Skip to main content

Tolerance to Combined Stress of Drought and Salinity in Barley

  • Chapter
  • First Online:
Combined Stresses in Plants

Abstract

Drought and salinity, frequently co-occurring in both natural and agricultural ecosystems, are the most important abiotic stresses limiting agricultural production worldwide. Therefore, an improvement in drought and salinity tolerance in crops is a prerequisite for achieving economic gains. Barley, being one of the most tolerant cereal crops for drought and salinity, possesses tremendous potential as an ideal model crop for drought and salinity tolerance. Wild barley (Hordeum vulgare ssp. spontaneum or ssp. agriocrithum) was demonstrated as a key genetic resource for the tolerance to both stresses. Currently, plant morphology, physiology, and biochemistry have provided new insights to understand drought-tolerant traits. Improvement for drought and salinity tolerance can be achieved by the introduction of drought- and salt-tolerance-related genes and quantitative trait loci (QTLs) to modern barley cultivars. Therefore, the identification of candidate loci involved in drought and salinity tolerance using omics and QTL mapping is necessary. Drought/salinity-responsive genes and QTLs have been identified in both cultivated and wild barleys and have great potential for genetic improvement of barley. Combining tolerant genes and QTLs in crop-breeding programs aimed at improving tolerance to drought and salinity will be achieved within a multidisciplinary context. This strategy will lead to new cultivars highly tolerant to drought and salinity with high yield potential and stability in dry environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdelkader AF, Aronsson H, Solymosi K, Böddi B, Sundqvist C. Chlorophyll accumulation, protochlorophyllide formation and prolamellar body conversion are held back in wheat leaves exposed to high salt stress, photosynthesis. Energy from the Sun. Berlin: Springer; 2008. pp. 1133–6.

    Google Scholar 

  • Agastian P, Kingsley S, Vivekanandan M. Effect of salinity on photosynthesis and biochemical characteristics in mulberry genotypes. Photosynthetica. 2000;38:287–90.

    CAS  Google Scholar 

  • Ahmed IM, Dai HX, Zheng W, Cao FB, Zhang GP, Sun DF, Wu FB. Genotypic differences in physiological characteristics in the tolerance to drought and salinity combined stress between Tibetan wild and cultivated barley. Plant Physiol Biochem. 2013a;63:49–60.

    CAS  PubMed  Google Scholar 

  • Ahmed IM, Cao F, Zhang M, Chen X, Zhang G, Wu F. Difference in yield and physiological features in response to drought and salinity combined stress during anthesis in Tibetan wild and cultivated barleys. PloS ONE. 2013b;8(10):e77869.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ahmed IM, Cao FB, Han Y, Nadira UA, Zhang GP, Wu FB. Differential changes in grain ultrastructure, amylase, protein and amino acid profiles between Tibetan wild and cultivated barleys under drought and salinity alone and combined stress. Food Chem. 2013c;141:2743–50.

    CAS  PubMed  Google Scholar 

  • Ahmed IM, Nadira UA, Bibi N, Cao FB, Zhang GP, Wu FB. Differential changes in leaf physiology and secondary metabolism between Tibetan wild and cultivated barleys under drought and salinity alone and combined stress and subsequent recovery. Environ Expt Bot. 2014 (Accepted).

    Google Scholar 

  • Ali R, Abbas H. Response of salt stressed barley seedlings to Phenylurea. Plant Soil Environ. 2003;49:158–62.

    Google Scholar 

  • Anjum SA, Xie X, Wang L, Saleem MF, Man C, Lei W. Morphological, physiological and biochemical responses of plants to drought stress. Afr J Agric Res. 2011;6:2026–32.

    Google Scholar 

  • Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Ann Rev Plant Biol. 2004;55:373–99.

    CAS  Google Scholar 

  • Ashraf M, Foolad M. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot. 2007;59:206–16.

    CAS  Google Scholar 

  • Ashraf M, O’leary J. Responses of some newly developed salt-tolerant genotypes of spring wheat to salt stress: 1. yield components and ion distribution. J Agron Crop Sci. 1996;176:91–101.

    Google Scholar 

  • Bahieldin A, Mahfouz HT, Eissa HF, Saleh OM, Ramadan AM, Ahmed IA, Dyer WE, El-Itriby HA Madkour MA. Field evaluation of transgenic wheat plants stably expressing the HVA1 gene for drought tolerance. Physiol Planta. 2005;123:421–7.

    CAS  Google Scholar 

  • Ball MC, Farquhar GD. Photosynthetic and stomatal responses of two mangrove species, Aegiceras corniculatum and Avicennia marina, to long term salinity and humidity conditions. Plant Physiol. 1984;74:1–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bartels D, Sunkar R. Drought and salt tolerance in plants. Crit Rev Plant Sci. 2005;24:23–58.

    CAS  Google Scholar 

  • Baik B-K, Ullrich SE. Barley for food: characteristics, improvement, and renewed interest. J Cereal Sci. 2008;48(2):233–42.

    CAS  Google Scholar 

  • Baum M, Grando S, Backes G, Jahoor A, Sabbagh A, Ceccarelli S. QTLs for agronomic traits in the Mediterranean environment identified in recombinant inbred lines of the cross _Arta_ _ H. spontaneum 41-1. Theor Appl Genet. 2003;107:1215–225.

    CAS  PubMed  Google Scholar 

  • Bothmer R von, Jacobsen N, Baden C, Jorgensen RB, Linde-Laursen I. An ecogeographical study of the genus Hordeum. Systematic and ecogeographic studies on crop genepools 7, 2nd ed. Rome: IPGRI; 1995. p. 129.

    Google Scholar 

  • Boualem A, Fergany M, Fernandez R, Troadec C, Martin A, Morin H, Sari M-A, Collin F, Flowers JM, Pitrat M. A conserved mutation in an ethylene biosynthesis enzyme leads to an dromonoecy in melons. Science. 2008;321(5890):836–8.

    CAS  PubMed  Google Scholar 

  • Bruns S, Hecht-Buchholz C. Light and electron microscope studies on the leaves of several potato cultivars after application of salt at various development stages. Potato Res. 1990;33:33–41.

    Google Scholar 

  • Budak H, Kantar M, Kurtoglu KY. Drought tolerance in modern and wild wheat. The Scientific World J. 2013. p. 16.

    Google Scholar 

  • Cattivelli L, Rizza F, Badeck F-W, Mazzucotelli E, Mastrangelo AM, Francia E, Mare C, Tondelli A, Stanca AM. Drought tolerance improvement in crop plants: an integrated view from breeding to genomics. Field Crops Res. 2008;105:1–14.

    Google Scholar 

  • Ceccarelli S, Grando S, Baum M, Udupa SM. Breeding for drought resistance in a changing climate. Challenges and strategies for dryland agriculture. Madison: Crop Science Society of America Inc. and American Society of Agronomy Inc.; 2004. pp 167–90.

    Google Scholar 

  • Ceccarelli S, Grando S, Baum M. Participatory plant breeding in water-limited environments. Exp Agric. 2007;43(04):411–35.

    Google Scholar 

  • Chaitanya K, Jutur P, Sundar D, Reddy AR. Water stress effects on photosynthesis in different mulberry cultivars. Plant Growth Regul. 2003;40:75–80.

    CAS  Google Scholar 

  • Chauhan H, Khurana P. Use of doubled haploid technology for development of stable drought tolerant bread wheat (Triticum aestivum L.) transgenics. Plant Biotech J. 2011;9(3):408–17.

    CAS  Google Scholar 

  • Chaves MM. Effects of water deficits on carbon assimilation. J Exp Bot. 1991;42:1–16.

    CAS  Google Scholar 

  • Chaves MM, Oliveira M. Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. J Exp Bot. 2004;55:2365–84.

    CAS  PubMed  Google Scholar 

  • Chaves MM, Maroco JP, Pereira JS. Understanding plant responses to drought-from genes to the whole plant. Func Plant Biol. 2003;30:239–64.

    CAS  Google Scholar 

  • Chen ZH, Cuin TA, Zhou M, Twomey A, Naidu BP, Shabala S. Compatible solute accumulation and stress-mitigating effects in barley genotypes contrasting in their salt tolerance. J Exp Bot. 2007;58:4245–55.

    CAS  PubMed  Google Scholar 

  • Covarrubias AA, Reyes JL. Post-transcriptional gene regulation of salinity and drought responses by plant microRNAs. Plant Cell Environ. 2010;33(4):481–9.

    CAS  PubMed  Google Scholar 

  • Dai A. Drought under global warming: a review. wiley interdisciplinary reviews. Climate Change. 2011;2:45–65.

    Google Scholar 

  • Dubey R. Photosynthesis in plants under stressful conditions. Handb Photosynth. 1997;2:717–37.

    Google Scholar 

  • Du J, Huang YP, Xi J, Cao MJ, Ni WS. Functional gene-mining for salt-tolerance genes with the power of Arabidopsis. Plant J. 2008;56:653–64.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Du JB, Yuan S, Chen YE, Sun X, Zhang ZW, Xu F, Yuan M, Shang J, Lin HH. Comparative expression analysis of dehydrins between two barleyvarieties, wild barley and Tibetan hulless barley associated with different stress resistance. Acta Physiol Planta. 2011;33:567–74.

    Google Scholar 

  • Eldem V, Okay S, Unver T. Plant microRNAs: new players in functional genomics. Turk J Agric For. 2013;37:1–21.

    CAS  Google Scholar 

  • Ellis RP, Forster BP, Gordon DC, Handley LL, Keith RP, Lawrence P, Meyer R, Powell W, Robinson D, Scrimgeour CM, Young G, Thomas WT. Phenotype/genotype associations for yield and salt tolerance in a barley mapping population segregating for two dwarfing genes. J Exp Bot. 2002;53:1163–76.

    CAS  PubMed  Google Scholar 

  • Estrada-Campuzano G, Miralles DJ, Slafer GA. Genotypic variability and response to water stress of pre-and post-anthesis phases in triticale. Eur J Agron. 2008;28:171–7.

    Google Scholar 

  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra S. Plant drought stress: effects, mechanisms and management, sustainable agriculture. Berlin: Springer; 2009. pp. 153–88.

    Google Scholar 

  • Fedina IS, Grigorova ID, Georgieva KM. Response of barley seedlings to UV-B radiation as affected by NaCl. J Plant Physiol. 2003;160:205–8.

    CAS  PubMed  Google Scholar 

  • Flexas J, Diaz-Espejo A, Galm ESJ, Kaldenhoff R, Medrano HOL, Ribas-Carbo M. Rapid variations of mesophyll conductance in response to changes in CO2 concentration around leaves. Plant Cell Environ. 2007;30:1284–98.

    CAS  PubMed  Google Scholar 

  • Forster BP, Rzussell JR, Ellis RP, Handley LL, Robinson D, Hackett CA, Nevo E, Waugh R, Gordon DC, Keith R, Powell W. Locating genotypes and genes for abiotic stress tolerance in barley: a strategy using maps, markers and the wild species. New Phytol. 1997;137:141–7.

    Google Scholar 

  • Forster BP, Ellis RP, Moir J, Talame V, Sanguinet MC, Tuberosa R, This D, Teulat-Merah B, Ahmed I, Mariy S, Bahri H, Ouahabi ME, Zoumarou-Wallis N, El-Fellah M, Salem MB. Genotype and phenotype associations with drought tolerance in barley tested in North Africa. Ann Appl Biol. 2004;144:157–68.

    Google Scholar 

  • Fox GP, Panozzo J, Li C, Lance R, Inkerman PA, Henry RJ. Molecular basis of barley quality. Crop Pasture Sci. 2003;54(12):1081–101.

    CAS  Google Scholar 

  • Foyer C, Fletcher J. Plant antioxidants: colour me healthy. Biologist (London). 2001;48:115–20.

    CAS  Google Scholar 

  • Fu YB, Somers D. Genome-wide reduction of genetic diversity in wheat breeding. Crop Sci. 2009;49:161–8.

    Google Scholar 

  • Gadallah M. Effects of proline and glycinebetaine on Vicia faba responses to salt stress. Biol Planta. 1999;42:249–57.

    CAS  Google Scholar 

  • Garg B. Nutrient uptake and management under drought: nutrient-moisture interaction. Curr Agric. 2003;27:1–8.

    Google Scholar 

  • Ghassemi F, Jakeman AJ, Nix HA Salinisation of land and water resources: human causes, extent, management and case studies. Sydney: UNSW; 1995. (CAB, Wallingford).

    Google Scholar 

  • Govindjee. Sixty-three years since Kautsky: chlorophyll a fluorescence. Aust J Plant Physiol. 1995;22:131–60.

    CAS  Google Scholar 

  • Grando S, Von Bothmer R, Ceccarelli S. Genetic diversity of barley: use of locally adapted germplasm to enhance yield and yield stability of barley in dry areas. In: Cooper HD, Spillane C and Hodgkin T (eds.). Broadening the genetics base of crop production. Rome: FAO; 2001. pp. 351–71.

    Google Scholar 

  • Grigorova B, Vassileva V, Klimchuk D, Vaseva I, Demirevska K, Feller U. Drought, high temperature, and their combination affect ultrastructure of chloroplasts and mitochondria in wheat (Triticum aestivum L.) leaves. J Plant Interact. 2012;7(3):2012.

    Google Scholar 

  • Grossman A, Takahashi H. Macronutrient utilization by photosynthetic eukaryotes and the fabric of interactions. Ann Rev Plant Biol. 2001;52:163–210.

    CAS  Google Scholar 

  • Gulzar S, Khan MA, Ungar IA. Salt tolerance of a coastal salt marsh grass. Commu Soil Sci Plant Anal. 2003;34:2595–605.

    CAS  Google Scholar 

  • Guo P, Baum M, Grando S, Ceccarelli S, Bai G, Li R, Von Korff M, Varshney RK, Graner A, Valkoun J. Differentially expressed genes between drought-tolerant and drought-sensitive barley genotypes in response to drought stress during the reproductive stage. J Exp Bot. 2009;60:3531–44.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gyenis L, Yun JS, Smith KP, Steffenson BJ, Bossolini E, Sanguineti MC, Muehlbauer GJ. Genetic architecture of quantitative trait loci associated with morphological and agronomic trait differences in a wild by cultivated barley cross. Genome. 2007;50:714–23.

    CAS  PubMed  Google Scholar 

  • Hare P, Cress W, Van Staden J. Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environ. 1998;21:535–53.

    CAS  Google Scholar 

  • Harris BN, Sadras VO, Tester M. A water-centred framework to assess the effects of salinity on the growth and yield of wheat and barley. Plant Soil. 2010;336:377–89.

    CAS  Google Scholar 

  • Hawker NP, Bowman JL. Roles for Class III HD-Zip and KANADI genes in Arabidopsis root development. Plant Physiol. 2004;135(4):2261–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hernandez J, Olmos E, Corpas F, Sevilla F, Del Rio L. Salt-induced oxidative stress in chloroplasts of pea plants. Plant Sci. 1995;105:151–67.

    CAS  Google Scholar 

  • IPCC. Emissions scenarios. In: Nakicenovic N, Swart R, editors. Special report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press; 2000. p. 570.

    Google Scholar 

  • Iriti M, Faoro F. Ozone-induced changes in plant secondary metabolism, climate change and crops. Berlin: Springer; 2009. pp 245–68.

    Google Scholar 

  • Ivandic V, Thomas W, Nevo E, Zhang Z, Forster B. Associations of simple sequence repeats with quantitative trait variation including biotic and abiotic stress tolerance in Hordeum spontaneum. Plant Breed. 2003;122:300–4.

    CAS  Google Scholar 

  • Iyer NJ, Tang Y, Mahalingam R. Physiological, biochemical and molecular responses to combination of drought and ozone in Medicago truncatula. Plant Cell Environ. 2013;36:706–20.

    CAS  PubMed  Google Scholar 

  • Kantar M, Lucas SJ, Budak H. miRNA expression patterns of Triticum dicoccoides in response to shock drought stress. Planta. 2011;233(3):471–84.

    CAS  PubMed  Google Scholar 

  • Kalladan R, Worch S, Rolletschek H, Harshavardhan VT, Kuntze L, Seiler C, Sreenivasulu N, Röder MS. Identification of quantitative trait loci contributing to yield and seed quality parameters under terminal drought in barley advanced backcross lines. Mol Breeding. 2013;32(1):71–90.

    Google Scholar 

  • Khavari-Nejad R, Mostofi Y. Effects of NaCl on photosynthetic pigments, saccharides, and chloroplast ultrastructure in leaves of tomato cultivars. Photosynthetica. 1998;35:151–4.

    CAS  Google Scholar 

  • Koornneef M, Alonso-Blanco C, Peeters A. Genetic approaches in plant physiology. New Phytol. 1997;137:1–8.

    Google Scholar 

  • Kováčik J, Klejdus B, Hedbavny J, Bačkor M. Salicylic acid alleviates NaCl-induced changes in the metabolism of Matricaria chamomilla plants. Ecotoxicol. 2009;18:544–54.

    Google Scholar 

  • Kumar D. Salt tolerance in oilseed Brassicas-present status and future prospects. Plant Breed Abstr. 1995;65:1438–47.

    Google Scholar 

  • Lakew B, Eglinton J, Henry RJ, Baum M, Grando S, Ceccarelli S. The potential contribution of wild barley (Hordeum vulgare ssp. spontaneum) germplasm to drought tolerance of cultivated barley (H. vulgare ssp. vulgare). Field Crops Res. 2011;120:161–8.

    Google Scholar 

  • Lakew B, Henry R, Ceccarelli S, Grando S, Eglinton J, Baum M. Genetic analysis and phenotypic associations for drought tolerance in Hordeum spontaneum introgression lines using SSR and SNP markers. Euphytica. 2013;189:9–29.

    CAS  Google Scholar 

  • Lawlor D, Cornic G. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell Environ. 2002;25:275–94.

    CAS  PubMed  Google Scholar 

  • Lee G, Duncan RR, Carrow RN. Salinity tolerance of seashore paspalum ecotypes: shoot growth responses and criteria. Hort Sci. 2004;39:1138–42.

    Google Scholar 

  • Levy D, Coleman WK, Veilleux RE. Adaptation of potato to water shortage: irrigation management and enhancement of tolerance to drought and salinity. Am J Potato Res. 2013;90:1–21.

    Google Scholar 

  • Li J, Huang XQ, Heinrichs F, Ganal MW, Ro¨der MS. Analysis of QTLs for yield, yield components, and malting quality in a BC3-DH population of spring barley. Theor Appl Genet. 2005;110:356–63.

    CAS  PubMed  Google Scholar 

  • Li JZ, Huang XQ, Heinrichs F, Ganal MW, Ro¨der MS. Analysis of QTLs for yield components, agronomic traits, and disease resistance in an advanced backcross population of spring barley. Genome. 2006;49:454–66.

    CAS  PubMed  Google Scholar 

  • Li C, Zhang GP, Lance R. Recent advances in breeding barley for drought and saline stress tolerance. In: Advances in molecular breeding toward drought and salt tolerant crops. Berlin: Springer; 2007. pp. 603–26.

    Google Scholar 

  • Li W-T, Liu C, Liu Y-X, Pu Z-E, Dai S-F, Wang J-R, Lan X-J, Zheng Y-L, Wei Y-M. Meta-analysis of QTL associated with tolerance to abiotic stresses in barley. Euphytica. 2013;189(1):31–49.

    CAS  Google Scholar 

  • Liu H-H, Tian X, Li Y-J, Wu C-A, Zheng C-C. Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA. 2008;14(5):836–43.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Long NV, Dolstra O, Malosetti M, Kilian B, Graner A, Visser RG, van der Linden CG. Association mapping of salt tolerance in barley (Hordeum vulgare L.). Theor Appl Genet. 2013;126(9):2335–51.

    CAS  PubMed  Google Scholar 

  • Lu Z, Tamar K, Neumann PM, Nevo E. Physiological characterization of drought tolerance in wild barley (Hordeum spontaneum)from the Judean Desert. Barley Genet Newsl. 1999;29:36–9.

    Google Scholar 

  • Lu X-Y, Huang X-L. Plant miRNAs and abiotic stress responses. Biochem Biophys Res Commun. 2008;368:458–62.

    CAS  PubMed  Google Scholar 

  • Maas E, Hoffman G. Crop Salt Tolerance\-Current Assessment. J Irri Drain Div. 1977;103(2):115–34.

    Google Scholar 

  • Maathuis FJ. The role of monovalent cation transporters in plant responses to salinity. J Exp Bot. 2006;57:1137–47.

    CAS  PubMed  Google Scholar 

  • Manivannan P, Jaleel CA, Sankar B, Kishorekumar A, Somasundaram R, Lakshmanan GA, Panneerselvam R. Growth, biochemical modifications and proline metabolism in Helianthus annuus L. as induced by drought stress. Colloids Surf B Biointerfaces. 2007;59:141–9.

    CAS  PubMed  Google Scholar 

  • Manivannan P, Jaleel CA, Somasundaram R, Panneerselvam R. Osmoregulation and antioxidant metabolism in drought-stressed Helianthus annuus under triadimefon drenching. Comptes Rend Biol. 2008;331:418–25.

    CAS  Google Scholar 

  • Mano Y, Takeda K. Mapping quantitative trait loci for salt tolerance at germination and the seedling stage in barley (Hordeum vulgare L.). Euphytica. 1997;94:263–72.

    Google Scholar 

  • Mansour M, Salama K, Ali F, Abou Hadid A. Cell and plant responses to NaCl in Zea mays L. cultivars differing in salt tolerance. Gen Appl Plant Physiol. 2005;31:29–41.

    CAS  Google Scholar 

  • Marcum K, Pessarakli M. Salinity tolerance and salt gland excretion efficiency of bermuda grass turf cultivars. Crop Sci. 2006;46:2571–4.

    Google Scholar 

  • Mare C, Mazzucotelli E, Crosatti C, Francia E, Stanca AM, Cattivelli L. Hv-WRKY38: a new transcription factor involved in cold- and drought-response in barley. Plant Mol Biol. 2004;55(3):399–416. doi:10.1007/s11103-004-0906-7.

    CAS  PubMed  Google Scholar 

  • Matysik J, Bhalu B, Mohanty P. Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Curr Sci. 2002;82:525–32.

    CAS  Google Scholar 

  • McNeil SD, Nuccio ML, Hanson AD. Betaines and related osmoprotectants. Targets for metabolic engineering of stress resistance. Plant Physiol. 1999;120:945–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  • McWilliams D. Drought strategies for cotton. Cooperative Extension Service, Circular 582 College of Agriculture and Home Economics. New Mexico State University, USA; 2003.

    Google Scholar 

  • Meloni DA, Oliva MA, Ruiz HA, Martinez CA. Contribution of proline and inorganic solutes to osmotic adjustment in cotton under salt stress. J Plant Nutr. 2001;24:599–612.

    CAS  Google Scholar 

  • Miles CM, Wayne M. Quantitative trait locus (QTL) analysis. Nat Educ. 2008;1 (1). http://www-.nature.com/scitable/topicpage/Quantitative-Trait-Locus-QTL-Analysis-53904. Accessed 29 June 2012.

  • Mishra V, Cherkauer KA. Retrospective droughts in the crop growing season: implications to corn and soybean yield in the Midwestern United States. Agric For Meteorol. 2010;150:1030–45.

    Google Scholar 

  • Mitsuya S, Takeoka Y, Miyake H. Effects of sodium chloride on foliar ultrastructure of sweet potato (Ipomoea batatas Lam.) plantlets grown under light and dark conditions in vitro. J Plant Physiol. 2000;157:661–7.

    CAS  Google Scholar 

  • Mittler R. Abiotic stress, the field environment and stress combination. Trends Plant Sci. 2006;11:15–9.

    CAS  PubMed  Google Scholar 

  • Mohammadi M, Kav NNV, Deyholos MK. Transcriptional profiling of hexaploid wheat (Triticum aestivum L.) roots identifies novel, dehydration-responsive genes. Plant Cell Environ. 2007;30:630–45.

    CAS  PubMed  Google Scholar 

  • Muhammad W, Asghar A. Mechanism of drought tolerance in plant and its management through different methods. Cont J Agric Sci. 2012;5:10–25.

    Google Scholar 

  • Munns R. Comparative physiology of salt and water stress. Plant Cell Environ. 2002;25:239–50.

    CAS  PubMed  Google Scholar 

  • Munns R. Genes and salt tolerance: bringing them together. New Phytol. 2005;167:645–63.

    CAS  PubMed  Google Scholar 

  • Munns R, James RA, Läuchli A. Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot. 2006;57:1025.

    CAS  PubMed  Google Scholar 

  • Nayyar H, Gupta D. Differential sensitivity of C3 and C4 plants to water deficit stress: Association with oxidative stress and antioxidants. Environ Exp Bot. 2006;58:106–13.

    CAS  Google Scholar 

  • Nevo E, editors. Origin, evolution, population genetics and resources for breeding of wild barley, Hordeum spontaneum in the Fertile Crescent. Barley: genetics, biochemistry, molecular biology and biotechnology. Oxford: CAB; 1992. (The Alden Press)

    Google Scholar 

  • Nicholson JK, Lindon JC, Holmes E. ‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica. 1999;29:1181–9.

    CAS  PubMed  Google Scholar 

  • Nio S, Cawthray G, Wade L, Colmer T. Pattern of solutes accumulated during leaf osmotic adjustment as related to duration of water deficit for wheat at the reproductive stage. Plant Physiol Biochem. 2011;49:1126–37.

    CAS  PubMed  Google Scholar 

  • Oliver MJ, Guo LN, Alexander DC, Ryals JA, Wone BW. A sister group contrast using untargeted global metabolomic analysis delineates the biochemical regulation underlying desiccation tolerance in Sporobolus stapfianus. Plant Cell. 2011;23:1231–48.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Oono Y, Seki M, Nanjo T, Narusaka M, Fujita M. Monitoring expression profiles of Arabidopsis gene expression during rehydration process after dehydration using ca. 7000 full-length cDNA microarray. Plant J. 2003;34:868–87.

    CAS  PubMed  Google Scholar 

  • Oraby HF, Ransom CB, Kravchenko AN, Sticklen MB. Barley HVA1 gene confers salt tolerance in R3 transgenic oat. Crop Sci. 2005;45:2218–27.

    CAS  Google Scholar 

  • Ozkur O, Ozdemir F, Bor M, Turkan I. Physiochemical and antioxidant responses of the perennial xerophyte Capparis ovata Desf. to drought. Environ Exp Bot. 2009;66:487–92.

    CAS  Google Scholar 

  • Ozturk ZN, Talame V, Deyholos M, Michalowski CB, Galbraith DW. Monitoring large-scale changes in transcript abundance in drought- and salt-stressed barley. Plant Mol Biol. 2002;48:551–73.

    CAS  Google Scholar 

  • Pastori GM, Foyer CH. Common components, networks, and pathways of cross-tolerance to stress. The central role of “redox” and abscisic acid-mediated controls. Plant Physiol. 2002;129:460–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pérez-López U, Robredo A, Lacuesta M, Mena-Petite A, Muñoz-Rueda A. Elevated CO2 reduces stomatal and metabolic limitations on photosynthesis caused by salinity in Hordeum vulgare. Photosynth Res. 2012;111:269–83.

    PubMed  Google Scholar 

  • Peuke A, Rennenberg H. Carbon, nitrogen, phosphorus, and sulphur concentration and partitioning in beech ecotypes (Fagus sylvatica L.): phosphorus most affected by drought. Trees. 2004;18:639–48.

    CAS  Google Scholar 

  • Pillen K, Zacharias A, Lèon J. Advanced backcross QTL analysis in barley (Hordeum vulgare L.). Theor Appl Genet. 2003;107:340–52.

    CAS  PubMed  Google Scholar 

  • Pillen K, Zacharias A, Lèon J. Comparative AB-QTL analysis in barley using a single exotic donor of Hordeum vulgare ssp.spontaneum. Theor Appl Genet. 2004;108:1591–601.

    CAS  PubMed  Google Scholar 

  • Plaut Z. Plant exposure to water stress during specific growth stages. In: Trimble WS (ed.). Encyclopedia of water science. London: Taylor & Francis; 2003.

    Google Scholar 

  • Rabbani MA, Maruyama K, Abe H, Khan MA, Katsura K. Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiol. 2003;133:1755–67.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rizhsky L, Liang HJ, Shuman J, Shulaev V, Davletova S. When defense pathways collide the response of Arabidopsis to a combination of drought and heat stress. Plant Physiol. 2004;134:1683–96.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Robinson SP, Downton WJS, Millhouse JA. Photosynthesis and ion content of leaves and isolated chloroplasts of salt-stressed spinach. Plant Physiol. 1983;73:238–42.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Robredo A, Pérez-López U, Lacuesta M, Mena-Petite A, Muñoz-Rueda A. Influence of water stress on photosynthetic characteristics in barley plants under ambient and elevated CO2 concentrations. Biol Planta. 2010;54:285–92.

    CAS  Google Scholar 

  • Rollins J, Habte E, Templer S, Colby T, Schmidt J, von Korff M. Leaf proteome alterations in the context of physiological and morphological responses to drought and heat stress in barley (Hordeum vulgare L.). J Exp Bot. 2013;64:3201–12.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Romero J, Marañón T. Long-term responses of Melilotus segetalis to salinity. I. Growth and partitioning. Plant Cell Environ. 1994;17:1243–8.

    Google Scholar 

  • Rostoks N, Mudie S, Cardle L, Russell J, Ramsay L, Booth A, Svensson JT, Wanamaker SI, Walia H, Rodriguez EM. Genome-wide SNP discovery and linkage analysis in barley based on genes responsive to abiotic stress. Mol Genet Genomics. 2005;274:515–27.

    CAS  PubMed  Google Scholar 

  • Rubio-Somoza I, Weigel D. MicroRNA networks and developmental plasticity in plants. Trends Plant Sci. 2011;16:258–64.

    CAS  PubMed  Google Scholar 

  • Sadras VO. Evolutionary aspects of the trade-off between seed size and number in crops. Field Crops Res. 2007;100:125–38.

    Google Scholar 

  • Sairam R, Tyagi A. Physiology and molecular biology of salinity stress tolerance in plants. Curr Sci Bangalore. 2004;86:407–21.

    CAS  Google Scholar 

  • Samarah NH. Effects of drought stress on growth and yield of barley. Agron Sustain Dev. 2005;25:145–9.

    Google Scholar 

  • Scandalios J. Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses. Braz J Medical Biol Res. 2005;38:995–1014.

    CAS  Google Scholar 

  • Schmalenbach I, Le’on J, Pillen K. Identification and verification of QTLs for agronomic traits using wild barley introgression lines. Theor Appl Genet. 2009;118:483–97.

    CAS  PubMed  Google Scholar 

  • Schnaithmann F, Pillen K. Detection of exotic QTLs controlling nitrogen stress tolerance among wild barley introgression lines. Euphytica. 2013;189:1–22.

    Google Scholar 

  • Seckin B, Turkan I, Sekmen AH, Ozfidan C. The role of antioxidant defense systems at differential salt tolerance of Hordeum marinum Huds. (sea barleygrass) and Hordeum vulgare L. (cultivated barley). Environ Exp Bot. 2010;69:76–85.

    CAS  Google Scholar 

  • Shannon M. Breeding, selection, and the genetics of salt tolerance. In: Staples RC, Toeniessen GA, editors. Salinity tolerance in plants. New York: Wiley; 1984. pp. 232–53.

    Google Scholar 

  • Shannon MC, Grieve CM, Francois LE. Whole-plant response to salinity. Plant-environment interactions. New York: Marcel Dekker; 1994. pp. 199–244.

    Google Scholar 

  • Shukla LI, Chinnusamy V, Sunkar R. The role of microRNAs and other endogenous small RNAs in plant stress responses. Biochim Biophys Acta. 2008;1779:743–8.

    CAS  PubMed  Google Scholar 

  • Shulaev V, Cortes D, Miller G, Mittler R. Metabolomics for plant stress response. Physiol Planta. 2008;132:199–208.

    CAS  Google Scholar 

  • Sicher RC, Timlin D, Bailey B. Responses of growth and primary metabolism of water-stressed barley roots to rehydration. J Plant Physiol. 2012;169(7):686–95.

    CAS  PubMed  Google Scholar 

  • Siddique M, Hamid A, Islam M. Drought stress effects on water relations of wheat. Bot Bull Acad Sinica. 2001;41:35–9.

    Google Scholar 

  • Smirnoff N, Cumbes QJ. Hydroxyl radical scavenging activity of compatible solutes. Phytochem. 1989;28:1057–60.

    CAS  Google Scholar 

  • Sohan D, Jasoni R, Zajicek J. Plant-water relations of NaCl and calcium-treated sunflower plants. Environ Exp Bot. 1999;42(2):105–11.

    CAS  Google Scholar 

  • Sunkar R. Micrornas with macro-effects on plant stress responses. In: Davey J (ed.). Seminars in cell & developmental biology. Amsterdam: Elsevier; 2010. pp. 805–11.

    Google Scholar 

  • Suprunova T, Krugman T, Distelfeld A, Fahima T, Nevo E, Korol A. Identification of a novel gene (Hsdr4) involved in water-stress tolerance in wild barley. Plant Mol Biol. 2007;64:17–34.

    CAS  PubMed  Google Scholar 

  • Taiz L, Zeiger E. Stress physiology. In: Taiz L, Zeiger E, editors. Plant physiology. Sunderland: Sinauer Associates; 2006. pp. 671–81.

    Google Scholar 

  • Talame’ V, Ozturk ZN, Bohnert HJ, Tuberosa R. Barley transcript profiles under dehydration shock and drought stress treatments: a comparative analysis. J Exp Bot. 2007;58:229–40.

    Google Scholar 

  • Talame V, Sanguineti MC, Chiapparino E, Bahri H, Salem MB, Forster BP, Ellis RP, Rhouma S, Zoumarou W, Waugh R, Tuberosa R. Identification ofHordeum spontaneumQTL alleles improving field performance of barley grown under rainfed conditions. Ann Appl Biol. 2004;144:309–19.

    CAS  Google Scholar 

  • Tanksley SD, Nelson JC. Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet. 1996;92:191–203.

    Google Scholar 

  • Tavakkoli E, Fatehi F, Coventry S, Rengasamy P, McDonald GK. Additive effects of Na + and Cl ions on barley growth under salinity stress. J Exp Bot. 2011;62:2189–203.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Termaat A, Munns R. Use of concentrated macronutrient solutions to separate osmotic from NaCl-specific effects on plant growth. Func Plant Biol. 1986;13:509–22.

    CAS  Google Scholar 

  • Teulat B, This D, Khairallah M, Borries C, Ragot C, Sourdille P, Leroy P, Monneveux P, Charrier A. Several QTLs involved in osmotic-adjustment trait variation in barley (Hordeum vulgare L.). Theor Appl Genet. 1998;96:688–98.

    CAS  Google Scholar 

  • Tuberosa R, Salvi S. Genomics approaches to improve drought tolerance in crops. Trends Plant Sci. 2006;11:405–12.

    CAS  PubMed  Google Scholar 

  • Tuteja A, Choi W, Ma M, Mabry JM, Mazzella SA, Rutledge GC, McKinley GH, Cohen RE. Designing superoleophobic surfaces. Science. 2007;318:1618–22.

    CAS  PubMed  Google Scholar 

  • Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J. A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science. 2006;314:1298–301.

    CAS  PubMed  Google Scholar 

  • Urano K, Kurihara Y, Seki M, Shinozaki K. ‘Omics’ analyses of regulatory networks in plant abiotic stress responses. Curr Opin Plant Biol. 2010;13:132–8.

    CAS  PubMed  Google Scholar 

  • Volis S, Mendlinger S, Orlovsky N. Variability in phenotypic traits in core and peripheral populations of wild barley Hordeum spontaneum Koch. Hereditas. 2000;133:235–47.

    CAS  PubMed  Google Scholar 

  • Vysotskaya L, Hedley PE, Sharipova G, Veselov D, Kudoyarova G, Morris J, Jones HG. Effect of salinity on water relations of wild barley plants differing in salt tolerance. AoB Plants. 2010. doi:10.1093/aobpla/plq006.

    Google Scholar 

  • Wang Y, Nil N. Changes in chlorophyll, ribulose biphosphate carboxylase-oxygenase, glycine betaine content, photosynthesis and transpiration in Amaranthus tricolor leaves during salt stress. J Hortic Sci Biotechnol. 2000;75:623–27.

    Google Scholar 

  • Wang B, Chee PW. Application of advanced backcross quantitative trait locus (QTL) analysis in crop improvement. J Plant Breed Crop Sci. 2010;2:221–32.

    CAS  Google Scholar 

  • Wardlaw I, Willenbrink J. Mobilization of fructan reserves and changes in enzyme activities in wheat stems correlate with water stress during kernel filling. New Phytol. 2000;148:413–22.

    CAS  Google Scholar 

  • Waugh R, Jannink JL, Muehlbauer GJ, Ramsay L. The emergence of whole genome association scans in barley. Currt Opin. Plant Biol. 2009;12:218–22.

    CAS  Google Scholar 

  • Widodo, Patterson JH, Newbigin E, Tester M, Baci A. Metabolic responses to salt stress of barley (Hordeum vulgare L.) cultivars, Sahara and Clipper, which differ in salinity tolerance. J Exp Bot. 2009;60:4089–103.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Witzel K, Weidner A, Surabhi GK, Varshney RK, Kunze G, BuckSorlin GH, Borner A, Mock HP. Comparative analysis of the grain proteome fraction in barley genotypes with contrasting salinity tolerance during germination. Plant Cell Environ. 2009;33:211–22.

    PubMed  Google Scholar 

  • Wu D, Cai S, Chen M, Ye L, Chen Z, Zhang H, Dai F, Wu FB, Zhang GP. Tissue metabolic responses to salt stress in wild and cultivated barley. PloS ONE. 2013;8:e55431.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xue DW, Huang YZ, Zhang XQ, Wei K, Westcott S, Li CD, Chen MC, Zhang GP, Lance R. Identification of QTLs associated with salinity tolerance at late growth stage in barley. Euphytica. 2009;169:187–96.

    Google Scholar 

  • Xu D, Duan X, Wang B, Hong B, Ho THD, Wu R. Expression of a late embryogenesis related protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol. 1996;110:249–57.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yang F, Xu X, Xiao X, Li C. Responses to drought stress in two poplar species originating from Water & nitrogen use efficiency in plants and crops. Marston, Lincolnshire. UK: 15–16 December 2010; 2009.

    Google Scholar 

  • Yousfi S, Serret MD, Araus JL, Draye X, Foulkes J, Hawkesford M, Murchie E. A comparative effect of salinity and drought on growth, ion concentration and δ13C and δ15N in barley. Associa Appl Biol. 2010;105:73–81.

    Google Scholar 

  • Yousfi S, Serret MD, Márquez AJ, Voltas J, Araus JL. Combined use of δ13C, δ18O and δ15N tracks nitrogen metabolism and genotypic adaptation of durum wheat to salinity and water deficit. New Phytol. 2012;194:230–44.

    CAS  PubMed  Google Scholar 

  • Zahra J, Nazim H, Cai S, Han Y, Wu D, Zhang B, Haider SI, Zhang G. The influence of salinity on cell ultrastructures and photosynthetic apparatus of barley genotypes differing in salt stress tolerance. Acta Physiol Planta. 2014;36(5):1261–9.

    Google Scholar 

  • Zhang J, Jia W, Yang J, Ismail AM. Role of ABA in integrating plant responses to drought and salt stresses. Field Crops Res. 2006a;97:111–9.

    Google Scholar 

  • Zhang B, Pan X, Cobb GP, Anderson TA. Plant microRNA: a small regulatory molecule with big impact. Dev Biol. 2006b;289:3–16.

    CAS  PubMed  Google Scholar 

  • Zhang X, Liu S, Takano T. Overexpression of a mitochondrial ATP synthase small subunit gene (AtMtATP6) confers tolerance to several abiotic stresses in Saccharomyces cerevisiae and Arabidopsis thaliana. Biotech Lett. 2008;30:1289–94.

    Google Scholar 

  • Zhang H, Han B, Wang T, Chen SX, Li HY. Mechanisms of plant salt response, insights from proteomics. J Proteome Res. 2012;11:49–67.

    PubMed  Google Scholar 

  • Zhao J, Sun H, Dai H, Zhang G, Wu F. Difference in response to drought stress among Tibet wild barley genotypes. Euphytica. 2010;172:395–403.

    CAS  Google Scholar 

  • Zhou M, Li D, Li Z, Hu Q, Yang C, Zhu L, Luo H. Constitutive expression of a miR319 gene alters plant development and enhances salt and drought tolerance in transgenic creeping bentgrass. Plant Physiol. 2013;161:1375–91.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feibo Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ahmed, I., Nadira, U., Bibi, N., Zhang, G., Wu, F. (2015). Tolerance to Combined Stress of Drought and Salinity in Barley. In: Mahalingam, R. (eds) Combined Stresses in Plants. Springer, Cham. https://doi.org/10.1007/978-3-319-07899-1_5

Download citation

Publish with us

Policies and ethics

Morty Proxy This is a proxified and sanitized view of the page, visit original site.