| 1 | /* SPDX-License-Identifier: GPL-2.0 */ |
| 2 | #ifndef _LINUX_SWAPOPS_H |
| 3 | #define _LINUX_SWAPOPS_H |
| 4 | |
| 5 | #include <linux/radix-tree.h> |
| 6 | #include <linux/bug.h> |
| 7 | #include <linux/mm_types.h> |
| 8 | |
| 9 | #ifdef CONFIG_MMU |
| 10 | |
| 11 | #ifdef CONFIG_SWAP |
| 12 | #include <linux/swapfile.h> |
| 13 | #endif /* CONFIG_SWAP */ |
| 14 | |
| 15 | /* |
| 16 | * swapcache pages are stored in the swapper_space radix tree. We want to |
| 17 | * get good packing density in that tree, so the index should be dense in |
| 18 | * the low-order bits. |
| 19 | * |
| 20 | * We arrange the `type' and `offset' fields so that `type' is at the six |
| 21 | * high-order bits of the swp_entry_t and `offset' is right-aligned in the |
| 22 | * remaining bits. Although `type' itself needs only five bits, we allow for |
| 23 | * shmem/tmpfs to shift it all up a further one bit: see swp_to_radix_entry(). |
| 24 | * |
| 25 | * swp_entry_t's are *never* stored anywhere in their arch-dependent format. |
| 26 | */ |
| 27 | #define SWP_TYPE_SHIFT (BITS_PER_XA_VALUE - MAX_SWAPFILES_SHIFT) |
| 28 | #define SWP_OFFSET_MASK ((1UL << SWP_TYPE_SHIFT) - 1) |
| 29 | |
| 30 | /* |
| 31 | * Definitions only for PFN swap entries (see is_pfn_swap_entry()). To |
| 32 | * store PFN, we only need SWP_PFN_BITS bits. Each of the pfn swap entries |
| 33 | * can use the extra bits to store other information besides PFN. |
| 34 | */ |
| 35 | #ifdef MAX_PHYSMEM_BITS |
| 36 | #define SWP_PFN_BITS (MAX_PHYSMEM_BITS - PAGE_SHIFT) |
| 37 | #else /* MAX_PHYSMEM_BITS */ |
| 38 | #define SWP_PFN_BITS min_t(int, \ |
| 39 | sizeof(phys_addr_t) * 8 - PAGE_SHIFT, \ |
| 40 | SWP_TYPE_SHIFT) |
| 41 | #endif /* MAX_PHYSMEM_BITS */ |
| 42 | #define SWP_PFN_MASK (BIT(SWP_PFN_BITS) - 1) |
| 43 | |
| 44 | /** |
| 45 | * Migration swap entry specific bitfield definitions. Layout: |
| 46 | * |
| 47 | * |----------+--------------------| |
| 48 | * | swp_type | swp_offset | |
| 49 | * |----------+--------+-+-+-------| |
| 50 | * | | resv |D|A| PFN | |
| 51 | * |----------+--------+-+-+-------| |
| 52 | * |
| 53 | * @SWP_MIG_YOUNG_BIT: Whether the page used to have young bit set (bit A) |
| 54 | * @SWP_MIG_DIRTY_BIT: Whether the page used to have dirty bit set (bit D) |
| 55 | * |
| 56 | * Note: A/D bits will be stored in migration entries iff there're enough |
| 57 | * free bits in arch specific swp offset. By default we'll ignore A/D bits |
| 58 | * when migrating a page. Please refer to migration_entry_supports_ad() |
| 59 | * for more information. If there're more bits besides PFN and A/D bits, |
| 60 | * they should be reserved and always be zeros. |
| 61 | */ |
| 62 | #define SWP_MIG_YOUNG_BIT (SWP_PFN_BITS) |
| 63 | #define SWP_MIG_DIRTY_BIT (SWP_PFN_BITS + 1) |
| 64 | #define SWP_MIG_TOTAL_BITS (SWP_PFN_BITS + 2) |
| 65 | |
| 66 | #define SWP_MIG_YOUNG BIT(SWP_MIG_YOUNG_BIT) |
| 67 | #define SWP_MIG_DIRTY BIT(SWP_MIG_DIRTY_BIT) |
| 68 | |
| 69 | static inline bool is_pfn_swap_entry(swp_entry_t entry); |
| 70 | |
| 71 | /* Clear all flags but only keep swp_entry_t related information */ |
| 72 | static inline pte_t pte_swp_clear_flags(pte_t pte) |
| 73 | { |
| 74 | if (pte_swp_exclusive(pte)) |
| 75 | pte = pte_swp_clear_exclusive(pte); |
| 76 | if (pte_swp_soft_dirty(pte)) |
| 77 | pte = pte_swp_clear_soft_dirty(pte); |
| 78 | if (pte_swp_uffd_wp(pte)) |
| 79 | pte = pte_swp_clear_uffd_wp(pte); |
| 80 | return pte; |
| 81 | } |
| 82 | |
| 83 | /* |
| 84 | * Store a type+offset into a swp_entry_t in an arch-independent format |
| 85 | */ |
| 86 | static inline swp_entry_t swp_entry(unsigned long type, pgoff_t offset) |
| 87 | { |
| 88 | swp_entry_t ret; |
| 89 | |
| 90 | ret.val = (type << SWP_TYPE_SHIFT) | (offset & SWP_OFFSET_MASK); |
| 91 | return ret; |
| 92 | } |
| 93 | |
| 94 | /* |
| 95 | * Extract the `type' field from a swp_entry_t. The swp_entry_t is in |
| 96 | * arch-independent format |
| 97 | */ |
| 98 | static inline unsigned swp_type(swp_entry_t entry) |
| 99 | { |
| 100 | return (entry.val >> SWP_TYPE_SHIFT); |
| 101 | } |
| 102 | |
| 103 | /* |
| 104 | * Extract the `offset' field from a swp_entry_t. The swp_entry_t is in |
| 105 | * arch-independent format |
| 106 | */ |
| 107 | static inline pgoff_t swp_offset(swp_entry_t entry) |
| 108 | { |
| 109 | return entry.val & SWP_OFFSET_MASK; |
| 110 | } |
| 111 | |
| 112 | /* |
| 113 | * This should only be called upon a pfn swap entry to get the PFN stored |
| 114 | * in the swap entry. Please refers to is_pfn_swap_entry() for definition |
| 115 | * of pfn swap entry. |
| 116 | */ |
| 117 | static inline unsigned long swp_offset_pfn(swp_entry_t entry) |
| 118 | { |
| 119 | VM_BUG_ON(!is_pfn_swap_entry(entry)); |
| 120 | return swp_offset(entry) & SWP_PFN_MASK; |
| 121 | } |
| 122 | |
| 123 | /* check whether a pte points to a swap entry */ |
| 124 | static inline int is_swap_pte(pte_t pte) |
| 125 | { |
| 126 | return !pte_none(pte) && !pte_present(a: pte); |
| 127 | } |
| 128 | |
| 129 | /* |
| 130 | * Convert the arch-dependent pte representation of a swp_entry_t into an |
| 131 | * arch-independent swp_entry_t. |
| 132 | */ |
| 133 | static inline swp_entry_t pte_to_swp_entry(pte_t pte) |
| 134 | { |
| 135 | swp_entry_t arch_entry; |
| 136 | |
| 137 | pte = pte_swp_clear_flags(pte); |
| 138 | arch_entry = __pte_to_swp_entry(pte); |
| 139 | return swp_entry(__swp_type(arch_entry), __swp_offset(arch_entry)); |
| 140 | } |
| 141 | |
| 142 | /* |
| 143 | * Convert the arch-independent representation of a swp_entry_t into the |
| 144 | * arch-dependent pte representation. |
| 145 | */ |
| 146 | static inline pte_t swp_entry_to_pte(swp_entry_t entry) |
| 147 | { |
| 148 | swp_entry_t arch_entry; |
| 149 | |
| 150 | arch_entry = __swp_entry(swp_type(entry), swp_offset(entry)); |
| 151 | return __swp_entry_to_pte(arch_entry); |
| 152 | } |
| 153 | |
| 154 | static inline swp_entry_t radix_to_swp_entry(void *arg) |
| 155 | { |
| 156 | swp_entry_t entry; |
| 157 | |
| 158 | entry.val = xa_to_value(entry: arg); |
| 159 | return entry; |
| 160 | } |
| 161 | |
| 162 | static inline void *swp_to_radix_entry(swp_entry_t entry) |
| 163 | { |
| 164 | return xa_mk_value(v: entry.val); |
| 165 | } |
| 166 | |
| 167 | #if IS_ENABLED(CONFIG_DEVICE_PRIVATE) |
| 168 | static inline swp_entry_t make_readable_device_private_entry(pgoff_t offset) |
| 169 | { |
| 170 | return swp_entry(SWP_DEVICE_READ, offset); |
| 171 | } |
| 172 | |
| 173 | static inline swp_entry_t make_writable_device_private_entry(pgoff_t offset) |
| 174 | { |
| 175 | return swp_entry(SWP_DEVICE_WRITE, offset); |
| 176 | } |
| 177 | |
| 178 | static inline bool is_device_private_entry(swp_entry_t entry) |
| 179 | { |
| 180 | int type = swp_type(entry); |
| 181 | return type == SWP_DEVICE_READ || type == SWP_DEVICE_WRITE; |
| 182 | } |
| 183 | |
| 184 | static inline bool is_writable_device_private_entry(swp_entry_t entry) |
| 185 | { |
| 186 | return unlikely(swp_type(entry) == SWP_DEVICE_WRITE); |
| 187 | } |
| 188 | |
| 189 | static inline swp_entry_t make_device_exclusive_entry(pgoff_t offset) |
| 190 | { |
| 191 | return swp_entry(SWP_DEVICE_EXCLUSIVE, offset); |
| 192 | } |
| 193 | |
| 194 | static inline bool is_device_exclusive_entry(swp_entry_t entry) |
| 195 | { |
| 196 | return swp_type(entry) == SWP_DEVICE_EXCLUSIVE; |
| 197 | } |
| 198 | |
| 199 | #else /* CONFIG_DEVICE_PRIVATE */ |
| 200 | static inline swp_entry_t make_readable_device_private_entry(pgoff_t offset) |
| 201 | { |
| 202 | return swp_entry(0, 0); |
| 203 | } |
| 204 | |
| 205 | static inline swp_entry_t make_writable_device_private_entry(pgoff_t offset) |
| 206 | { |
| 207 | return swp_entry(0, 0); |
| 208 | } |
| 209 | |
| 210 | static inline bool is_device_private_entry(swp_entry_t entry) |
| 211 | { |
| 212 | return false; |
| 213 | } |
| 214 | |
| 215 | static inline bool is_writable_device_private_entry(swp_entry_t entry) |
| 216 | { |
| 217 | return false; |
| 218 | } |
| 219 | |
| 220 | static inline swp_entry_t make_device_exclusive_entry(pgoff_t offset) |
| 221 | { |
| 222 | return swp_entry(0, 0); |
| 223 | } |
| 224 | |
| 225 | static inline bool is_device_exclusive_entry(swp_entry_t entry) |
| 226 | { |
| 227 | return false; |
| 228 | } |
| 229 | |
| 230 | #endif /* CONFIG_DEVICE_PRIVATE */ |
| 231 | |
| 232 | #ifdef CONFIG_MIGRATION |
| 233 | static inline int is_migration_entry(swp_entry_t entry) |
| 234 | { |
| 235 | return unlikely(swp_type(entry) == SWP_MIGRATION_READ || |
| 236 | swp_type(entry) == SWP_MIGRATION_READ_EXCLUSIVE || |
| 237 | swp_type(entry) == SWP_MIGRATION_WRITE); |
| 238 | } |
| 239 | |
| 240 | static inline int is_writable_migration_entry(swp_entry_t entry) |
| 241 | { |
| 242 | return unlikely(swp_type(entry) == SWP_MIGRATION_WRITE); |
| 243 | } |
| 244 | |
| 245 | static inline int is_readable_migration_entry(swp_entry_t entry) |
| 246 | { |
| 247 | return unlikely(swp_type(entry) == SWP_MIGRATION_READ); |
| 248 | } |
| 249 | |
| 250 | static inline int is_readable_exclusive_migration_entry(swp_entry_t entry) |
| 251 | { |
| 252 | return unlikely(swp_type(entry) == SWP_MIGRATION_READ_EXCLUSIVE); |
| 253 | } |
| 254 | |
| 255 | static inline swp_entry_t make_readable_migration_entry(pgoff_t offset) |
| 256 | { |
| 257 | return swp_entry(SWP_MIGRATION_READ, offset); |
| 258 | } |
| 259 | |
| 260 | static inline swp_entry_t make_readable_exclusive_migration_entry(pgoff_t offset) |
| 261 | { |
| 262 | return swp_entry(SWP_MIGRATION_READ_EXCLUSIVE, offset); |
| 263 | } |
| 264 | |
| 265 | static inline swp_entry_t make_writable_migration_entry(pgoff_t offset) |
| 266 | { |
| 267 | return swp_entry(SWP_MIGRATION_WRITE, offset); |
| 268 | } |
| 269 | |
| 270 | /* |
| 271 | * Returns whether the host has large enough swap offset field to support |
| 272 | * carrying over pgtable A/D bits for page migrations. The result is |
| 273 | * pretty much arch specific. |
| 274 | */ |
| 275 | static inline bool migration_entry_supports_ad(void) |
| 276 | { |
| 277 | #ifdef CONFIG_SWAP |
| 278 | return swap_migration_ad_supported; |
| 279 | #else /* CONFIG_SWAP */ |
| 280 | return false; |
| 281 | #endif /* CONFIG_SWAP */ |
| 282 | } |
| 283 | |
| 284 | static inline swp_entry_t make_migration_entry_young(swp_entry_t entry) |
| 285 | { |
| 286 | if (migration_entry_supports_ad()) |
| 287 | return swp_entry(type: swp_type(entry), |
| 288 | offset: swp_offset(entry) | SWP_MIG_YOUNG); |
| 289 | return entry; |
| 290 | } |
| 291 | |
| 292 | static inline bool is_migration_entry_young(swp_entry_t entry) |
| 293 | { |
| 294 | if (migration_entry_supports_ad()) |
| 295 | return swp_offset(entry) & SWP_MIG_YOUNG; |
| 296 | /* Keep the old behavior of aging page after migration */ |
| 297 | return false; |
| 298 | } |
| 299 | |
| 300 | static inline swp_entry_t make_migration_entry_dirty(swp_entry_t entry) |
| 301 | { |
| 302 | if (migration_entry_supports_ad()) |
| 303 | return swp_entry(type: swp_type(entry), |
| 304 | offset: swp_offset(entry) | SWP_MIG_DIRTY); |
| 305 | return entry; |
| 306 | } |
| 307 | |
| 308 | static inline bool is_migration_entry_dirty(swp_entry_t entry) |
| 309 | { |
| 310 | if (migration_entry_supports_ad()) |
| 311 | return swp_offset(entry) & SWP_MIG_DIRTY; |
| 312 | /* Keep the old behavior of clean page after migration */ |
| 313 | return false; |
| 314 | } |
| 315 | |
| 316 | extern void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, |
| 317 | unsigned long address); |
| 318 | extern void migration_entry_wait_huge(struct vm_area_struct *vma, unsigned long addr, pte_t *pte); |
| 319 | #else /* CONFIG_MIGRATION */ |
| 320 | static inline swp_entry_t make_readable_migration_entry(pgoff_t offset) |
| 321 | { |
| 322 | return swp_entry(0, 0); |
| 323 | } |
| 324 | |
| 325 | static inline swp_entry_t make_readable_exclusive_migration_entry(pgoff_t offset) |
| 326 | { |
| 327 | return swp_entry(0, 0); |
| 328 | } |
| 329 | |
| 330 | static inline swp_entry_t make_writable_migration_entry(pgoff_t offset) |
| 331 | { |
| 332 | return swp_entry(0, 0); |
| 333 | } |
| 334 | |
| 335 | static inline int is_migration_entry(swp_entry_t swp) |
| 336 | { |
| 337 | return 0; |
| 338 | } |
| 339 | |
| 340 | static inline void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, |
| 341 | unsigned long address) { } |
| 342 | static inline void migration_entry_wait_huge(struct vm_area_struct *vma, |
| 343 | unsigned long addr, pte_t *pte) { } |
| 344 | static inline int is_writable_migration_entry(swp_entry_t entry) |
| 345 | { |
| 346 | return 0; |
| 347 | } |
| 348 | static inline int is_readable_migration_entry(swp_entry_t entry) |
| 349 | { |
| 350 | return 0; |
| 351 | } |
| 352 | |
| 353 | static inline swp_entry_t make_migration_entry_young(swp_entry_t entry) |
| 354 | { |
| 355 | return entry; |
| 356 | } |
| 357 | |
| 358 | static inline bool is_migration_entry_young(swp_entry_t entry) |
| 359 | { |
| 360 | return false; |
| 361 | } |
| 362 | |
| 363 | static inline swp_entry_t make_migration_entry_dirty(swp_entry_t entry) |
| 364 | { |
| 365 | return entry; |
| 366 | } |
| 367 | |
| 368 | static inline bool is_migration_entry_dirty(swp_entry_t entry) |
| 369 | { |
| 370 | return false; |
| 371 | } |
| 372 | #endif /* CONFIG_MIGRATION */ |
| 373 | |
| 374 | #ifdef CONFIG_MEMORY_FAILURE |
| 375 | |
| 376 | /* |
| 377 | * Support for hardware poisoned pages |
| 378 | */ |
| 379 | static inline swp_entry_t make_hwpoison_entry(struct page *page) |
| 380 | { |
| 381 | BUG_ON(!PageLocked(page)); |
| 382 | return swp_entry(SWP_HWPOISON, page_to_pfn(page)); |
| 383 | } |
| 384 | |
| 385 | static inline int is_hwpoison_entry(swp_entry_t entry) |
| 386 | { |
| 387 | return swp_type(entry) == SWP_HWPOISON; |
| 388 | } |
| 389 | |
| 390 | #else |
| 391 | |
| 392 | static inline swp_entry_t make_hwpoison_entry(struct page *page) |
| 393 | { |
| 394 | return swp_entry(0, 0); |
| 395 | } |
| 396 | |
| 397 | static inline int is_hwpoison_entry(swp_entry_t swp) |
| 398 | { |
| 399 | return 0; |
| 400 | } |
| 401 | #endif |
| 402 | |
| 403 | typedef unsigned long pte_marker; |
| 404 | |
| 405 | #define PTE_MARKER_UFFD_WP BIT(0) |
| 406 | /* |
| 407 | * "Poisoned" here is meant in the very general sense of "future accesses are |
| 408 | * invalid", instead of referring very specifically to hardware memory errors. |
| 409 | * This marker is meant to represent any of various different causes of this. |
| 410 | * |
| 411 | * Note that, when encountered by the faulting logic, PTEs with this marker will |
| 412 | * result in VM_FAULT_HWPOISON and thus regardless trigger hardware memory error |
| 413 | * logic. |
| 414 | */ |
| 415 | #define PTE_MARKER_POISONED BIT(1) |
| 416 | /* |
| 417 | * Indicates that, on fault, this PTE will case a SIGSEGV signal to be |
| 418 | * sent. This means guard markers behave in effect as if the region were mapped |
| 419 | * PROT_NONE, rather than if they were a memory hole or equivalent. |
| 420 | */ |
| 421 | #define PTE_MARKER_GUARD BIT(2) |
| 422 | #define PTE_MARKER_MASK (BIT(3) - 1) |
| 423 | |
| 424 | static inline swp_entry_t make_pte_marker_entry(pte_marker marker) |
| 425 | { |
| 426 | return swp_entry(SWP_PTE_MARKER, offset: marker); |
| 427 | } |
| 428 | |
| 429 | static inline bool is_pte_marker_entry(swp_entry_t entry) |
| 430 | { |
| 431 | return swp_type(entry) == SWP_PTE_MARKER; |
| 432 | } |
| 433 | |
| 434 | static inline pte_marker pte_marker_get(swp_entry_t entry) |
| 435 | { |
| 436 | return swp_offset(entry) & PTE_MARKER_MASK; |
| 437 | } |
| 438 | |
| 439 | static inline bool is_pte_marker(pte_t pte) |
| 440 | { |
| 441 | return is_swap_pte(pte) && is_pte_marker_entry(entry: pte_to_swp_entry(pte)); |
| 442 | } |
| 443 | |
| 444 | static inline pte_t make_pte_marker(pte_marker marker) |
| 445 | { |
| 446 | return swp_entry_to_pte(entry: make_pte_marker_entry(marker)); |
| 447 | } |
| 448 | |
| 449 | static inline swp_entry_t make_poisoned_swp_entry(void) |
| 450 | { |
| 451 | return make_pte_marker_entry(PTE_MARKER_POISONED); |
| 452 | } |
| 453 | |
| 454 | static inline int is_poisoned_swp_entry(swp_entry_t entry) |
| 455 | { |
| 456 | return is_pte_marker_entry(entry) && |
| 457 | (pte_marker_get(entry) & PTE_MARKER_POISONED); |
| 458 | |
| 459 | } |
| 460 | |
| 461 | static inline swp_entry_t make_guard_swp_entry(void) |
| 462 | { |
| 463 | return make_pte_marker_entry(PTE_MARKER_GUARD); |
| 464 | } |
| 465 | |
| 466 | static inline int is_guard_swp_entry(swp_entry_t entry) |
| 467 | { |
| 468 | return is_pte_marker_entry(entry) && |
| 469 | (pte_marker_get(entry) & PTE_MARKER_GUARD); |
| 470 | } |
| 471 | |
| 472 | /* |
| 473 | * This is a special version to check pte_none() just to cover the case when |
| 474 | * the pte is a pte marker. It existed because in many cases the pte marker |
| 475 | * should be seen as a none pte; it's just that we have stored some information |
| 476 | * onto the none pte so it becomes not-none any more. |
| 477 | * |
| 478 | * It should be used when the pte is file-backed, ram-based and backing |
| 479 | * userspace pages, like shmem. It is not needed upon pgtables that do not |
| 480 | * support pte markers at all. For example, it's not needed on anonymous |
| 481 | * memory, kernel-only memory (including when the system is during-boot), |
| 482 | * non-ram based generic file-system. It's fine to be used even there, but the |
| 483 | * extra pte marker check will be pure overhead. |
| 484 | */ |
| 485 | static inline int pte_none_mostly(pte_t pte) |
| 486 | { |
| 487 | return pte_none(pte) || is_pte_marker(pte); |
| 488 | } |
| 489 | |
| 490 | static inline struct page *pfn_swap_entry_to_page(swp_entry_t entry) |
| 491 | { |
| 492 | struct page *p = pfn_to_page(swp_offset_pfn(entry)); |
| 493 | |
| 494 | /* |
| 495 | * Any use of migration entries may only occur while the |
| 496 | * corresponding page is locked |
| 497 | */ |
| 498 | BUG_ON(is_migration_entry(entry) && !PageLocked(p)); |
| 499 | |
| 500 | return p; |
| 501 | } |
| 502 | |
| 503 | static inline struct folio *pfn_swap_entry_folio(swp_entry_t entry) |
| 504 | { |
| 505 | struct folio *folio = pfn_folio(pfn: swp_offset_pfn(entry)); |
| 506 | |
| 507 | /* |
| 508 | * Any use of migration entries may only occur while the |
| 509 | * corresponding folio is locked |
| 510 | */ |
| 511 | BUG_ON(is_migration_entry(entry) && !folio_test_locked(folio)); |
| 512 | |
| 513 | return folio; |
| 514 | } |
| 515 | |
| 516 | /* |
| 517 | * A pfn swap entry is a special type of swap entry that always has a pfn stored |
| 518 | * in the swap offset. They can either be used to represent unaddressable device |
| 519 | * memory, to restrict access to a page undergoing migration or to represent a |
| 520 | * pfn which has been hwpoisoned and unmapped. |
| 521 | */ |
| 522 | static inline bool is_pfn_swap_entry(swp_entry_t entry) |
| 523 | { |
| 524 | /* Make sure the swp offset can always store the needed fields */ |
| 525 | BUILD_BUG_ON(SWP_TYPE_SHIFT < SWP_PFN_BITS); |
| 526 | |
| 527 | return is_migration_entry(entry) || is_device_private_entry(entry) || |
| 528 | is_device_exclusive_entry(entry) || is_hwpoison_entry(entry); |
| 529 | } |
| 530 | |
| 531 | struct page_vma_mapped_walk; |
| 532 | |
| 533 | #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION |
| 534 | extern int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw, |
| 535 | struct page *page); |
| 536 | |
| 537 | extern void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, |
| 538 | struct page *new); |
| 539 | |
| 540 | extern void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd); |
| 541 | |
| 542 | static inline swp_entry_t pmd_to_swp_entry(pmd_t pmd) |
| 543 | { |
| 544 | swp_entry_t arch_entry; |
| 545 | |
| 546 | if (pmd_swp_soft_dirty(pmd)) |
| 547 | pmd = pmd_swp_clear_soft_dirty(pmd); |
| 548 | if (pmd_swp_uffd_wp(pmd)) |
| 549 | pmd = pmd_swp_clear_uffd_wp(pmd); |
| 550 | arch_entry = __pmd_to_swp_entry(pmd); |
| 551 | return swp_entry(__swp_type(arch_entry), __swp_offset(arch_entry)); |
| 552 | } |
| 553 | |
| 554 | static inline pmd_t swp_entry_to_pmd(swp_entry_t entry) |
| 555 | { |
| 556 | swp_entry_t arch_entry; |
| 557 | |
| 558 | arch_entry = __swp_entry(swp_type(entry), swp_offset(entry)); |
| 559 | return __swp_entry_to_pmd(arch_entry); |
| 560 | } |
| 561 | |
| 562 | static inline int is_pmd_migration_entry(pmd_t pmd) |
| 563 | { |
| 564 | return is_swap_pmd(pmd) && is_migration_entry(entry: pmd_to_swp_entry(pmd)); |
| 565 | } |
| 566 | #else /* CONFIG_ARCH_ENABLE_THP_MIGRATION */ |
| 567 | static inline int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw, |
| 568 | struct page *page) |
| 569 | { |
| 570 | BUILD_BUG(); |
| 571 | } |
| 572 | |
| 573 | static inline void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, |
| 574 | struct page *new) |
| 575 | { |
| 576 | BUILD_BUG(); |
| 577 | } |
| 578 | |
| 579 | static inline void pmd_migration_entry_wait(struct mm_struct *m, pmd_t *p) { } |
| 580 | |
| 581 | static inline swp_entry_t pmd_to_swp_entry(pmd_t pmd) |
| 582 | { |
| 583 | return swp_entry(0, 0); |
| 584 | } |
| 585 | |
| 586 | static inline pmd_t swp_entry_to_pmd(swp_entry_t entry) |
| 587 | { |
| 588 | return __pmd(0); |
| 589 | } |
| 590 | |
| 591 | static inline int is_pmd_migration_entry(pmd_t pmd) |
| 592 | { |
| 593 | return 0; |
| 594 | } |
| 595 | #endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */ |
| 596 | |
| 597 | static inline int non_swap_entry(swp_entry_t entry) |
| 598 | { |
| 599 | return swp_type(entry) >= MAX_SWAPFILES; |
| 600 | } |
| 601 | |
| 602 | #endif /* CONFIG_MMU */ |
| 603 | #endif /* _LINUX_SWAPOPS_H */ |
| 604 | |