| 1 | // SPDX-License-Identifier: GPL-2.0-only |
| 2 | /* |
| 3 | * linux/fs/pnode.c |
| 4 | * |
| 5 | * (C) Copyright IBM Corporation 2005. |
| 6 | * Author : Ram Pai (linuxram@us.ibm.com) |
| 7 | */ |
| 8 | #include <linux/mnt_namespace.h> |
| 9 | #include <linux/mount.h> |
| 10 | #include <linux/fs.h> |
| 11 | #include <linux/nsproxy.h> |
| 12 | #include <uapi/linux/mount.h> |
| 13 | #include "internal.h" |
| 14 | #include "pnode.h" |
| 15 | |
| 16 | /* return the next shared peer mount of @p */ |
| 17 | static inline struct mount *next_peer(struct mount *p) |
| 18 | { |
| 19 | return list_entry(p->mnt_share.next, struct mount, mnt_share); |
| 20 | } |
| 21 | |
| 22 | static inline struct mount *first_slave(struct mount *p) |
| 23 | { |
| 24 | return list_entry(p->mnt_slave_list.next, struct mount, mnt_slave); |
| 25 | } |
| 26 | |
| 27 | static inline struct mount *last_slave(struct mount *p) |
| 28 | { |
| 29 | return list_entry(p->mnt_slave_list.prev, struct mount, mnt_slave); |
| 30 | } |
| 31 | |
| 32 | static inline struct mount *next_slave(struct mount *p) |
| 33 | { |
| 34 | return list_entry(p->mnt_slave.next, struct mount, mnt_slave); |
| 35 | } |
| 36 | |
| 37 | static struct mount *get_peer_under_root(struct mount *mnt, |
| 38 | struct mnt_namespace *ns, |
| 39 | const struct path *root) |
| 40 | { |
| 41 | struct mount *m = mnt; |
| 42 | |
| 43 | do { |
| 44 | /* Check the namespace first for optimization */ |
| 45 | if (m->mnt_ns == ns && is_path_reachable(m, m->mnt.mnt_root, root)) |
| 46 | return m; |
| 47 | |
| 48 | m = next_peer(p: m); |
| 49 | } while (m != mnt); |
| 50 | |
| 51 | return NULL; |
| 52 | } |
| 53 | |
| 54 | /* |
| 55 | * Get ID of closest dominating peer group having a representative |
| 56 | * under the given root. |
| 57 | * |
| 58 | * Caller must hold namespace_sem |
| 59 | */ |
| 60 | int get_dominating_id(struct mount *mnt, const struct path *root) |
| 61 | { |
| 62 | struct mount *m; |
| 63 | |
| 64 | for (m = mnt->mnt_master; m != NULL; m = m->mnt_master) { |
| 65 | struct mount *d = get_peer_under_root(mnt: m, ns: mnt->mnt_ns, root); |
| 66 | if (d) |
| 67 | return d->mnt_group_id; |
| 68 | } |
| 69 | |
| 70 | return 0; |
| 71 | } |
| 72 | |
| 73 | static int do_make_slave(struct mount *mnt) |
| 74 | { |
| 75 | struct mount *master, *slave_mnt; |
| 76 | |
| 77 | if (list_empty(head: &mnt->mnt_share)) { |
| 78 | if (IS_MNT_SHARED(mnt)) { |
| 79 | mnt_release_group_id(mnt); |
| 80 | CLEAR_MNT_SHARED(mnt); |
| 81 | } |
| 82 | master = mnt->mnt_master; |
| 83 | if (!master) { |
| 84 | struct list_head *p = &mnt->mnt_slave_list; |
| 85 | while (!list_empty(head: p)) { |
| 86 | slave_mnt = list_first_entry(p, |
| 87 | struct mount, mnt_slave); |
| 88 | list_del_init(entry: &slave_mnt->mnt_slave); |
| 89 | slave_mnt->mnt_master = NULL; |
| 90 | } |
| 91 | return 0; |
| 92 | } |
| 93 | } else { |
| 94 | struct mount *m; |
| 95 | /* |
| 96 | * slave 'mnt' to a peer mount that has the |
| 97 | * same root dentry. If none is available then |
| 98 | * slave it to anything that is available. |
| 99 | */ |
| 100 | for (m = master = next_peer(p: mnt); m != mnt; m = next_peer(p: m)) { |
| 101 | if (m->mnt.mnt_root == mnt->mnt.mnt_root) { |
| 102 | master = m; |
| 103 | break; |
| 104 | } |
| 105 | } |
| 106 | list_del_init(entry: &mnt->mnt_share); |
| 107 | mnt->mnt_group_id = 0; |
| 108 | CLEAR_MNT_SHARED(mnt); |
| 109 | } |
| 110 | list_for_each_entry(slave_mnt, &mnt->mnt_slave_list, mnt_slave) |
| 111 | slave_mnt->mnt_master = master; |
| 112 | list_move(list: &mnt->mnt_slave, head: &master->mnt_slave_list); |
| 113 | list_splice(list: &mnt->mnt_slave_list, head: master->mnt_slave_list.prev); |
| 114 | INIT_LIST_HEAD(list: &mnt->mnt_slave_list); |
| 115 | mnt->mnt_master = master; |
| 116 | return 0; |
| 117 | } |
| 118 | |
| 119 | /* |
| 120 | * vfsmount lock must be held for write |
| 121 | */ |
| 122 | void change_mnt_propagation(struct mount *mnt, int type) |
| 123 | { |
| 124 | if (type == MS_SHARED) { |
| 125 | set_mnt_shared(mnt); |
| 126 | return; |
| 127 | } |
| 128 | do_make_slave(mnt); |
| 129 | if (type != MS_SLAVE) { |
| 130 | list_del_init(entry: &mnt->mnt_slave); |
| 131 | mnt->mnt_master = NULL; |
| 132 | if (type == MS_UNBINDABLE) |
| 133 | mnt->mnt.mnt_flags |= MNT_UNBINDABLE; |
| 134 | else |
| 135 | mnt->mnt.mnt_flags &= ~MNT_UNBINDABLE; |
| 136 | } |
| 137 | } |
| 138 | |
| 139 | /* |
| 140 | * get the next mount in the propagation tree. |
| 141 | * @m: the mount seen last |
| 142 | * @origin: the original mount from where the tree walk initiated |
| 143 | * |
| 144 | * Note that peer groups form contiguous segments of slave lists. |
| 145 | * We rely on that in get_source() to be able to find out if |
| 146 | * vfsmount found while iterating with propagation_next() is |
| 147 | * a peer of one we'd found earlier. |
| 148 | */ |
| 149 | static struct mount *propagation_next(struct mount *m, |
| 150 | struct mount *origin) |
| 151 | { |
| 152 | /* are there any slaves of this mount? */ |
| 153 | if (!IS_MNT_NEW(m) && !list_empty(head: &m->mnt_slave_list)) |
| 154 | return first_slave(p: m); |
| 155 | |
| 156 | while (1) { |
| 157 | struct mount *master = m->mnt_master; |
| 158 | |
| 159 | if (master == origin->mnt_master) { |
| 160 | struct mount *next = next_peer(p: m); |
| 161 | return (next == origin) ? NULL : next; |
| 162 | } else if (m->mnt_slave.next != &master->mnt_slave_list) |
| 163 | return next_slave(p: m); |
| 164 | |
| 165 | /* back at master */ |
| 166 | m = master; |
| 167 | } |
| 168 | } |
| 169 | |
| 170 | static struct mount *skip_propagation_subtree(struct mount *m, |
| 171 | struct mount *origin) |
| 172 | { |
| 173 | /* |
| 174 | * Advance m such that propagation_next will not return |
| 175 | * the slaves of m. |
| 176 | */ |
| 177 | if (!IS_MNT_NEW(m) && !list_empty(head: &m->mnt_slave_list)) |
| 178 | m = last_slave(p: m); |
| 179 | |
| 180 | return m; |
| 181 | } |
| 182 | |
| 183 | static struct mount *next_group(struct mount *m, struct mount *origin) |
| 184 | { |
| 185 | while (1) { |
| 186 | while (1) { |
| 187 | struct mount *next; |
| 188 | if (!IS_MNT_NEW(m) && !list_empty(head: &m->mnt_slave_list)) |
| 189 | return first_slave(p: m); |
| 190 | next = next_peer(p: m); |
| 191 | if (m->mnt_group_id == origin->mnt_group_id) { |
| 192 | if (next == origin) |
| 193 | return NULL; |
| 194 | } else if (m->mnt_slave.next != &next->mnt_slave) |
| 195 | break; |
| 196 | m = next; |
| 197 | } |
| 198 | /* m is the last peer */ |
| 199 | while (1) { |
| 200 | struct mount *master = m->mnt_master; |
| 201 | if (m->mnt_slave.next != &master->mnt_slave_list) |
| 202 | return next_slave(p: m); |
| 203 | m = next_peer(p: master); |
| 204 | if (master->mnt_group_id == origin->mnt_group_id) |
| 205 | break; |
| 206 | if (master->mnt_slave.next == &m->mnt_slave) |
| 207 | break; |
| 208 | m = master; |
| 209 | } |
| 210 | if (m == origin) |
| 211 | return NULL; |
| 212 | } |
| 213 | } |
| 214 | |
| 215 | /* all accesses are serialized by namespace_sem */ |
| 216 | static struct mount *last_dest, *first_source, *last_source, *dest_master; |
| 217 | static struct hlist_head *list; |
| 218 | |
| 219 | static inline bool peers(const struct mount *m1, const struct mount *m2) |
| 220 | { |
| 221 | return m1->mnt_group_id == m2->mnt_group_id && m1->mnt_group_id; |
| 222 | } |
| 223 | |
| 224 | static int propagate_one(struct mount *m, struct mountpoint *dest_mp) |
| 225 | { |
| 226 | struct mount *child; |
| 227 | int type; |
| 228 | /* skip ones added by this propagate_mnt() */ |
| 229 | if (IS_MNT_NEW(m)) |
| 230 | return 0; |
| 231 | /* skip if mountpoint isn't visible in m */ |
| 232 | if (!is_subdir(dest_mp->m_dentry, m->mnt.mnt_root)) |
| 233 | return 0; |
| 234 | /* skip if m is in the anon_ns */ |
| 235 | if (is_anon_ns(ns: m->mnt_ns)) |
| 236 | return 0; |
| 237 | |
| 238 | if (peers(m1: m, m2: last_dest)) { |
| 239 | type = CL_MAKE_SHARED; |
| 240 | } else { |
| 241 | struct mount *n, *p; |
| 242 | bool done; |
| 243 | for (n = m; ; n = p) { |
| 244 | p = n->mnt_master; |
| 245 | if (p == dest_master || IS_MNT_MARKED(p)) |
| 246 | break; |
| 247 | } |
| 248 | do { |
| 249 | struct mount *parent = last_source->mnt_parent; |
| 250 | if (peers(m1: last_source, m2: first_source)) |
| 251 | break; |
| 252 | done = parent->mnt_master == p; |
| 253 | if (done && peers(m1: n, m2: parent)) |
| 254 | break; |
| 255 | last_source = last_source->mnt_master; |
| 256 | } while (!done); |
| 257 | |
| 258 | type = CL_SLAVE; |
| 259 | /* beginning of peer group among the slaves? */ |
| 260 | if (IS_MNT_SHARED(m)) |
| 261 | type |= CL_MAKE_SHARED; |
| 262 | } |
| 263 | |
| 264 | child = copy_tree(last_source, last_source->mnt.mnt_root, type); |
| 265 | if (IS_ERR(ptr: child)) |
| 266 | return PTR_ERR(ptr: child); |
| 267 | read_seqlock_excl(sl: &mount_lock); |
| 268 | mnt_set_mountpoint(m, dest_mp, child); |
| 269 | if (m->mnt_master != dest_master) |
| 270 | SET_MNT_MARK(m->mnt_master); |
| 271 | read_sequnlock_excl(sl: &mount_lock); |
| 272 | last_dest = m; |
| 273 | last_source = child; |
| 274 | hlist_add_head(n: &child->mnt_hash, h: list); |
| 275 | return count_mounts(ns: m->mnt_ns, mnt: child); |
| 276 | } |
| 277 | |
| 278 | /* |
| 279 | * mount 'source_mnt' under the destination 'dest_mnt' at |
| 280 | * dentry 'dest_dentry'. And propagate that mount to |
| 281 | * all the peer and slave mounts of 'dest_mnt'. |
| 282 | * Link all the new mounts into a propagation tree headed at |
| 283 | * source_mnt. Also link all the new mounts using ->mnt_list |
| 284 | * headed at source_mnt's ->mnt_list |
| 285 | * |
| 286 | * @dest_mnt: destination mount. |
| 287 | * @dest_dentry: destination dentry. |
| 288 | * @source_mnt: source mount. |
| 289 | * @tree_list : list of heads of trees to be attached. |
| 290 | */ |
| 291 | int propagate_mnt(struct mount *dest_mnt, struct mountpoint *dest_mp, |
| 292 | struct mount *source_mnt, struct hlist_head *tree_list) |
| 293 | { |
| 294 | struct mount *m, *n; |
| 295 | int ret = 0; |
| 296 | |
| 297 | /* |
| 298 | * we don't want to bother passing tons of arguments to |
| 299 | * propagate_one(); everything is serialized by namespace_sem, |
| 300 | * so globals will do just fine. |
| 301 | */ |
| 302 | last_dest = dest_mnt; |
| 303 | first_source = source_mnt; |
| 304 | last_source = source_mnt; |
| 305 | list = tree_list; |
| 306 | dest_master = dest_mnt->mnt_master; |
| 307 | |
| 308 | /* all peers of dest_mnt, except dest_mnt itself */ |
| 309 | for (n = next_peer(p: dest_mnt); n != dest_mnt; n = next_peer(p: n)) { |
| 310 | ret = propagate_one(m: n, dest_mp); |
| 311 | if (ret) |
| 312 | goto out; |
| 313 | } |
| 314 | |
| 315 | /* all slave groups */ |
| 316 | for (m = next_group(m: dest_mnt, origin: dest_mnt); m; |
| 317 | m = next_group(m, origin: dest_mnt)) { |
| 318 | /* everything in that slave group */ |
| 319 | n = m; |
| 320 | do { |
| 321 | ret = propagate_one(m: n, dest_mp); |
| 322 | if (ret) |
| 323 | goto out; |
| 324 | n = next_peer(p: n); |
| 325 | } while (n != m); |
| 326 | } |
| 327 | out: |
| 328 | read_seqlock_excl(sl: &mount_lock); |
| 329 | hlist_for_each_entry(n, tree_list, mnt_hash) { |
| 330 | m = n->mnt_parent; |
| 331 | if (m->mnt_master != dest_mnt->mnt_master) |
| 332 | CLEAR_MNT_MARK(m->mnt_master); |
| 333 | } |
| 334 | read_sequnlock_excl(sl: &mount_lock); |
| 335 | return ret; |
| 336 | } |
| 337 | |
| 338 | static struct mount *find_topper(struct mount *mnt) |
| 339 | { |
| 340 | /* If there is exactly one mount covering mnt completely return it. */ |
| 341 | struct mount *child; |
| 342 | |
| 343 | if (!list_is_singular(head: &mnt->mnt_mounts)) |
| 344 | return NULL; |
| 345 | |
| 346 | child = list_first_entry(&mnt->mnt_mounts, struct mount, mnt_child); |
| 347 | if (child->mnt_mountpoint != mnt->mnt.mnt_root) |
| 348 | return NULL; |
| 349 | |
| 350 | return child; |
| 351 | } |
| 352 | |
| 353 | /* |
| 354 | * return true if the refcount is greater than count |
| 355 | */ |
| 356 | static inline int do_refcount_check(struct mount *mnt, int count) |
| 357 | { |
| 358 | return mnt_get_count(mnt) > count; |
| 359 | } |
| 360 | |
| 361 | /** |
| 362 | * propagation_would_overmount - check whether propagation from @from |
| 363 | * would overmount @to |
| 364 | * @from: shared mount |
| 365 | * @to: mount to check |
| 366 | * @mp: future mountpoint of @to on @from |
| 367 | * |
| 368 | * If @from propagates mounts to @to, @from and @to must either be peers |
| 369 | * or one of the masters in the hierarchy of masters of @to must be a |
| 370 | * peer of @from. |
| 371 | * |
| 372 | * If the root of the @to mount is equal to the future mountpoint @mp of |
| 373 | * the @to mount on @from then @to will be overmounted by whatever is |
| 374 | * propagated to it. |
| 375 | * |
| 376 | * Context: This function expects namespace_lock() to be held and that |
| 377 | * @mp is stable. |
| 378 | * Return: If @from overmounts @to, true is returned, false if not. |
| 379 | */ |
| 380 | bool propagation_would_overmount(const struct mount *from, |
| 381 | const struct mount *to, |
| 382 | const struct mountpoint *mp) |
| 383 | { |
| 384 | if (!IS_MNT_SHARED(from)) |
| 385 | return false; |
| 386 | |
| 387 | if (to->mnt.mnt_root != mp->m_dentry) |
| 388 | return false; |
| 389 | |
| 390 | for (const struct mount *m = to; m; m = m->mnt_master) { |
| 391 | if (peers(m1: from, m2: m)) |
| 392 | return true; |
| 393 | } |
| 394 | |
| 395 | return false; |
| 396 | } |
| 397 | |
| 398 | /* |
| 399 | * check if the mount 'mnt' can be unmounted successfully. |
| 400 | * @mnt: the mount to be checked for unmount |
| 401 | * NOTE: unmounting 'mnt' would naturally propagate to all |
| 402 | * other mounts its parent propagates to. |
| 403 | * Check if any of these mounts that **do not have submounts** |
| 404 | * have more references than 'refcnt'. If so return busy. |
| 405 | * |
| 406 | * vfsmount lock must be held for write |
| 407 | */ |
| 408 | int propagate_mount_busy(struct mount *mnt, int refcnt) |
| 409 | { |
| 410 | struct mount *m, *child, *topper; |
| 411 | struct mount *parent = mnt->mnt_parent; |
| 412 | |
| 413 | if (mnt == parent) |
| 414 | return do_refcount_check(mnt, count: refcnt); |
| 415 | |
| 416 | /* |
| 417 | * quickly check if the current mount can be unmounted. |
| 418 | * If not, we don't have to go checking for all other |
| 419 | * mounts |
| 420 | */ |
| 421 | if (!list_empty(head: &mnt->mnt_mounts) || do_refcount_check(mnt, count: refcnt)) |
| 422 | return 1; |
| 423 | |
| 424 | for (m = propagation_next(m: parent, origin: parent); m; |
| 425 | m = propagation_next(m, origin: parent)) { |
| 426 | int count = 1; |
| 427 | child = __lookup_mnt(&m->mnt, mnt->mnt_mountpoint); |
| 428 | if (!child) |
| 429 | continue; |
| 430 | |
| 431 | /* Is there exactly one mount on the child that covers |
| 432 | * it completely whose reference should be ignored? |
| 433 | */ |
| 434 | topper = find_topper(mnt: child); |
| 435 | if (topper) |
| 436 | count += 1; |
| 437 | else if (!list_empty(head: &child->mnt_mounts)) |
| 438 | continue; |
| 439 | |
| 440 | if (do_refcount_check(mnt: child, count)) |
| 441 | return 1; |
| 442 | } |
| 443 | return 0; |
| 444 | } |
| 445 | |
| 446 | /* |
| 447 | * Clear MNT_LOCKED when it can be shown to be safe. |
| 448 | * |
| 449 | * mount_lock lock must be held for write |
| 450 | */ |
| 451 | void propagate_mount_unlock(struct mount *mnt) |
| 452 | { |
| 453 | struct mount *parent = mnt->mnt_parent; |
| 454 | struct mount *m, *child; |
| 455 | |
| 456 | BUG_ON(parent == mnt); |
| 457 | |
| 458 | for (m = propagation_next(m: parent, origin: parent); m; |
| 459 | m = propagation_next(m, origin: parent)) { |
| 460 | child = __lookup_mnt(&m->mnt, mnt->mnt_mountpoint); |
| 461 | if (child) |
| 462 | child->mnt.mnt_flags &= ~MNT_LOCKED; |
| 463 | } |
| 464 | } |
| 465 | |
| 466 | static void umount_one(struct mount *mnt, struct list_head *to_umount) |
| 467 | { |
| 468 | CLEAR_MNT_MARK(mnt); |
| 469 | mnt->mnt.mnt_flags |= MNT_UMOUNT; |
| 470 | list_del_init(entry: &mnt->mnt_child); |
| 471 | list_del_init(entry: &mnt->mnt_umounting); |
| 472 | move_from_ns(mnt, dt_list: to_umount); |
| 473 | } |
| 474 | |
| 475 | /* |
| 476 | * NOTE: unmounting 'mnt' naturally propagates to all other mounts its |
| 477 | * parent propagates to. |
| 478 | */ |
| 479 | static bool __propagate_umount(struct mount *mnt, |
| 480 | struct list_head *to_umount, |
| 481 | struct list_head *to_restore) |
| 482 | { |
| 483 | bool progress = false; |
| 484 | struct mount *child; |
| 485 | |
| 486 | /* |
| 487 | * The state of the parent won't change if this mount is |
| 488 | * already unmounted or marked as without children. |
| 489 | */ |
| 490 | if (mnt->mnt.mnt_flags & (MNT_UMOUNT | MNT_MARKED)) |
| 491 | goto out; |
| 492 | |
| 493 | /* Verify topper is the only grandchild that has not been |
| 494 | * speculatively unmounted. |
| 495 | */ |
| 496 | list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { |
| 497 | if (child->mnt_mountpoint == mnt->mnt.mnt_root) |
| 498 | continue; |
| 499 | if (!list_empty(head: &child->mnt_umounting) && IS_MNT_MARKED(child)) |
| 500 | continue; |
| 501 | /* Found a mounted child */ |
| 502 | goto children; |
| 503 | } |
| 504 | |
| 505 | /* Mark mounts that can be unmounted if not locked */ |
| 506 | SET_MNT_MARK(mnt); |
| 507 | progress = true; |
| 508 | |
| 509 | /* If a mount is without children and not locked umount it. */ |
| 510 | if (!IS_MNT_LOCKED(mnt)) { |
| 511 | umount_one(mnt, to_umount); |
| 512 | } else { |
| 513 | children: |
| 514 | list_move_tail(list: &mnt->mnt_umounting, head: to_restore); |
| 515 | } |
| 516 | out: |
| 517 | return progress; |
| 518 | } |
| 519 | |
| 520 | static void umount_list(struct list_head *to_umount, |
| 521 | struct list_head *to_restore) |
| 522 | { |
| 523 | struct mount *mnt, *child, *tmp; |
| 524 | list_for_each_entry(mnt, to_umount, mnt_list) { |
| 525 | list_for_each_entry_safe(child, tmp, &mnt->mnt_mounts, mnt_child) { |
| 526 | /* topper? */ |
| 527 | if (child->mnt_mountpoint == mnt->mnt.mnt_root) |
| 528 | list_move_tail(list: &child->mnt_umounting, head: to_restore); |
| 529 | else |
| 530 | umount_one(mnt: child, to_umount); |
| 531 | } |
| 532 | } |
| 533 | } |
| 534 | |
| 535 | static void restore_mounts(struct list_head *to_restore) |
| 536 | { |
| 537 | /* Restore mounts to a clean working state */ |
| 538 | while (!list_empty(head: to_restore)) { |
| 539 | struct mount *mnt, *parent; |
| 540 | struct mountpoint *mp; |
| 541 | |
| 542 | mnt = list_first_entry(to_restore, struct mount, mnt_umounting); |
| 543 | CLEAR_MNT_MARK(mnt); |
| 544 | list_del_init(entry: &mnt->mnt_umounting); |
| 545 | |
| 546 | /* Should this mount be reparented? */ |
| 547 | mp = mnt->mnt_mp; |
| 548 | parent = mnt->mnt_parent; |
| 549 | while (parent->mnt.mnt_flags & MNT_UMOUNT) { |
| 550 | mp = parent->mnt_mp; |
| 551 | parent = parent->mnt_parent; |
| 552 | } |
| 553 | if (parent != mnt->mnt_parent) { |
| 554 | mnt_change_mountpoint(parent, mp, mnt); |
| 555 | mnt_notify_add(m: mnt); |
| 556 | } |
| 557 | } |
| 558 | } |
| 559 | |
| 560 | static void cleanup_umount_visitations(struct list_head *visited) |
| 561 | { |
| 562 | while (!list_empty(head: visited)) { |
| 563 | struct mount *mnt = |
| 564 | list_first_entry(visited, struct mount, mnt_umounting); |
| 565 | list_del_init(entry: &mnt->mnt_umounting); |
| 566 | } |
| 567 | } |
| 568 | |
| 569 | /* |
| 570 | * collect all mounts that receive propagation from the mount in @list, |
| 571 | * and return these additional mounts in the same list. |
| 572 | * @list: the list of mounts to be unmounted. |
| 573 | * |
| 574 | * vfsmount lock must be held for write |
| 575 | */ |
| 576 | int propagate_umount(struct list_head *list) |
| 577 | { |
| 578 | struct mount *mnt; |
| 579 | LIST_HEAD(to_restore); |
| 580 | LIST_HEAD(to_umount); |
| 581 | LIST_HEAD(visited); |
| 582 | |
| 583 | /* Find candidates for unmounting */ |
| 584 | list_for_each_entry_reverse(mnt, list, mnt_list) { |
| 585 | struct mount *parent = mnt->mnt_parent; |
| 586 | struct mount *m; |
| 587 | |
| 588 | /* |
| 589 | * If this mount has already been visited it is known that it's |
| 590 | * entire peer group and all of their slaves in the propagation |
| 591 | * tree for the mountpoint has already been visited and there is |
| 592 | * no need to visit them again. |
| 593 | */ |
| 594 | if (!list_empty(head: &mnt->mnt_umounting)) |
| 595 | continue; |
| 596 | |
| 597 | list_add_tail(new: &mnt->mnt_umounting, head: &visited); |
| 598 | for (m = propagation_next(m: parent, origin: parent); m; |
| 599 | m = propagation_next(m, origin: parent)) { |
| 600 | struct mount *child = __lookup_mnt(&m->mnt, |
| 601 | mnt->mnt_mountpoint); |
| 602 | if (!child) |
| 603 | continue; |
| 604 | |
| 605 | if (!list_empty(head: &child->mnt_umounting)) { |
| 606 | /* |
| 607 | * If the child has already been visited it is |
| 608 | * know that it's entire peer group and all of |
| 609 | * their slaves in the propgation tree for the |
| 610 | * mountpoint has already been visited and there |
| 611 | * is no need to visit this subtree again. |
| 612 | */ |
| 613 | m = skip_propagation_subtree(m, origin: parent); |
| 614 | continue; |
| 615 | } else if (child->mnt.mnt_flags & MNT_UMOUNT) { |
| 616 | /* |
| 617 | * We have come across a partially unmounted |
| 618 | * mount in a list that has not been visited |
| 619 | * yet. Remember it has been visited and |
| 620 | * continue about our merry way. |
| 621 | */ |
| 622 | list_add_tail(new: &child->mnt_umounting, head: &visited); |
| 623 | continue; |
| 624 | } |
| 625 | |
| 626 | /* Check the child and parents while progress is made */ |
| 627 | while (__propagate_umount(mnt: child, |
| 628 | to_umount: &to_umount, to_restore: &to_restore)) { |
| 629 | /* Is the parent a umount candidate? */ |
| 630 | child = child->mnt_parent; |
| 631 | if (list_empty(head: &child->mnt_umounting)) |
| 632 | break; |
| 633 | } |
| 634 | } |
| 635 | } |
| 636 | |
| 637 | umount_list(to_umount: &to_umount, to_restore: &to_restore); |
| 638 | restore_mounts(to_restore: &to_restore); |
| 639 | cleanup_umount_visitations(visited: &visited); |
| 640 | list_splice_tail(list: &to_umount, head: list); |
| 641 | |
| 642 | return 0; |
| 643 | } |
| 644 | |