impact of sea level rise on developing countries: a comparative analysis. The World Bank

  • Dee DP, Uppala SM, Simmons AJ et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597

    Google Scholar 

  • Enfield DB, Allen JS (1980) On the structure and dynamics of monthly mean sea level anomalies along the Pacific coast of North and South America. J Phys Oceanogr 10(4):557–578

    Google Scholar 

  • Falvey M, Garreaud RD (2009) Regional cooling in a warming world: recent temperature trends in the southeast Pacific and along the west coast of subtropical South America (1979–2006). J Geophys Res Atmos 114(D4)

  • Farías M, Vargas G, Tassara A et al (2010) Land-level changes produced by the Mw 8.8 2010 Chilean earthquake. Science 329(5994):916–916

    Google Scholar 

  • Farías L, Besoain V, García-Loyola S (2015) Presence of nitrous oxide hotspots in the coastal upwelling area off central Chile: an analysis of temporal variability based on ten years of a biogeochemical time series. Environ Res Lett 10(4):044017

    Google Scholar 

  • Flores-Aqueveque V, Rojas M, Aguirre C, Arias PA, González C (2020) South Pacific Subtropical High from the late Holocene to the end of the 21st century: insights from climate proxies and general circulation models. Clim Past 16(1):79–99

    Google Scholar 

  • Fuenzalida H (1982) Un país de extremos climáticos. In: García H (ed) Chile, Esencia y Evolución. Universidad de Chile, Santiago, pp 27–35

    Google Scholar 

  • Fyfe JC (2003) Extratropical Southern Hemisphere cyclones: harbingers of climate change? J Clim 16(17):2802–2805

    Google Scholar 

  • Fyfe JC, Boer GJ, Flato GM (1999) The Arctic and Antarctic Oscillations and their projected changes under global warming. Geophys Res Lett 26(11):1601–1604

    Google Scholar 

  • García-Reyes M, Sydeman WJ, Schoeman DS, Rykaczewski RR, Black BA, Smit AJ, Bograd SJ (2015) Under pressure: climate change, upwelling, and eastern boundary upwelling ecosystems. Front Mar Sci 16(2):109

    Google Scholar 

  • Garreaud RD (2009) The Andes climate and weather. Adv Geosci 22:3–11

    Google Scholar 

  • Garreaud RD (2018) Record-breaking climate anomalies lead to severe drought and environmental disruption in western Patagonia in 2016. Clim Res 74(3):217–229

    Google Scholar 

  • Garreaud R, Battisti DS (1999) Interannual (ENSO) and interdecadal (ENSO-like) variability in the Southern Hemisphere tropospheric circulation*. J Clim 12(7):2113–2123

    Google Scholar 

  • Garreaud RD, Falvey M (2009) The coastal winds off western subtropical South America in future climate scenarios. Int J Climatol 29(4):543–554

    Google Scholar 

  • Garreaud RD, Muñoz RC (2005) The low-level jet off the west coast of subtropical South America: structure and variability. Mon Weather Rev 133(8):2246–2261

    Google Scholar 

  • Garreaud RD, Alvarez-Garreton C, Barichivich J et al (2017) The 2010-2015 megadrought in central Chile: impacts on regional hydroclimate and vegetation. Hydrol Earth Syst Sci 21(12)

  • Giesecke A, Capera AG, Leschiutta I et al (2004) The CERESIS earthquake catalogue and database of the Andean region: background, characteristics and examples of use. Ann Geophys 47(2–3)

  • Gillett NP, Fyfe JC (2013) Annular mode changes in the CMIP5 simulations. Geophys Res Lett 40:1189–1193

    Google Scholar 

  • Gillett NP, Fyfe JC, Parker DE (2013) Attribution of observed sea level pressure trends to greenhouse gas, aerosol, and ozone changes. Geophys Res Lett 40:2302–2306

    Google Scholar 

  • Gregg WW, Casey NW, McClain CR (2005) Recent trends in global ocean chlorophyll. Geophys Res Lett 32(3)

  • Hamilton G (1980) NOAA data buoy office programs. Bull Am Meteorol Soc 61(9):1012e1017 Data available at https://www.ndbc.noaa.gov/

    Google Scholar 

  • Hemer MA, Church JA, Hunter JR (2010) Variability and trends in the directional wave climate of the Southern Hemisphere. Int J Climatol 30(4):475–491

    Google Scholar 

  • Hu Y, Fu Q (2007) Observed poleward expansion of the Hadley circulation since 1979. Atmos Chem Phys 7(19):5229–5236

    Google Scholar 

  • INE (2017) Estimaciones y Proyecciones de la Población de Chile 1992–2050 (Total País). www.censo2017.cl. Accessed 18/05/2019

  • INE (2018) Mapas Manzana – Entidad Censo 2017. Instituto Nacional de estadística. Disponible en http://ine-chile.maps.arcgis.com/apps/webappviewer/index.html?id=bc3cfbd4feec49699c11e813ae9a629f. Accessed 18/05/2019

  • IPCC (2019): Summary for policymakers. In: IPCC special report on the ocean and cryosphere in a changing climate. In press

  • Iriarte JL (2018) Natural and human influences on marine processes in Patagonian Subantarctic coastal waters. Front Mar Sci 8(5):360

    Google Scholar 

  • Izaguirre C, Méndez FJ, Menéndez M, Losada IJ (2011) Global extreme wave height variability based on satellite data. Geophys Res Lett 38(10)

  • Lara C, Saldías GS, Tapia FJ et al (2016) Interannual variability in temporal patterns of chlorophyll–a and their potential influence on the supply of mussel larvae to inner waters in northern Patagonia (41–44 S). J Mar Syst 155:11–18

    Google Scholar 

  • León-Muñoz J, Urbina MA, Garreaud R, Iriarte JL (2018) Hydroclimatic conditions trigger record harmful algal bloom in western Patagonia (summer 2016). Sci Rep 8:1330

    Google Scholar 

  • Mann K, Lazier J (2006) Dynamics of marine ecosystems: biological-physical interactions in the oceans, Second edn. Blackwell Pub

  • Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC (1997) A Pacific interdecadal climate oscillation with impacts on salmon production. Bull Am Meteorol Soc 78(6):1069–1079

    Google Scholar 

  • Marrari M, Piola AR, Valla D (2017) Variability and 20-year trends in satellite-derived surface chlorophyll concentrations in large marine ecosystems around South and Western Central America. Front Mar Sci 4:372

    Google Scholar 

  • Marshall GJ (2003) Trends in the Southern Annular Mode from observations and reanalyses. J Clim 16(24):4134–4143

    Google Scholar 

  • Masotti I, Aparicio-Rizzo P, Yevenes MA et al (2018) The influence of river discharge on nutrient export and phytoplankton biomass off the Central Chile coast (33°-37°S). Seasonal cycle and interannual variability. Front Mar Sci 5:423

    Google Scholar 

  • McGranahan G, Balk D, Anderson B (2007) The rising tide: assessing the risks of climate change and human settlements in low elevation coastal zones. Environ Urban 19(1):17–37

    Google Scholar 

  • Métois M, Socquet A, Vigny C et al (2013) Revisiting the North Chile seismic gap segmentation using GPS-derived interseismic coupling. Geophys J Int 194(3):1283–1294

    Google Scholar 

  • Milne GA, Long AJ, Bassett SE (2005) Modelling Holocene relative sea-level observations from the Caribbean and South America. Quat Sci Rev 24(10–11):1183–1202

    Google Scholar 

  • MMA (2019) Determinación del riesgo de los impactos del Cambio Climático en las costas de Chile, Report prepared by Winckler P, Contreras-López M, Vicuña S et al. Santiago, Chile

  • MMA (2020) Proceso de consulta pública del anteproyecto de ley marco de cambio climático. https://mma.gob.cl/proceso-de-consulta-publica-del-anteproyecto-de-ley-marco-de-cambio-climatico/

  • Montecino V, Lange CB (2009) The Humboldt Current System: ecosystem components and processes, fisheries, and sediment studies. Prog Oceanogr 83(1–4):65–79

    Google Scholar 

  • Montecino HD, Ferreira VG, Cuevas A et al (2017) Vertical deformation and sea level changes in the coast of Chile by satellite altimetry and tide gauges. Int J Remote Sens 38(24):7551–7565

    Google Scholar 

  • Montecinos A, Aceituno P (2003) Seasonality of the ENSO-related rainfall variability in central Chile and associated circulation anomalies. J Clim 16(2):281–296

    Google Scholar 

  • Montecinos A, Purca S, Pizarro O (2003) Interannual-to-interdecadal sea surface temperature variability along the western coast of South America. Geophys Res Lett 30(11)

  • NASA (2019) Ocean color web. https://oceancolor.gsfc.nasa.gov/. Accessed 24/03/2019

  • Newman M, Alexander MA, Ault TR, Cobb KM, Deser C, Di Lorenzo E, Mantua NJ, Miller AJ, Minobe S, Nakamura H, Schneider N (2016) The Pacific decadal oscillation, revisited. J Clim 29(12):4399–4427

    Google Scholar 

  • Paris PJ, Walsh JP, Corbett DR (2016) Where the continent ends. Geophys Res Lett 43(23)

  • Pauly D, Zeller D (2016) Catch reconstructions reveal that global marine fisheries catches are higher than reported and declining. Nat Commun 7:10244

    Google Scholar 

  • Perucca L, Alvarado P, Saez M (2016) Neotectonics and seismicity in southern Patagonia. Geol J 51(4):545–559

    Google Scholar 

  • Pizarro O, Montecinos A (2004) Interdecadal variability of the thermocline along the west coast of South America. Geophys Res Lett 31(20)

  • Plafker G, Savage JC (1970) Mechanism of the Chilean earthquakes of May 21 and 22, 1960. Geol Soc Am Bull, 81(4), 1001–1030

  • Quiñones RA, Montes RM (2001) Relationship between freshwater input to the coastal zone and the historical landings of the benthic/demersal fish Eleginops maclovinus in central-south Chile. Fish Oceanogr, 10(4), 311–328

  • Rahn DA, Garreaud RD (2014) A synoptic climatology of the near-surface wind along the west coast of South America. Int J Climatol 34(3):780–792

    Google Scholar 

  • Reguero BG, Losada IJ, Diaz-Simal P et al (2015) Effects of climate change on exposure to coastal flooding in Latin America and the Caribbean. PLoS One 10(7):e0133409

    Google Scholar 

  • Reyes O, Méndez C, San Román M, Francois JP (2018) Earthquakes and coastal archaeology: assessing shoreline shifts on the southernmost Pacific coast (Chonos Archipelago 43 50′–46 50′ S, Chile, South America). Quat Int 463:161–175

    Google Scholar 

  • Rykaczewski RR, Dunne JP, Sydeman WJ et al (2015) Poleward displacement of coastal upwelling-favorable winds in the ocean’s eastern boundary currents through the 21st century. Geophys Res Lett 42(15):6424–6431

    Google Scholar 

  • Saint-Amand P (1963) Special issue: oceanographic, geologic, and engineering studies of the Chilean earthquakes of May 1960. Bull Seismol Soc Am 53:1123–1436

    Google Scholar 

  • Schneider W, Donoso D, Garcés-Vargas J, Escribano R (2017) Water-column cooling and sea surface salinity increase in the upwelling region off central-south Chile driven by a poleward displacement of the South Pacific High. Prog Oceanogr 151:38–48

    Google Scholar 

  • Screen JA, Gillett NP, Stevens DP, Marshall GJ, Roscoe HK (2009) The role of eddies in the Southern Ocean temperature response to the Southern Annular Mode. J Clim 22(3):806–818

    Google Scholar 

  • Sen PK (1968) Estimates of the regression coefficient based on Kendall’s tau. J Am Stat Assoc 63(324):1379–1389

    Google Scholar 

  • Sen Gupta A, England MH (2006) Coupled ocean–atmosphere–ice response to variations in the southern annular mode. J Clim 19(18):4457–4486

    Google Scholar 

  • Seth A, Rauscher SA, Biasutti M et al (2013) CMIP5 projected changes in the annual cycle of precipitation in monsoon regions. J Clim 26(19):7328–7351

    Google Scholar 

  • Simmonds I, Keay K (2000) Variability of southern hemisphere extratropical cyclone behavior, 1958–97. J Clim 13(3):550–561

    Google Scholar 

  • Soto D, León-Muñoz J, Dresdner J, Luengo C, Tapia FJ, Garreaud R (2019 May) Salmon farming vulnerability to climate change in southern Chile: understanding the biophysical, socioeconomic and governance links. Rev Aquac 11(2):354–374

    Google Scholar 

  • Strub PT, Mesías JM, Montecino V et al (1998) Coastal ocean circulation off western South America. In: Robinson AR, Brink KH (eds) The sea, vol 11. Wiley, pp 273–313

  • Strub PT, James C, Montecino V et al (2019) Ocean circulation along the southern Chile transition region (38°–46° S): mean, seasonal and interannual variability, with a focus on 2014–2016. Prog Oceanogr 172:159–198

    Google Scholar 

  • Talley LD, Pickard G, Emery WJ, Swift JH (2011) Physical oceanography: an introduction. Elsevier Science and Technology, UK

    Google Scholar 

  • Testa G, Masotti I, Farías L (2018) Temporal variability in net primary production in an upwelling area off central Chile (36 S). Front Mar Sci 5:179

    Google Scholar 

  • Theil H (1950) A rank-invariant method of linear and polynomial regression analysis. I, II, III. Nederl. Akad. Wetensch., Proc., 53: 386–392, 521–525, 1397–1412

  • Thompson DW, Solomon S (2002) Interpretation of recent Southern Hemisphere climate change. Science 296(5569):895–899

    Google Scholar 

  • Thompson DW, Wallace JM, Hegerl GC (2000) Annular modes in the extratropical circulation. Part II: trends. J Clim 13(5):1018–1036

    Google Scholar 

  • UNISDR (2015) Global Risk Assessment GAR 2015: GVM and IAVCEI, UNEP, CIMNE and associates and INGENIAR, FEWS NET and CIMA Foundation

  • Wang D, Gouhier TC, Menge BA, Ganguly AR (2015) Intensification and spatial homogenization of coastal upwelling under climate change. Nature 518(7539):390

    Google Scholar 

  • Wesson RL, Melnick D, Cisternas et al (2015) Vertical deformation through a complete seismic cycle at Isla Santa María, Chile. Nat Geosci 8(7):547–551

    Google Scholar 

  • Wilcox R (2001) Fundamentals of modern statistical methods: substantially improving power and accuracy. Springer Science and Business Media

  • Zhang Y, Wallace JM, Battisti DS (1997) ENSO-like interdecadal variability. J Clim 10:1004–1020

    Google Scholar 

Download references

Acknowledgments

We acknowledge the SHOA for providing tide gauge records. Professor J.C. Castilla provided valuable comments throughout the research.

Funding

CA and LF acknowledge support by FONDECYT grants 11171163 and 120086, respectively. CA, LF, and IM received support from FONDAP 1511009, while PW from FONDAP 15110017.

Author information

Authors and Affiliations

Authors

Contributions

CA analyzed atmospheric variables, PW-MC wave climate and correlations, and LF-IM river discharge and chlorophyll-a. PW-LF-CA drafted the manuscript with major revisions by coauthors.

Corresponding author

Correspondence to Patricio Winckler Grez.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 4609 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Winckler Grez, P., Aguirre, C., Farías, L. et al. Evidence of climate-driven changes on atmospheric, hydrological, and oceanographic variables along the Chilean coastal zone. Climatic Change 163, 633–652 (2020). https://doi.org/10.1007/s10584-020-02805-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-020-02805-3

Keywords

Morty Proxy This is a proxified and sanitized view of the page, visit original site.