| 1 | // SPDX-License-Identifier: GPL-2.0-only |
| 2 | /* |
| 3 | * lib/bitmap.c |
| 4 | * Helper functions for bitmap.h. |
| 5 | */ |
| 6 | |
| 7 | #include <linux/bitmap.h> |
| 8 | #include <linux/bitops.h> |
| 9 | #include <linux/ctype.h> |
| 10 | #include <linux/device.h> |
| 11 | #include <linux/export.h> |
| 12 | #include <linux/slab.h> |
| 13 | |
| 14 | /** |
| 15 | * DOC: bitmap introduction |
| 16 | * |
| 17 | * bitmaps provide an array of bits, implemented using an |
| 18 | * array of unsigned longs. The number of valid bits in a |
| 19 | * given bitmap does _not_ need to be an exact multiple of |
| 20 | * BITS_PER_LONG. |
| 21 | * |
| 22 | * The possible unused bits in the last, partially used word |
| 23 | * of a bitmap are 'don't care'. The implementation makes |
| 24 | * no particular effort to keep them zero. It ensures that |
| 25 | * their value will not affect the results of any operation. |
| 26 | * The bitmap operations that return Boolean (bitmap_empty, |
| 27 | * for example) or scalar (bitmap_weight, for example) results |
| 28 | * carefully filter out these unused bits from impacting their |
| 29 | * results. |
| 30 | * |
| 31 | * The byte ordering of bitmaps is more natural on little |
| 32 | * endian architectures. See the big-endian headers |
| 33 | * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h |
| 34 | * for the best explanations of this ordering. |
| 35 | */ |
| 36 | |
| 37 | bool __bitmap_equal(const unsigned long *bitmap1, |
| 38 | const unsigned long *bitmap2, unsigned int bits) |
| 39 | { |
| 40 | unsigned int k, lim = bits/BITS_PER_LONG; |
| 41 | for (k = 0; k < lim; ++k) |
| 42 | if (bitmap1[k] != bitmap2[k]) |
| 43 | return false; |
| 44 | |
| 45 | if (bits % BITS_PER_LONG) |
| 46 | if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) |
| 47 | return false; |
| 48 | |
| 49 | return true; |
| 50 | } |
| 51 | EXPORT_SYMBOL(__bitmap_equal); |
| 52 | |
| 53 | bool __bitmap_or_equal(const unsigned long *bitmap1, |
| 54 | const unsigned long *bitmap2, |
| 55 | const unsigned long *bitmap3, |
| 56 | unsigned int bits) |
| 57 | { |
| 58 | unsigned int k, lim = bits / BITS_PER_LONG; |
| 59 | unsigned long tmp; |
| 60 | |
| 61 | for (k = 0; k < lim; ++k) { |
| 62 | if ((bitmap1[k] | bitmap2[k]) != bitmap3[k]) |
| 63 | return false; |
| 64 | } |
| 65 | |
| 66 | if (!(bits % BITS_PER_LONG)) |
| 67 | return true; |
| 68 | |
| 69 | tmp = (bitmap1[k] | bitmap2[k]) ^ bitmap3[k]; |
| 70 | return (tmp & BITMAP_LAST_WORD_MASK(bits)) == 0; |
| 71 | } |
| 72 | |
| 73 | void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits) |
| 74 | { |
| 75 | unsigned int k, lim = BITS_TO_LONGS(bits); |
| 76 | for (k = 0; k < lim; ++k) |
| 77 | dst[k] = ~src[k]; |
| 78 | } |
| 79 | EXPORT_SYMBOL(__bitmap_complement); |
| 80 | |
| 81 | /** |
| 82 | * __bitmap_shift_right - logical right shift of the bits in a bitmap |
| 83 | * @dst : destination bitmap |
| 84 | * @src : source bitmap |
| 85 | * @shift : shift by this many bits |
| 86 | * @nbits : bitmap size, in bits |
| 87 | * |
| 88 | * Shifting right (dividing) means moving bits in the MS -> LS bit |
| 89 | * direction. Zeros are fed into the vacated MS positions and the |
| 90 | * LS bits shifted off the bottom are lost. |
| 91 | */ |
| 92 | void __bitmap_shift_right(unsigned long *dst, const unsigned long *src, |
| 93 | unsigned shift, unsigned nbits) |
| 94 | { |
| 95 | unsigned k, lim = BITS_TO_LONGS(nbits); |
| 96 | unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG; |
| 97 | unsigned long mask = BITMAP_LAST_WORD_MASK(nbits); |
| 98 | for (k = 0; off + k < lim; ++k) { |
| 99 | unsigned long upper, lower; |
| 100 | |
| 101 | /* |
| 102 | * If shift is not word aligned, take lower rem bits of |
| 103 | * word above and make them the top rem bits of result. |
| 104 | */ |
| 105 | if (!rem || off + k + 1 >= lim) |
| 106 | upper = 0; |
| 107 | else { |
| 108 | upper = src[off + k + 1]; |
| 109 | if (off + k + 1 == lim - 1) |
| 110 | upper &= mask; |
| 111 | upper <<= (BITS_PER_LONG - rem); |
| 112 | } |
| 113 | lower = src[off + k]; |
| 114 | if (off + k == lim - 1) |
| 115 | lower &= mask; |
| 116 | lower >>= rem; |
| 117 | dst[k] = lower | upper; |
| 118 | } |
| 119 | if (off) |
| 120 | memset(&dst[lim - off], 0, off*sizeof(unsigned long)); |
| 121 | } |
| 122 | EXPORT_SYMBOL(__bitmap_shift_right); |
| 123 | |
| 124 | |
| 125 | /** |
| 126 | * __bitmap_shift_left - logical left shift of the bits in a bitmap |
| 127 | * @dst : destination bitmap |
| 128 | * @src : source bitmap |
| 129 | * @shift : shift by this many bits |
| 130 | * @nbits : bitmap size, in bits |
| 131 | * |
| 132 | * Shifting left (multiplying) means moving bits in the LS -> MS |
| 133 | * direction. Zeros are fed into the vacated LS bit positions |
| 134 | * and those MS bits shifted off the top are lost. |
| 135 | */ |
| 136 | |
| 137 | void __bitmap_shift_left(unsigned long *dst, const unsigned long *src, |
| 138 | unsigned int shift, unsigned int nbits) |
| 139 | { |
| 140 | int k; |
| 141 | unsigned int lim = BITS_TO_LONGS(nbits); |
| 142 | unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG; |
| 143 | for (k = lim - off - 1; k >= 0; --k) { |
| 144 | unsigned long upper, lower; |
| 145 | |
| 146 | /* |
| 147 | * If shift is not word aligned, take upper rem bits of |
| 148 | * word below and make them the bottom rem bits of result. |
| 149 | */ |
| 150 | if (rem && k > 0) |
| 151 | lower = src[k - 1] >> (BITS_PER_LONG - rem); |
| 152 | else |
| 153 | lower = 0; |
| 154 | upper = src[k] << rem; |
| 155 | dst[k + off] = lower | upper; |
| 156 | } |
| 157 | if (off) |
| 158 | memset(dst, 0, off*sizeof(unsigned long)); |
| 159 | } |
| 160 | EXPORT_SYMBOL(__bitmap_shift_left); |
| 161 | |
| 162 | /** |
| 163 | * bitmap_cut() - remove bit region from bitmap and right shift remaining bits |
| 164 | * @dst: destination bitmap, might overlap with src |
| 165 | * @src: source bitmap |
| 166 | * @first: start bit of region to be removed |
| 167 | * @cut: number of bits to remove |
| 168 | * @nbits: bitmap size, in bits |
| 169 | * |
| 170 | * Set the n-th bit of @dst iff the n-th bit of @src is set and |
| 171 | * n is less than @first, or the m-th bit of @src is set for any |
| 172 | * m such that @first <= n < nbits, and m = n + @cut. |
| 173 | * |
| 174 | * In pictures, example for a big-endian 32-bit architecture: |
| 175 | * |
| 176 | * The @src bitmap is:: |
| 177 | * |
| 178 | * 31 63 |
| 179 | * | | |
| 180 | * 10000000 11000001 11110010 00010101 10000000 11000001 01110010 00010101 |
| 181 | * | | | | |
| 182 | * 16 14 0 32 |
| 183 | * |
| 184 | * if @cut is 3, and @first is 14, bits 14-16 in @src are cut and @dst is:: |
| 185 | * |
| 186 | * 31 63 |
| 187 | * | | |
| 188 | * 10110000 00011000 00110010 00010101 00010000 00011000 00101110 01000010 |
| 189 | * | | | |
| 190 | * 14 (bit 17 0 32 |
| 191 | * from @src) |
| 192 | * |
| 193 | * Note that @dst and @src might overlap partially or entirely. |
| 194 | * |
| 195 | * This is implemented in the obvious way, with a shift and carry |
| 196 | * step for each moved bit. Optimisation is left as an exercise |
| 197 | * for the compiler. |
| 198 | */ |
| 199 | void bitmap_cut(unsigned long *dst, const unsigned long *src, |
| 200 | unsigned int first, unsigned int cut, unsigned int nbits) |
| 201 | { |
| 202 | unsigned int len = BITS_TO_LONGS(nbits); |
| 203 | unsigned long keep = 0, carry; |
| 204 | int i; |
| 205 | |
| 206 | if (first % BITS_PER_LONG) { |
| 207 | keep = src[first / BITS_PER_LONG] & |
| 208 | (~0UL >> (BITS_PER_LONG - first % BITS_PER_LONG)); |
| 209 | } |
| 210 | |
| 211 | memmove(dst, src, len * sizeof(*dst)); |
| 212 | |
| 213 | while (cut--) { |
| 214 | for (i = first / BITS_PER_LONG; i < len; i++) { |
| 215 | if (i < len - 1) |
| 216 | carry = dst[i + 1] & 1UL; |
| 217 | else |
| 218 | carry = 0; |
| 219 | |
| 220 | dst[i] = (dst[i] >> 1) | (carry << (BITS_PER_LONG - 1)); |
| 221 | } |
| 222 | } |
| 223 | |
| 224 | dst[first / BITS_PER_LONG] &= ~0UL << (first % BITS_PER_LONG); |
| 225 | dst[first / BITS_PER_LONG] |= keep; |
| 226 | } |
| 227 | EXPORT_SYMBOL(bitmap_cut); |
| 228 | |
| 229 | bool __bitmap_and(unsigned long *dst, const unsigned long *bitmap1, |
| 230 | const unsigned long *bitmap2, unsigned int bits) |
| 231 | { |
| 232 | unsigned int k; |
| 233 | unsigned int lim = bits/BITS_PER_LONG; |
| 234 | unsigned long result = 0; |
| 235 | |
| 236 | for (k = 0; k < lim; k++) |
| 237 | result |= (dst[k] = bitmap1[k] & bitmap2[k]); |
| 238 | if (bits % BITS_PER_LONG) |
| 239 | result |= (dst[k] = bitmap1[k] & bitmap2[k] & |
| 240 | BITMAP_LAST_WORD_MASK(bits)); |
| 241 | return result != 0; |
| 242 | } |
| 243 | EXPORT_SYMBOL(__bitmap_and); |
| 244 | |
| 245 | void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1, |
| 246 | const unsigned long *bitmap2, unsigned int bits) |
| 247 | { |
| 248 | unsigned int k; |
| 249 | unsigned int nr = BITS_TO_LONGS(bits); |
| 250 | |
| 251 | for (k = 0; k < nr; k++) |
| 252 | dst[k] = bitmap1[k] | bitmap2[k]; |
| 253 | } |
| 254 | EXPORT_SYMBOL(__bitmap_or); |
| 255 | |
| 256 | void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1, |
| 257 | const unsigned long *bitmap2, unsigned int bits) |
| 258 | { |
| 259 | unsigned int k; |
| 260 | unsigned int nr = BITS_TO_LONGS(bits); |
| 261 | |
| 262 | for (k = 0; k < nr; k++) |
| 263 | dst[k] = bitmap1[k] ^ bitmap2[k]; |
| 264 | } |
| 265 | EXPORT_SYMBOL(__bitmap_xor); |
| 266 | |
| 267 | bool __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1, |
| 268 | const unsigned long *bitmap2, unsigned int bits) |
| 269 | { |
| 270 | unsigned int k; |
| 271 | unsigned int lim = bits/BITS_PER_LONG; |
| 272 | unsigned long result = 0; |
| 273 | |
| 274 | for (k = 0; k < lim; k++) |
| 275 | result |= (dst[k] = bitmap1[k] & ~bitmap2[k]); |
| 276 | if (bits % BITS_PER_LONG) |
| 277 | result |= (dst[k] = bitmap1[k] & ~bitmap2[k] & |
| 278 | BITMAP_LAST_WORD_MASK(bits)); |
| 279 | return result != 0; |
| 280 | } |
| 281 | EXPORT_SYMBOL(__bitmap_andnot); |
| 282 | |
| 283 | void __bitmap_replace(unsigned long *dst, |
| 284 | const unsigned long *old, const unsigned long *new, |
| 285 | const unsigned long *mask, unsigned int nbits) |
| 286 | { |
| 287 | unsigned int k; |
| 288 | unsigned int nr = BITS_TO_LONGS(nbits); |
| 289 | |
| 290 | for (k = 0; k < nr; k++) |
| 291 | dst[k] = (old[k] & ~mask[k]) | (new[k] & mask[k]); |
| 292 | } |
| 293 | EXPORT_SYMBOL(__bitmap_replace); |
| 294 | |
| 295 | bool __bitmap_intersects(const unsigned long *bitmap1, |
| 296 | const unsigned long *bitmap2, unsigned int bits) |
| 297 | { |
| 298 | unsigned int k, lim = bits/BITS_PER_LONG; |
| 299 | for (k = 0; k < lim; ++k) |
| 300 | if (bitmap1[k] & bitmap2[k]) |
| 301 | return true; |
| 302 | |
| 303 | if (bits % BITS_PER_LONG) |
| 304 | if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) |
| 305 | return true; |
| 306 | return false; |
| 307 | } |
| 308 | EXPORT_SYMBOL(__bitmap_intersects); |
| 309 | |
| 310 | bool __bitmap_subset(const unsigned long *bitmap1, |
| 311 | const unsigned long *bitmap2, unsigned int bits) |
| 312 | { |
| 313 | unsigned int k, lim = bits/BITS_PER_LONG; |
| 314 | for (k = 0; k < lim; ++k) |
| 315 | if (bitmap1[k] & ~bitmap2[k]) |
| 316 | return false; |
| 317 | |
| 318 | if (bits % BITS_PER_LONG) |
| 319 | if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) |
| 320 | return false; |
| 321 | return true; |
| 322 | } |
| 323 | EXPORT_SYMBOL(__bitmap_subset); |
| 324 | |
| 325 | #define BITMAP_WEIGHT(FETCH, bits) \ |
| 326 | ({ \ |
| 327 | unsigned int __bits = (bits), idx, w = 0; \ |
| 328 | \ |
| 329 | for (idx = 0; idx < __bits / BITS_PER_LONG; idx++) \ |
| 330 | w += hweight_long(FETCH); \ |
| 331 | \ |
| 332 | if (__bits % BITS_PER_LONG) \ |
| 333 | w += hweight_long((FETCH) & BITMAP_LAST_WORD_MASK(__bits)); \ |
| 334 | \ |
| 335 | w; \ |
| 336 | }) |
| 337 | |
| 338 | unsigned int __bitmap_weight(const unsigned long *bitmap, unsigned int bits) |
| 339 | { |
| 340 | return BITMAP_WEIGHT(bitmap[idx], bits); |
| 341 | } |
| 342 | EXPORT_SYMBOL(__bitmap_weight); |
| 343 | |
| 344 | unsigned int __bitmap_weight_and(const unsigned long *bitmap1, |
| 345 | const unsigned long *bitmap2, unsigned int bits) |
| 346 | { |
| 347 | return BITMAP_WEIGHT(bitmap1[idx] & bitmap2[idx], bits); |
| 348 | } |
| 349 | EXPORT_SYMBOL(__bitmap_weight_and); |
| 350 | |
| 351 | unsigned int __bitmap_weight_andnot(const unsigned long *bitmap1, |
| 352 | const unsigned long *bitmap2, unsigned int bits) |
| 353 | { |
| 354 | return BITMAP_WEIGHT(bitmap1[idx] & ~bitmap2[idx], bits); |
| 355 | } |
| 356 | EXPORT_SYMBOL(__bitmap_weight_andnot); |
| 357 | |
| 358 | void __bitmap_set(unsigned long *map, unsigned int start, int len) |
| 359 | { |
| 360 | unsigned long *p = map + BIT_WORD(start); |
| 361 | const unsigned int size = start + len; |
| 362 | int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG); |
| 363 | unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start); |
| 364 | |
| 365 | while (len - bits_to_set >= 0) { |
| 366 | *p |= mask_to_set; |
| 367 | len -= bits_to_set; |
| 368 | bits_to_set = BITS_PER_LONG; |
| 369 | mask_to_set = ~0UL; |
| 370 | p++; |
| 371 | } |
| 372 | if (len) { |
| 373 | mask_to_set &= BITMAP_LAST_WORD_MASK(size); |
| 374 | *p |= mask_to_set; |
| 375 | } |
| 376 | } |
| 377 | EXPORT_SYMBOL(__bitmap_set); |
| 378 | |
| 379 | void __bitmap_clear(unsigned long *map, unsigned int start, int len) |
| 380 | { |
| 381 | unsigned long *p = map + BIT_WORD(start); |
| 382 | const unsigned int size = start + len; |
| 383 | int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG); |
| 384 | unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start); |
| 385 | |
| 386 | while (len - bits_to_clear >= 0) { |
| 387 | *p &= ~mask_to_clear; |
| 388 | len -= bits_to_clear; |
| 389 | bits_to_clear = BITS_PER_LONG; |
| 390 | mask_to_clear = ~0UL; |
| 391 | p++; |
| 392 | } |
| 393 | if (len) { |
| 394 | mask_to_clear &= BITMAP_LAST_WORD_MASK(size); |
| 395 | *p &= ~mask_to_clear; |
| 396 | } |
| 397 | } |
| 398 | EXPORT_SYMBOL(__bitmap_clear); |
| 399 | |
| 400 | /** |
| 401 | * bitmap_find_next_zero_area_off - find a contiguous aligned zero area |
| 402 | * @map: The address to base the search on |
| 403 | * @size: The bitmap size in bits |
| 404 | * @start: The bitnumber to start searching at |
| 405 | * @nr: The number of zeroed bits we're looking for |
| 406 | * @align_mask: Alignment mask for zero area |
| 407 | * @align_offset: Alignment offset for zero area. |
| 408 | * |
| 409 | * The @align_mask should be one less than a power of 2; the effect is that |
| 410 | * the bit offset of all zero areas this function finds plus @align_offset |
| 411 | * is multiple of that power of 2. |
| 412 | */ |
| 413 | unsigned long bitmap_find_next_zero_area_off(unsigned long *map, |
| 414 | unsigned long size, |
| 415 | unsigned long start, |
| 416 | unsigned int nr, |
| 417 | unsigned long align_mask, |
| 418 | unsigned long align_offset) |
| 419 | { |
| 420 | unsigned long index, end, i; |
| 421 | again: |
| 422 | index = find_next_zero_bit(addr: map, size, offset: start); |
| 423 | |
| 424 | /* Align allocation */ |
| 425 | index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset; |
| 426 | |
| 427 | end = index + nr; |
| 428 | if (end > size) |
| 429 | return end; |
| 430 | i = find_next_bit(addr: map, size: end, offset: index); |
| 431 | if (i < end) { |
| 432 | start = i + 1; |
| 433 | goto again; |
| 434 | } |
| 435 | return index; |
| 436 | } |
| 437 | EXPORT_SYMBOL(bitmap_find_next_zero_area_off); |
| 438 | |
| 439 | /** |
| 440 | * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap |
| 441 | * @buf: pointer to a bitmap |
| 442 | * @pos: a bit position in @buf (0 <= @pos < @nbits) |
| 443 | * @nbits: number of valid bit positions in @buf |
| 444 | * |
| 445 | * Map the bit at position @pos in @buf (of length @nbits) to the |
| 446 | * ordinal of which set bit it is. If it is not set or if @pos |
| 447 | * is not a valid bit position, map to -1. |
| 448 | * |
| 449 | * If for example, just bits 4 through 7 are set in @buf, then @pos |
| 450 | * values 4 through 7 will get mapped to 0 through 3, respectively, |
| 451 | * and other @pos values will get mapped to -1. When @pos value 7 |
| 452 | * gets mapped to (returns) @ord value 3 in this example, that means |
| 453 | * that bit 7 is the 3rd (starting with 0th) set bit in @buf. |
| 454 | * |
| 455 | * The bit positions 0 through @bits are valid positions in @buf. |
| 456 | */ |
| 457 | static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits) |
| 458 | { |
| 459 | if (pos >= nbits || !test_bit(pos, buf)) |
| 460 | return -1; |
| 461 | |
| 462 | return bitmap_weight(src: buf, nbits: pos); |
| 463 | } |
| 464 | |
| 465 | /** |
| 466 | * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap |
| 467 | * @dst: remapped result |
| 468 | * @src: subset to be remapped |
| 469 | * @old: defines domain of map |
| 470 | * @new: defines range of map |
| 471 | * @nbits: number of bits in each of these bitmaps |
| 472 | * |
| 473 | * Let @old and @new define a mapping of bit positions, such that |
| 474 | * whatever position is held by the n-th set bit in @old is mapped |
| 475 | * to the n-th set bit in @new. In the more general case, allowing |
| 476 | * for the possibility that the weight 'w' of @new is less than the |
| 477 | * weight of @old, map the position of the n-th set bit in @old to |
| 478 | * the position of the m-th set bit in @new, where m == n % w. |
| 479 | * |
| 480 | * If either of the @old and @new bitmaps are empty, or if @src and |
| 481 | * @dst point to the same location, then this routine copies @src |
| 482 | * to @dst. |
| 483 | * |
| 484 | * The positions of unset bits in @old are mapped to themselves |
| 485 | * (the identity map). |
| 486 | * |
| 487 | * Apply the above specified mapping to @src, placing the result in |
| 488 | * @dst, clearing any bits previously set in @dst. |
| 489 | * |
| 490 | * For example, lets say that @old has bits 4 through 7 set, and |
| 491 | * @new has bits 12 through 15 set. This defines the mapping of bit |
| 492 | * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other |
| 493 | * bit positions unchanged. So if say @src comes into this routine |
| 494 | * with bits 1, 5 and 7 set, then @dst should leave with bits 1, |
| 495 | * 13 and 15 set. |
| 496 | */ |
| 497 | void bitmap_remap(unsigned long *dst, const unsigned long *src, |
| 498 | const unsigned long *old, const unsigned long *new, |
| 499 | unsigned int nbits) |
| 500 | { |
| 501 | unsigned int oldbit, w; |
| 502 | |
| 503 | if (dst == src) /* following doesn't handle inplace remaps */ |
| 504 | return; |
| 505 | bitmap_zero(dst, nbits); |
| 506 | |
| 507 | w = bitmap_weight(src: new, nbits); |
| 508 | for_each_set_bit(oldbit, src, nbits) { |
| 509 | int n = bitmap_pos_to_ord(buf: old, pos: oldbit, nbits); |
| 510 | |
| 511 | if (n < 0 || w == 0) |
| 512 | set_bit(nr: oldbit, addr: dst); /* identity map */ |
| 513 | else |
| 514 | set_bit(nr: find_nth_bit(addr: new, size: nbits, n: n % w), addr: dst); |
| 515 | } |
| 516 | } |
| 517 | EXPORT_SYMBOL(bitmap_remap); |
| 518 | |
| 519 | /** |
| 520 | * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit |
| 521 | * @oldbit: bit position to be mapped |
| 522 | * @old: defines domain of map |
| 523 | * @new: defines range of map |
| 524 | * @bits: number of bits in each of these bitmaps |
| 525 | * |
| 526 | * Let @old and @new define a mapping of bit positions, such that |
| 527 | * whatever position is held by the n-th set bit in @old is mapped |
| 528 | * to the n-th set bit in @new. In the more general case, allowing |
| 529 | * for the possibility that the weight 'w' of @new is less than the |
| 530 | * weight of @old, map the position of the n-th set bit in @old to |
| 531 | * the position of the m-th set bit in @new, where m == n % w. |
| 532 | * |
| 533 | * The positions of unset bits in @old are mapped to themselves |
| 534 | * (the identity map). |
| 535 | * |
| 536 | * Apply the above specified mapping to bit position @oldbit, returning |
| 537 | * the new bit position. |
| 538 | * |
| 539 | * For example, lets say that @old has bits 4 through 7 set, and |
| 540 | * @new has bits 12 through 15 set. This defines the mapping of bit |
| 541 | * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other |
| 542 | * bit positions unchanged. So if say @oldbit is 5, then this routine |
| 543 | * returns 13. |
| 544 | */ |
| 545 | int bitmap_bitremap(int oldbit, const unsigned long *old, |
| 546 | const unsigned long *new, int bits) |
| 547 | { |
| 548 | int w = bitmap_weight(src: new, nbits: bits); |
| 549 | int n = bitmap_pos_to_ord(buf: old, pos: oldbit, nbits: bits); |
| 550 | if (n < 0 || w == 0) |
| 551 | return oldbit; |
| 552 | else |
| 553 | return find_nth_bit(addr: new, size: bits, n: n % w); |
| 554 | } |
| 555 | EXPORT_SYMBOL(bitmap_bitremap); |
| 556 | |
| 557 | #ifdef CONFIG_NUMA |
| 558 | /** |
| 559 | * bitmap_onto - translate one bitmap relative to another |
| 560 | * @dst: resulting translated bitmap |
| 561 | * @orig: original untranslated bitmap |
| 562 | * @relmap: bitmap relative to which translated |
| 563 | * @bits: number of bits in each of these bitmaps |
| 564 | * |
| 565 | * Set the n-th bit of @dst iff there exists some m such that the |
| 566 | * n-th bit of @relmap is set, the m-th bit of @orig is set, and |
| 567 | * the n-th bit of @relmap is also the m-th _set_ bit of @relmap. |
| 568 | * (If you understood the previous sentence the first time your |
| 569 | * read it, you're overqualified for your current job.) |
| 570 | * |
| 571 | * In other words, @orig is mapped onto (surjectively) @dst, |
| 572 | * using the map { <n, m> | the n-th bit of @relmap is the |
| 573 | * m-th set bit of @relmap }. |
| 574 | * |
| 575 | * Any set bits in @orig above bit number W, where W is the |
| 576 | * weight of (number of set bits in) @relmap are mapped nowhere. |
| 577 | * In particular, if for all bits m set in @orig, m >= W, then |
| 578 | * @dst will end up empty. In situations where the possibility |
| 579 | * of such an empty result is not desired, one way to avoid it is |
| 580 | * to use the bitmap_fold() operator, below, to first fold the |
| 581 | * @orig bitmap over itself so that all its set bits x are in the |
| 582 | * range 0 <= x < W. The bitmap_fold() operator does this by |
| 583 | * setting the bit (m % W) in @dst, for each bit (m) set in @orig. |
| 584 | * |
| 585 | * Example [1] for bitmap_onto(): |
| 586 | * Let's say @relmap has bits 30-39 set, and @orig has bits |
| 587 | * 1, 3, 5, 7, 9 and 11 set. Then on return from this routine, |
| 588 | * @dst will have bits 31, 33, 35, 37 and 39 set. |
| 589 | * |
| 590 | * When bit 0 is set in @orig, it means turn on the bit in |
| 591 | * @dst corresponding to whatever is the first bit (if any) |
| 592 | * that is turned on in @relmap. Since bit 0 was off in the |
| 593 | * above example, we leave off that bit (bit 30) in @dst. |
| 594 | * |
| 595 | * When bit 1 is set in @orig (as in the above example), it |
| 596 | * means turn on the bit in @dst corresponding to whatever |
| 597 | * is the second bit that is turned on in @relmap. The second |
| 598 | * bit in @relmap that was turned on in the above example was |
| 599 | * bit 31, so we turned on bit 31 in @dst. |
| 600 | * |
| 601 | * Similarly, we turned on bits 33, 35, 37 and 39 in @dst, |
| 602 | * because they were the 4th, 6th, 8th and 10th set bits |
| 603 | * set in @relmap, and the 4th, 6th, 8th and 10th bits of |
| 604 | * @orig (i.e. bits 3, 5, 7 and 9) were also set. |
| 605 | * |
| 606 | * When bit 11 is set in @orig, it means turn on the bit in |
| 607 | * @dst corresponding to whatever is the twelfth bit that is |
| 608 | * turned on in @relmap. In the above example, there were |
| 609 | * only ten bits turned on in @relmap (30..39), so that bit |
| 610 | * 11 was set in @orig had no affect on @dst. |
| 611 | * |
| 612 | * Example [2] for bitmap_fold() + bitmap_onto(): |
| 613 | * Let's say @relmap has these ten bits set:: |
| 614 | * |
| 615 | * 40 41 42 43 45 48 53 61 74 95 |
| 616 | * |
| 617 | * (for the curious, that's 40 plus the first ten terms of the |
| 618 | * Fibonacci sequence.) |
| 619 | * |
| 620 | * Further lets say we use the following code, invoking |
| 621 | * bitmap_fold() then bitmap_onto, as suggested above to |
| 622 | * avoid the possibility of an empty @dst result:: |
| 623 | * |
| 624 | * unsigned long *tmp; // a temporary bitmap's bits |
| 625 | * |
| 626 | * bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits); |
| 627 | * bitmap_onto(dst, tmp, relmap, bits); |
| 628 | * |
| 629 | * Then this table shows what various values of @dst would be, for |
| 630 | * various @orig's. I list the zero-based positions of each set bit. |
| 631 | * The tmp column shows the intermediate result, as computed by |
| 632 | * using bitmap_fold() to fold the @orig bitmap modulo ten |
| 633 | * (the weight of @relmap): |
| 634 | * |
| 635 | * =============== ============== ================= |
| 636 | * @orig tmp @dst |
| 637 | * 0 0 40 |
| 638 | * 1 1 41 |
| 639 | * 9 9 95 |
| 640 | * 10 0 40 [#f1]_ |
| 641 | * 1 3 5 7 1 3 5 7 41 43 48 61 |
| 642 | * 0 1 2 3 4 0 1 2 3 4 40 41 42 43 45 |
| 643 | * 0 9 18 27 0 9 8 7 40 61 74 95 |
| 644 | * 0 10 20 30 0 40 |
| 645 | * 0 11 22 33 0 1 2 3 40 41 42 43 |
| 646 | * 0 12 24 36 0 2 4 6 40 42 45 53 |
| 647 | * 78 102 211 1 2 8 41 42 74 [#f1]_ |
| 648 | * =============== ============== ================= |
| 649 | * |
| 650 | * .. [#f1] |
| 651 | * |
| 652 | * For these marked lines, if we hadn't first done bitmap_fold() |
| 653 | * into tmp, then the @dst result would have been empty. |
| 654 | * |
| 655 | * If either of @orig or @relmap is empty (no set bits), then @dst |
| 656 | * will be returned empty. |
| 657 | * |
| 658 | * If (as explained above) the only set bits in @orig are in positions |
| 659 | * m where m >= W, (where W is the weight of @relmap) then @dst will |
| 660 | * once again be returned empty. |
| 661 | * |
| 662 | * All bits in @dst not set by the above rule are cleared. |
| 663 | */ |
| 664 | void bitmap_onto(unsigned long *dst, const unsigned long *orig, |
| 665 | const unsigned long *relmap, unsigned int bits) |
| 666 | { |
| 667 | unsigned int n, m; /* same meaning as in above comment */ |
| 668 | |
| 669 | if (dst == orig) /* following doesn't handle inplace mappings */ |
| 670 | return; |
| 671 | bitmap_zero(dst, nbits: bits); |
| 672 | |
| 673 | /* |
| 674 | * The following code is a more efficient, but less |
| 675 | * obvious, equivalent to the loop: |
| 676 | * for (m = 0; m < bitmap_weight(relmap, bits); m++) { |
| 677 | * n = find_nth_bit(orig, bits, m); |
| 678 | * if (test_bit(m, orig)) |
| 679 | * set_bit(n, dst); |
| 680 | * } |
| 681 | */ |
| 682 | |
| 683 | m = 0; |
| 684 | for_each_set_bit(n, relmap, bits) { |
| 685 | /* m == bitmap_pos_to_ord(relmap, n, bits) */ |
| 686 | if (test_bit(m, orig)) |
| 687 | set_bit(nr: n, addr: dst); |
| 688 | m++; |
| 689 | } |
| 690 | } |
| 691 | |
| 692 | /** |
| 693 | * bitmap_fold - fold larger bitmap into smaller, modulo specified size |
| 694 | * @dst: resulting smaller bitmap |
| 695 | * @orig: original larger bitmap |
| 696 | * @sz: specified size |
| 697 | * @nbits: number of bits in each of these bitmaps |
| 698 | * |
| 699 | * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst. |
| 700 | * Clear all other bits in @dst. See further the comment and |
| 701 | * Example [2] for bitmap_onto() for why and how to use this. |
| 702 | */ |
| 703 | void bitmap_fold(unsigned long *dst, const unsigned long *orig, |
| 704 | unsigned int sz, unsigned int nbits) |
| 705 | { |
| 706 | unsigned int oldbit; |
| 707 | |
| 708 | if (dst == orig) /* following doesn't handle inplace mappings */ |
| 709 | return; |
| 710 | bitmap_zero(dst, nbits); |
| 711 | |
| 712 | for_each_set_bit(oldbit, orig, nbits) |
| 713 | set_bit(nr: oldbit % sz, addr: dst); |
| 714 | } |
| 715 | #endif /* CONFIG_NUMA */ |
| 716 | |
| 717 | unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags) |
| 718 | { |
| 719 | return kmalloc_array(BITS_TO_LONGS(nbits), sizeof(unsigned long), |
| 720 | flags); |
| 721 | } |
| 722 | EXPORT_SYMBOL(bitmap_alloc); |
| 723 | |
| 724 | unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags) |
| 725 | { |
| 726 | return bitmap_alloc(nbits, flags | __GFP_ZERO); |
| 727 | } |
| 728 | EXPORT_SYMBOL(bitmap_zalloc); |
| 729 | |
| 730 | unsigned long *bitmap_alloc_node(unsigned int nbits, gfp_t flags, int node) |
| 731 | { |
| 732 | return kmalloc_array_node(BITS_TO_LONGS(nbits), sizeof(unsigned long), |
| 733 | flags, node); |
| 734 | } |
| 735 | EXPORT_SYMBOL(bitmap_alloc_node); |
| 736 | |
| 737 | unsigned long *bitmap_zalloc_node(unsigned int nbits, gfp_t flags, int node) |
| 738 | { |
| 739 | return bitmap_alloc_node(nbits, flags | __GFP_ZERO, node); |
| 740 | } |
| 741 | EXPORT_SYMBOL(bitmap_zalloc_node); |
| 742 | |
| 743 | void bitmap_free(const unsigned long *bitmap) |
| 744 | { |
| 745 | kfree(objp: bitmap); |
| 746 | } |
| 747 | EXPORT_SYMBOL(bitmap_free); |
| 748 | |
| 749 | static void devm_bitmap_free(void *data) |
| 750 | { |
| 751 | unsigned long *bitmap = data; |
| 752 | |
| 753 | bitmap_free(bitmap); |
| 754 | } |
| 755 | |
| 756 | unsigned long *devm_bitmap_alloc(struct device *dev, |
| 757 | unsigned int nbits, gfp_t flags) |
| 758 | { |
| 759 | unsigned long *bitmap; |
| 760 | int ret; |
| 761 | |
| 762 | bitmap = bitmap_alloc(nbits, flags); |
| 763 | if (!bitmap) |
| 764 | return NULL; |
| 765 | |
| 766 | ret = devm_add_action_or_reset(dev, devm_bitmap_free, bitmap); |
| 767 | if (ret) |
| 768 | return NULL; |
| 769 | |
| 770 | return bitmap; |
| 771 | } |
| 772 | EXPORT_SYMBOL_GPL(devm_bitmap_alloc); |
| 773 | |
| 774 | unsigned long *devm_bitmap_zalloc(struct device *dev, |
| 775 | unsigned int nbits, gfp_t flags) |
| 776 | { |
| 777 | return devm_bitmap_alloc(dev, nbits, flags | __GFP_ZERO); |
| 778 | } |
| 779 | EXPORT_SYMBOL_GPL(devm_bitmap_zalloc); |
| 780 | |
| 781 | #if BITS_PER_LONG == 64 |
| 782 | /** |
| 783 | * bitmap_from_arr32 - copy the contents of u32 array of bits to bitmap |
| 784 | * @bitmap: array of unsigned longs, the destination bitmap |
| 785 | * @buf: array of u32 (in host byte order), the source bitmap |
| 786 | * @nbits: number of bits in @bitmap |
| 787 | */ |
| 788 | void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf, unsigned int nbits) |
| 789 | { |
| 790 | unsigned int i, halfwords; |
| 791 | |
| 792 | halfwords = DIV_ROUND_UP(nbits, 32); |
| 793 | for (i = 0; i < halfwords; i++) { |
| 794 | bitmap[i/2] = (unsigned long) buf[i]; |
| 795 | if (++i < halfwords) |
| 796 | bitmap[i/2] |= ((unsigned long) buf[i]) << 32; |
| 797 | } |
| 798 | |
| 799 | /* Clear tail bits in last word beyond nbits. */ |
| 800 | if (nbits % BITS_PER_LONG) |
| 801 | bitmap[(halfwords - 1) / 2] &= BITMAP_LAST_WORD_MASK(nbits); |
| 802 | } |
| 803 | EXPORT_SYMBOL(bitmap_from_arr32); |
| 804 | |
| 805 | /** |
| 806 | * bitmap_to_arr32 - copy the contents of bitmap to a u32 array of bits |
| 807 | * @buf: array of u32 (in host byte order), the dest bitmap |
| 808 | * @bitmap: array of unsigned longs, the source bitmap |
| 809 | * @nbits: number of bits in @bitmap |
| 810 | */ |
| 811 | void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap, unsigned int nbits) |
| 812 | { |
| 813 | unsigned int i, halfwords; |
| 814 | |
| 815 | halfwords = DIV_ROUND_UP(nbits, 32); |
| 816 | for (i = 0; i < halfwords; i++) { |
| 817 | buf[i] = (u32) (bitmap[i/2] & UINT_MAX); |
| 818 | if (++i < halfwords) |
| 819 | buf[i] = (u32) (bitmap[i/2] >> 32); |
| 820 | } |
| 821 | |
| 822 | /* Clear tail bits in last element of array beyond nbits. */ |
| 823 | if (nbits % BITS_PER_LONG) |
| 824 | buf[halfwords - 1] &= (u32) (UINT_MAX >> ((-nbits) & 31)); |
| 825 | } |
| 826 | EXPORT_SYMBOL(bitmap_to_arr32); |
| 827 | #endif |
| 828 | |
| 829 | #if BITS_PER_LONG == 32 |
| 830 | /** |
| 831 | * bitmap_from_arr64 - copy the contents of u64 array of bits to bitmap |
| 832 | * @bitmap: array of unsigned longs, the destination bitmap |
| 833 | * @buf: array of u64 (in host byte order), the source bitmap |
| 834 | * @nbits: number of bits in @bitmap |
| 835 | */ |
| 836 | void bitmap_from_arr64(unsigned long *bitmap, const u64 *buf, unsigned int nbits) |
| 837 | { |
| 838 | int n; |
| 839 | |
| 840 | for (n = nbits; n > 0; n -= 64) { |
| 841 | u64 val = *buf++; |
| 842 | |
| 843 | *bitmap++ = val; |
| 844 | if (n > 32) |
| 845 | *bitmap++ = val >> 32; |
| 846 | } |
| 847 | |
| 848 | /* |
| 849 | * Clear tail bits in the last word beyond nbits. |
| 850 | * |
| 851 | * Negative index is OK because here we point to the word next |
| 852 | * to the last word of the bitmap, except for nbits == 0, which |
| 853 | * is tested implicitly. |
| 854 | */ |
| 855 | if (nbits % BITS_PER_LONG) |
| 856 | bitmap[-1] &= BITMAP_LAST_WORD_MASK(nbits); |
| 857 | } |
| 858 | EXPORT_SYMBOL(bitmap_from_arr64); |
| 859 | |
| 860 | /** |
| 861 | * bitmap_to_arr64 - copy the contents of bitmap to a u64 array of bits |
| 862 | * @buf: array of u64 (in host byte order), the dest bitmap |
| 863 | * @bitmap: array of unsigned longs, the source bitmap |
| 864 | * @nbits: number of bits in @bitmap |
| 865 | */ |
| 866 | void bitmap_to_arr64(u64 *buf, const unsigned long *bitmap, unsigned int nbits) |
| 867 | { |
| 868 | const unsigned long *end = bitmap + BITS_TO_LONGS(nbits); |
| 869 | |
| 870 | while (bitmap < end) { |
| 871 | *buf = *bitmap++; |
| 872 | if (bitmap < end) |
| 873 | *buf |= (u64)(*bitmap++) << 32; |
| 874 | buf++; |
| 875 | } |
| 876 | |
| 877 | /* Clear tail bits in the last element of array beyond nbits. */ |
| 878 | if (nbits % 64) |
| 879 | buf[-1] &= GENMASK_ULL((nbits - 1) % 64, 0); |
| 880 | } |
| 881 | EXPORT_SYMBOL(bitmap_to_arr64); |
| 882 | #endif |
| 883 | |