| 1 | /* |
| 2 | * Copyright (c) 2013, 2014 Kenneth MacKay. All rights reserved. |
| 3 | * Copyright (c) 2019 Vitaly Chikunov <vt@altlinux.org> |
| 4 | * |
| 5 | * Redistribution and use in source and binary forms, with or without |
| 6 | * modification, are permitted provided that the following conditions are |
| 7 | * met: |
| 8 | * * Redistributions of source code must retain the above copyright |
| 9 | * notice, this list of conditions and the following disclaimer. |
| 10 | * * Redistributions in binary form must reproduce the above copyright |
| 11 | * notice, this list of conditions and the following disclaimer in the |
| 12 | * documentation and/or other materials provided with the distribution. |
| 13 | * |
| 14 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 15 | * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 16 | * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 17 | * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| 18 | * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 19 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| 20 | * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 21 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 22 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 23 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 24 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 25 | */ |
| 26 | |
| 27 | #include <crypto/ecc_curve.h> |
| 28 | #include <linux/module.h> |
| 29 | #include <linux/random.h> |
| 30 | #include <linux/slab.h> |
| 31 | #include <linux/swab.h> |
| 32 | #include <linux/fips.h> |
| 33 | #include <crypto/ecdh.h> |
| 34 | #include <crypto/rng.h> |
| 35 | #include <crypto/internal/ecc.h> |
| 36 | #include <linux/unaligned.h> |
| 37 | #include <linux/ratelimit.h> |
| 38 | |
| 39 | #include "ecc_curve_defs.h" |
| 40 | |
| 41 | typedef struct { |
| 42 | u64 m_low; |
| 43 | u64 m_high; |
| 44 | } uint128_t; |
| 45 | |
| 46 | /* Returns curv25519 curve param */ |
| 47 | const struct ecc_curve *ecc_get_curve25519(void) |
| 48 | { |
| 49 | return &ecc_25519; |
| 50 | } |
| 51 | EXPORT_SYMBOL(ecc_get_curve25519); |
| 52 | |
| 53 | const struct ecc_curve *ecc_get_curve(unsigned int curve_id) |
| 54 | { |
| 55 | switch (curve_id) { |
| 56 | /* In FIPS mode only allow P256 and higher */ |
| 57 | case ECC_CURVE_NIST_P192: |
| 58 | return fips_enabled ? NULL : &nist_p192; |
| 59 | case ECC_CURVE_NIST_P256: |
| 60 | return &nist_p256; |
| 61 | case ECC_CURVE_NIST_P384: |
| 62 | return &nist_p384; |
| 63 | case ECC_CURVE_NIST_P521: |
| 64 | return &nist_p521; |
| 65 | default: |
| 66 | return NULL; |
| 67 | } |
| 68 | } |
| 69 | EXPORT_SYMBOL(ecc_get_curve); |
| 70 | |
| 71 | void ecc_digits_from_bytes(const u8 *in, unsigned int nbytes, |
| 72 | u64 *out, unsigned int ndigits) |
| 73 | { |
| 74 | int diff = ndigits - DIV_ROUND_UP_POW2(nbytes, sizeof(u64)); |
| 75 | unsigned int o = nbytes & 7; |
| 76 | __be64 msd = 0; |
| 77 | |
| 78 | /* diff > 0: not enough input bytes: set most significant digits to 0 */ |
| 79 | if (diff > 0) { |
| 80 | ndigits -= diff; |
| 81 | memset(&out[ndigits], 0, diff * sizeof(u64)); |
| 82 | } |
| 83 | |
| 84 | if (o) { |
| 85 | memcpy((u8 *)&msd + sizeof(msd) - o, in, o); |
| 86 | out[--ndigits] = be64_to_cpu(msd); |
| 87 | in += o; |
| 88 | } |
| 89 | ecc_swap_digits(in, out, ndigits); |
| 90 | } |
| 91 | EXPORT_SYMBOL(ecc_digits_from_bytes); |
| 92 | |
| 93 | static u64 *ecc_alloc_digits_space(unsigned int ndigits) |
| 94 | { |
| 95 | size_t len = ndigits * sizeof(u64); |
| 96 | |
| 97 | if (!len) |
| 98 | return NULL; |
| 99 | |
| 100 | return kmalloc(len, GFP_KERNEL); |
| 101 | } |
| 102 | |
| 103 | static void ecc_free_digits_space(u64 *space) |
| 104 | { |
| 105 | kfree_sensitive(objp: space); |
| 106 | } |
| 107 | |
| 108 | struct ecc_point *ecc_alloc_point(unsigned int ndigits) |
| 109 | { |
| 110 | struct ecc_point *p = kmalloc(sizeof(*p), GFP_KERNEL); |
| 111 | |
| 112 | if (!p) |
| 113 | return NULL; |
| 114 | |
| 115 | p->x = ecc_alloc_digits_space(ndigits); |
| 116 | if (!p->x) |
| 117 | goto err_alloc_x; |
| 118 | |
| 119 | p->y = ecc_alloc_digits_space(ndigits); |
| 120 | if (!p->y) |
| 121 | goto err_alloc_y; |
| 122 | |
| 123 | p->ndigits = ndigits; |
| 124 | |
| 125 | return p; |
| 126 | |
| 127 | err_alloc_y: |
| 128 | ecc_free_digits_space(space: p->x); |
| 129 | err_alloc_x: |
| 130 | kfree(objp: p); |
| 131 | return NULL; |
| 132 | } |
| 133 | EXPORT_SYMBOL(ecc_alloc_point); |
| 134 | |
| 135 | void ecc_free_point(struct ecc_point *p) |
| 136 | { |
| 137 | if (!p) |
| 138 | return; |
| 139 | |
| 140 | kfree_sensitive(objp: p->x); |
| 141 | kfree_sensitive(objp: p->y); |
| 142 | kfree_sensitive(objp: p); |
| 143 | } |
| 144 | EXPORT_SYMBOL(ecc_free_point); |
| 145 | |
| 146 | static void vli_clear(u64 *vli, unsigned int ndigits) |
| 147 | { |
| 148 | int i; |
| 149 | |
| 150 | for (i = 0; i < ndigits; i++) |
| 151 | vli[i] = 0; |
| 152 | } |
| 153 | |
| 154 | /* Returns true if vli == 0, false otherwise. */ |
| 155 | bool vli_is_zero(const u64 *vli, unsigned int ndigits) |
| 156 | { |
| 157 | int i; |
| 158 | |
| 159 | for (i = 0; i < ndigits; i++) { |
| 160 | if (vli[i]) |
| 161 | return false; |
| 162 | } |
| 163 | |
| 164 | return true; |
| 165 | } |
| 166 | EXPORT_SYMBOL(vli_is_zero); |
| 167 | |
| 168 | /* Returns nonzero if bit of vli is set. */ |
| 169 | static u64 vli_test_bit(const u64 *vli, unsigned int bit) |
| 170 | { |
| 171 | return (vli[bit / 64] & ((u64)1 << (bit % 64))); |
| 172 | } |
| 173 | |
| 174 | static bool vli_is_negative(const u64 *vli, unsigned int ndigits) |
| 175 | { |
| 176 | return vli_test_bit(vli, bit: ndigits * 64 - 1); |
| 177 | } |
| 178 | |
| 179 | /* Counts the number of 64-bit "digits" in vli. */ |
| 180 | static unsigned int vli_num_digits(const u64 *vli, unsigned int ndigits) |
| 181 | { |
| 182 | int i; |
| 183 | |
| 184 | /* Search from the end until we find a non-zero digit. |
| 185 | * We do it in reverse because we expect that most digits will |
| 186 | * be nonzero. |
| 187 | */ |
| 188 | for (i = ndigits - 1; i >= 0 && vli[i] == 0; i--); |
| 189 | |
| 190 | return (i + 1); |
| 191 | } |
| 192 | |
| 193 | /* Counts the number of bits required for vli. */ |
| 194 | unsigned int vli_num_bits(const u64 *vli, unsigned int ndigits) |
| 195 | { |
| 196 | unsigned int i, num_digits; |
| 197 | u64 digit; |
| 198 | |
| 199 | num_digits = vli_num_digits(vli, ndigits); |
| 200 | if (num_digits == 0) |
| 201 | return 0; |
| 202 | |
| 203 | digit = vli[num_digits - 1]; |
| 204 | for (i = 0; digit; i++) |
| 205 | digit >>= 1; |
| 206 | |
| 207 | return ((num_digits - 1) * 64 + i); |
| 208 | } |
| 209 | EXPORT_SYMBOL(vli_num_bits); |
| 210 | |
| 211 | /* Set dest from unaligned bit string src. */ |
| 212 | void vli_from_be64(u64 *dest, const void *src, unsigned int ndigits) |
| 213 | { |
| 214 | int i; |
| 215 | const u64 *from = src; |
| 216 | |
| 217 | for (i = 0; i < ndigits; i++) |
| 218 | dest[i] = get_unaligned_be64(p: &from[ndigits - 1 - i]); |
| 219 | } |
| 220 | EXPORT_SYMBOL(vli_from_be64); |
| 221 | |
| 222 | void vli_from_le64(u64 *dest, const void *src, unsigned int ndigits) |
| 223 | { |
| 224 | int i; |
| 225 | const u64 *from = src; |
| 226 | |
| 227 | for (i = 0; i < ndigits; i++) |
| 228 | dest[i] = get_unaligned_le64(p: &from[i]); |
| 229 | } |
| 230 | EXPORT_SYMBOL(vli_from_le64); |
| 231 | |
| 232 | /* Sets dest = src. */ |
| 233 | static void vli_set(u64 *dest, const u64 *src, unsigned int ndigits) |
| 234 | { |
| 235 | int i; |
| 236 | |
| 237 | for (i = 0; i < ndigits; i++) |
| 238 | dest[i] = src[i]; |
| 239 | } |
| 240 | |
| 241 | /* Returns sign of left - right. */ |
| 242 | int vli_cmp(const u64 *left, const u64 *right, unsigned int ndigits) |
| 243 | { |
| 244 | int i; |
| 245 | |
| 246 | for (i = ndigits - 1; i >= 0; i--) { |
| 247 | if (left[i] > right[i]) |
| 248 | return 1; |
| 249 | else if (left[i] < right[i]) |
| 250 | return -1; |
| 251 | } |
| 252 | |
| 253 | return 0; |
| 254 | } |
| 255 | EXPORT_SYMBOL(vli_cmp); |
| 256 | |
| 257 | /* Computes result = in << c, returning carry. Can modify in place |
| 258 | * (if result == in). 0 < shift < 64. |
| 259 | */ |
| 260 | static u64 vli_lshift(u64 *result, const u64 *in, unsigned int shift, |
| 261 | unsigned int ndigits) |
| 262 | { |
| 263 | u64 carry = 0; |
| 264 | int i; |
| 265 | |
| 266 | for (i = 0; i < ndigits; i++) { |
| 267 | u64 temp = in[i]; |
| 268 | |
| 269 | result[i] = (temp << shift) | carry; |
| 270 | carry = temp >> (64 - shift); |
| 271 | } |
| 272 | |
| 273 | return carry; |
| 274 | } |
| 275 | |
| 276 | /* Computes vli = vli >> 1. */ |
| 277 | static void vli_rshift1(u64 *vli, unsigned int ndigits) |
| 278 | { |
| 279 | u64 *end = vli; |
| 280 | u64 carry = 0; |
| 281 | |
| 282 | vli += ndigits; |
| 283 | |
| 284 | while (vli-- > end) { |
| 285 | u64 temp = *vli; |
| 286 | *vli = (temp >> 1) | carry; |
| 287 | carry = temp << 63; |
| 288 | } |
| 289 | } |
| 290 | |
| 291 | /* Computes result = left + right, returning carry. Can modify in place. */ |
| 292 | static u64 vli_add(u64 *result, const u64 *left, const u64 *right, |
| 293 | unsigned int ndigits) |
| 294 | { |
| 295 | u64 carry = 0; |
| 296 | int i; |
| 297 | |
| 298 | for (i = 0; i < ndigits; i++) { |
| 299 | u64 sum; |
| 300 | |
| 301 | sum = left[i] + right[i] + carry; |
| 302 | if (sum != left[i]) |
| 303 | carry = (sum < left[i]); |
| 304 | |
| 305 | result[i] = sum; |
| 306 | } |
| 307 | |
| 308 | return carry; |
| 309 | } |
| 310 | |
| 311 | /* Computes result = left + right, returning carry. Can modify in place. */ |
| 312 | static u64 vli_uadd(u64 *result, const u64 *left, u64 right, |
| 313 | unsigned int ndigits) |
| 314 | { |
| 315 | u64 carry = right; |
| 316 | int i; |
| 317 | |
| 318 | for (i = 0; i < ndigits; i++) { |
| 319 | u64 sum; |
| 320 | |
| 321 | sum = left[i] + carry; |
| 322 | if (sum != left[i]) |
| 323 | carry = (sum < left[i]); |
| 324 | else |
| 325 | carry = !!carry; |
| 326 | |
| 327 | result[i] = sum; |
| 328 | } |
| 329 | |
| 330 | return carry; |
| 331 | } |
| 332 | |
| 333 | /* Computes result = left - right, returning borrow. Can modify in place. */ |
| 334 | u64 vli_sub(u64 *result, const u64 *left, const u64 *right, |
| 335 | unsigned int ndigits) |
| 336 | { |
| 337 | u64 borrow = 0; |
| 338 | int i; |
| 339 | |
| 340 | for (i = 0; i < ndigits; i++) { |
| 341 | u64 diff; |
| 342 | |
| 343 | diff = left[i] - right[i] - borrow; |
| 344 | if (diff != left[i]) |
| 345 | borrow = (diff > left[i]); |
| 346 | |
| 347 | result[i] = diff; |
| 348 | } |
| 349 | |
| 350 | return borrow; |
| 351 | } |
| 352 | EXPORT_SYMBOL(vli_sub); |
| 353 | |
| 354 | /* Computes result = left - right, returning borrow. Can modify in place. */ |
| 355 | static u64 vli_usub(u64 *result, const u64 *left, u64 right, |
| 356 | unsigned int ndigits) |
| 357 | { |
| 358 | u64 borrow = right; |
| 359 | int i; |
| 360 | |
| 361 | for (i = 0; i < ndigits; i++) { |
| 362 | u64 diff; |
| 363 | |
| 364 | diff = left[i] - borrow; |
| 365 | if (diff != left[i]) |
| 366 | borrow = (diff > left[i]); |
| 367 | |
| 368 | result[i] = diff; |
| 369 | } |
| 370 | |
| 371 | return borrow; |
| 372 | } |
| 373 | |
| 374 | static uint128_t mul_64_64(u64 left, u64 right) |
| 375 | { |
| 376 | uint128_t result; |
| 377 | #if defined(CONFIG_ARCH_SUPPORTS_INT128) |
| 378 | unsigned __int128 m = (unsigned __int128)left * right; |
| 379 | |
| 380 | result.m_low = m; |
| 381 | result.m_high = m >> 64; |
| 382 | #else |
| 383 | u64 a0 = left & 0xffffffffull; |
| 384 | u64 a1 = left >> 32; |
| 385 | u64 b0 = right & 0xffffffffull; |
| 386 | u64 b1 = right >> 32; |
| 387 | u64 m0 = a0 * b0; |
| 388 | u64 m1 = a0 * b1; |
| 389 | u64 m2 = a1 * b0; |
| 390 | u64 m3 = a1 * b1; |
| 391 | |
| 392 | m2 += (m0 >> 32); |
| 393 | m2 += m1; |
| 394 | |
| 395 | /* Overflow */ |
| 396 | if (m2 < m1) |
| 397 | m3 += 0x100000000ull; |
| 398 | |
| 399 | result.m_low = (m0 & 0xffffffffull) | (m2 << 32); |
| 400 | result.m_high = m3 + (m2 >> 32); |
| 401 | #endif |
| 402 | return result; |
| 403 | } |
| 404 | |
| 405 | static uint128_t add_128_128(uint128_t a, uint128_t b) |
| 406 | { |
| 407 | uint128_t result; |
| 408 | |
| 409 | result.m_low = a.m_low + b.m_low; |
| 410 | result.m_high = a.m_high + b.m_high + (result.m_low < a.m_low); |
| 411 | |
| 412 | return result; |
| 413 | } |
| 414 | |
| 415 | static void vli_mult(u64 *result, const u64 *left, const u64 *right, |
| 416 | unsigned int ndigits) |
| 417 | { |
| 418 | uint128_t r01 = { 0, 0 }; |
| 419 | u64 r2 = 0; |
| 420 | unsigned int i, k; |
| 421 | |
| 422 | /* Compute each digit of result in sequence, maintaining the |
| 423 | * carries. |
| 424 | */ |
| 425 | for (k = 0; k < ndigits * 2 - 1; k++) { |
| 426 | unsigned int min; |
| 427 | |
| 428 | if (k < ndigits) |
| 429 | min = 0; |
| 430 | else |
| 431 | min = (k + 1) - ndigits; |
| 432 | |
| 433 | for (i = min; i <= k && i < ndigits; i++) { |
| 434 | uint128_t product; |
| 435 | |
| 436 | product = mul_64_64(left: left[i], right: right[k - i]); |
| 437 | |
| 438 | r01 = add_128_128(a: r01, b: product); |
| 439 | r2 += (r01.m_high < product.m_high); |
| 440 | } |
| 441 | |
| 442 | result[k] = r01.m_low; |
| 443 | r01.m_low = r01.m_high; |
| 444 | r01.m_high = r2; |
| 445 | r2 = 0; |
| 446 | } |
| 447 | |
| 448 | result[ndigits * 2 - 1] = r01.m_low; |
| 449 | } |
| 450 | |
| 451 | /* Compute product = left * right, for a small right value. */ |
| 452 | static void vli_umult(u64 *result, const u64 *left, u32 right, |
| 453 | unsigned int ndigits) |
| 454 | { |
| 455 | uint128_t r01 = { 0 }; |
| 456 | unsigned int k; |
| 457 | |
| 458 | for (k = 0; k < ndigits; k++) { |
| 459 | uint128_t product; |
| 460 | |
| 461 | product = mul_64_64(left: left[k], right); |
| 462 | r01 = add_128_128(a: r01, b: product); |
| 463 | /* no carry */ |
| 464 | result[k] = r01.m_low; |
| 465 | r01.m_low = r01.m_high; |
| 466 | r01.m_high = 0; |
| 467 | } |
| 468 | result[k] = r01.m_low; |
| 469 | for (++k; k < ndigits * 2; k++) |
| 470 | result[k] = 0; |
| 471 | } |
| 472 | |
| 473 | static void vli_square(u64 *result, const u64 *left, unsigned int ndigits) |
| 474 | { |
| 475 | uint128_t r01 = { 0, 0 }; |
| 476 | u64 r2 = 0; |
| 477 | int i, k; |
| 478 | |
| 479 | for (k = 0; k < ndigits * 2 - 1; k++) { |
| 480 | unsigned int min; |
| 481 | |
| 482 | if (k < ndigits) |
| 483 | min = 0; |
| 484 | else |
| 485 | min = (k + 1) - ndigits; |
| 486 | |
| 487 | for (i = min; i <= k && i <= k - i; i++) { |
| 488 | uint128_t product; |
| 489 | |
| 490 | product = mul_64_64(left: left[i], right: left[k - i]); |
| 491 | |
| 492 | if (i < k - i) { |
| 493 | r2 += product.m_high >> 63; |
| 494 | product.m_high = (product.m_high << 1) | |
| 495 | (product.m_low >> 63); |
| 496 | product.m_low <<= 1; |
| 497 | } |
| 498 | |
| 499 | r01 = add_128_128(a: r01, b: product); |
| 500 | r2 += (r01.m_high < product.m_high); |
| 501 | } |
| 502 | |
| 503 | result[k] = r01.m_low; |
| 504 | r01.m_low = r01.m_high; |
| 505 | r01.m_high = r2; |
| 506 | r2 = 0; |
| 507 | } |
| 508 | |
| 509 | result[ndigits * 2 - 1] = r01.m_low; |
| 510 | } |
| 511 | |
| 512 | /* Computes result = (left + right) % mod. |
| 513 | * Assumes that left < mod and right < mod, result != mod. |
| 514 | */ |
| 515 | static void vli_mod_add(u64 *result, const u64 *left, const u64 *right, |
| 516 | const u64 *mod, unsigned int ndigits) |
| 517 | { |
| 518 | u64 carry; |
| 519 | |
| 520 | carry = vli_add(result, left, right, ndigits); |
| 521 | |
| 522 | /* result > mod (result = mod + remainder), so subtract mod to |
| 523 | * get remainder. |
| 524 | */ |
| 525 | if (carry || vli_cmp(result, mod, ndigits) >= 0) |
| 526 | vli_sub(result, result, mod, ndigits); |
| 527 | } |
| 528 | |
| 529 | /* Computes result = (left - right) % mod. |
| 530 | * Assumes that left < mod and right < mod, result != mod. |
| 531 | */ |
| 532 | static void vli_mod_sub(u64 *result, const u64 *left, const u64 *right, |
| 533 | const u64 *mod, unsigned int ndigits) |
| 534 | { |
| 535 | u64 borrow = vli_sub(result, left, right, ndigits); |
| 536 | |
| 537 | /* In this case, p_result == -diff == (max int) - diff. |
| 538 | * Since -x % d == d - x, we can get the correct result from |
| 539 | * result + mod (with overflow). |
| 540 | */ |
| 541 | if (borrow) |
| 542 | vli_add(result, left: result, right: mod, ndigits); |
| 543 | } |
| 544 | |
| 545 | /* |
| 546 | * Computes result = product % mod |
| 547 | * for special form moduli: p = 2^k-c, for small c (note the minus sign) |
| 548 | * |
| 549 | * References: |
| 550 | * R. Crandall, C. Pomerance. Prime Numbers: A Computational Perspective. |
| 551 | * 9 Fast Algorithms for Large-Integer Arithmetic. 9.2.3 Moduli of special form |
| 552 | * Algorithm 9.2.13 (Fast mod operation for special-form moduli). |
| 553 | */ |
| 554 | static void vli_mmod_special(u64 *result, const u64 *product, |
| 555 | const u64 *mod, unsigned int ndigits) |
| 556 | { |
| 557 | u64 c = -mod[0]; |
| 558 | u64 t[ECC_MAX_DIGITS * 2]; |
| 559 | u64 r[ECC_MAX_DIGITS * 2]; |
| 560 | |
| 561 | vli_set(dest: r, src: product, ndigits: ndigits * 2); |
| 562 | while (!vli_is_zero(r + ndigits, ndigits)) { |
| 563 | vli_umult(result: t, left: r + ndigits, right: c, ndigits); |
| 564 | vli_clear(vli: r + ndigits, ndigits); |
| 565 | vli_add(result: r, left: r, right: t, ndigits: ndigits * 2); |
| 566 | } |
| 567 | vli_set(dest: t, src: mod, ndigits); |
| 568 | vli_clear(vli: t + ndigits, ndigits); |
| 569 | while (vli_cmp(r, t, ndigits * 2) >= 0) |
| 570 | vli_sub(r, r, t, ndigits * 2); |
| 571 | vli_set(dest: result, src: r, ndigits); |
| 572 | } |
| 573 | |
| 574 | /* |
| 575 | * Computes result = product % mod |
| 576 | * for special form moduli: p = 2^{k-1}+c, for small c (note the plus sign) |
| 577 | * where k-1 does not fit into qword boundary by -1 bit (such as 255). |
| 578 | |
| 579 | * References (loosely based on): |
| 580 | * A. Menezes, P. van Oorschot, S. Vanstone. Handbook of Applied Cryptography. |
| 581 | * 14.3.4 Reduction methods for moduli of special form. Algorithm 14.47. |
| 582 | * URL: http://cacr.uwaterloo.ca/hac/about/chap14.pdf |
| 583 | * |
| 584 | * H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen, F. Vercauteren. |
| 585 | * Handbook of Elliptic and Hyperelliptic Curve Cryptography. |
| 586 | * Algorithm 10.25 Fast reduction for special form moduli |
| 587 | */ |
| 588 | static void vli_mmod_special2(u64 *result, const u64 *product, |
| 589 | const u64 *mod, unsigned int ndigits) |
| 590 | { |
| 591 | u64 c2 = mod[0] * 2; |
| 592 | u64 q[ECC_MAX_DIGITS]; |
| 593 | u64 r[ECC_MAX_DIGITS * 2]; |
| 594 | u64 m[ECC_MAX_DIGITS * 2]; /* expanded mod */ |
| 595 | int carry; /* last bit that doesn't fit into q */ |
| 596 | int i; |
| 597 | |
| 598 | vli_set(dest: m, src: mod, ndigits); |
| 599 | vli_clear(vli: m + ndigits, ndigits); |
| 600 | |
| 601 | vli_set(dest: r, src: product, ndigits); |
| 602 | /* q and carry are top bits */ |
| 603 | vli_set(dest: q, src: product + ndigits, ndigits); |
| 604 | vli_clear(vli: r + ndigits, ndigits); |
| 605 | carry = vli_is_negative(vli: r, ndigits); |
| 606 | if (carry) |
| 607 | r[ndigits - 1] &= (1ull << 63) - 1; |
| 608 | for (i = 1; carry || !vli_is_zero(q, ndigits); i++) { |
| 609 | u64 qc[ECC_MAX_DIGITS * 2]; |
| 610 | |
| 611 | vli_umult(result: qc, left: q, right: c2, ndigits); |
| 612 | if (carry) |
| 613 | vli_uadd(result: qc, left: qc, right: mod[0], ndigits: ndigits * 2); |
| 614 | vli_set(dest: q, src: qc + ndigits, ndigits); |
| 615 | vli_clear(vli: qc + ndigits, ndigits); |
| 616 | carry = vli_is_negative(vli: qc, ndigits); |
| 617 | if (carry) |
| 618 | qc[ndigits - 1] &= (1ull << 63) - 1; |
| 619 | if (i & 1) |
| 620 | vli_sub(r, r, qc, ndigits * 2); |
| 621 | else |
| 622 | vli_add(result: r, left: r, right: qc, ndigits: ndigits * 2); |
| 623 | } |
| 624 | while (vli_is_negative(vli: r, ndigits: ndigits * 2)) |
| 625 | vli_add(result: r, left: r, right: m, ndigits: ndigits * 2); |
| 626 | while (vli_cmp(r, m, ndigits * 2) >= 0) |
| 627 | vli_sub(r, r, m, ndigits * 2); |
| 628 | |
| 629 | vli_set(dest: result, src: r, ndigits); |
| 630 | } |
| 631 | |
| 632 | /* |
| 633 | * Computes result = product % mod, where product is 2N words long. |
| 634 | * Reference: Ken MacKay's micro-ecc. |
| 635 | * Currently only designed to work for curve_p or curve_n. |
| 636 | */ |
| 637 | static void vli_mmod_slow(u64 *result, u64 *product, const u64 *mod, |
| 638 | unsigned int ndigits) |
| 639 | { |
| 640 | u64 mod_m[2 * ECC_MAX_DIGITS]; |
| 641 | u64 tmp[2 * ECC_MAX_DIGITS]; |
| 642 | u64 *v[2] = { tmp, product }; |
| 643 | u64 carry = 0; |
| 644 | unsigned int i; |
| 645 | /* Shift mod so its highest set bit is at the maximum position. */ |
| 646 | int shift = (ndigits * 2 * 64) - vli_num_bits(mod, ndigits); |
| 647 | int word_shift = shift / 64; |
| 648 | int bit_shift = shift % 64; |
| 649 | |
| 650 | vli_clear(vli: mod_m, ndigits: word_shift); |
| 651 | if (bit_shift > 0) { |
| 652 | for (i = 0; i < ndigits; ++i) { |
| 653 | mod_m[word_shift + i] = (mod[i] << bit_shift) | carry; |
| 654 | carry = mod[i] >> (64 - bit_shift); |
| 655 | } |
| 656 | } else |
| 657 | vli_set(dest: mod_m + word_shift, src: mod, ndigits); |
| 658 | |
| 659 | for (i = 1; shift >= 0; --shift) { |
| 660 | u64 borrow = 0; |
| 661 | unsigned int j; |
| 662 | |
| 663 | for (j = 0; j < ndigits * 2; ++j) { |
| 664 | u64 diff = v[i][j] - mod_m[j] - borrow; |
| 665 | |
| 666 | if (diff != v[i][j]) |
| 667 | borrow = (diff > v[i][j]); |
| 668 | v[1 - i][j] = diff; |
| 669 | } |
| 670 | i = !(i ^ borrow); /* Swap the index if there was no borrow */ |
| 671 | vli_rshift1(vli: mod_m, ndigits); |
| 672 | mod_m[ndigits - 1] |= mod_m[ndigits] << (64 - 1); |
| 673 | vli_rshift1(vli: mod_m + ndigits, ndigits); |
| 674 | } |
| 675 | vli_set(dest: result, src: v[i], ndigits); |
| 676 | } |
| 677 | |
| 678 | /* Computes result = product % mod using Barrett's reduction with precomputed |
| 679 | * value mu appended to the mod after ndigits, mu = (2^{2w} / mod) and have |
| 680 | * length ndigits + 1, where mu * (2^w - 1) should not overflow ndigits |
| 681 | * boundary. |
| 682 | * |
| 683 | * Reference: |
| 684 | * R. Brent, P. Zimmermann. Modern Computer Arithmetic. 2010. |
| 685 | * 2.4.1 Barrett's algorithm. Algorithm 2.5. |
| 686 | */ |
| 687 | static void vli_mmod_barrett(u64 *result, u64 *product, const u64 *mod, |
| 688 | unsigned int ndigits) |
| 689 | { |
| 690 | u64 q[ECC_MAX_DIGITS * 2]; |
| 691 | u64 r[ECC_MAX_DIGITS * 2]; |
| 692 | const u64 *mu = mod + ndigits; |
| 693 | |
| 694 | vli_mult(result: q, left: product + ndigits, right: mu, ndigits); |
| 695 | if (mu[ndigits]) |
| 696 | vli_add(result: q + ndigits, left: q + ndigits, right: product + ndigits, ndigits); |
| 697 | vli_mult(result: r, left: mod, right: q + ndigits, ndigits); |
| 698 | vli_sub(r, product, r, ndigits * 2); |
| 699 | while (!vli_is_zero(r + ndigits, ndigits) || |
| 700 | vli_cmp(r, mod, ndigits) != -1) { |
| 701 | u64 carry; |
| 702 | |
| 703 | carry = vli_sub(r, r, mod, ndigits); |
| 704 | vli_usub(result: r + ndigits, left: r + ndigits, right: carry, ndigits); |
| 705 | } |
| 706 | vli_set(dest: result, src: r, ndigits); |
| 707 | } |
| 708 | |
| 709 | /* Computes p_result = p_product % curve_p. |
| 710 | * See algorithm 5 and 6 from |
| 711 | * http://www.isys.uni-klu.ac.at/PDF/2001-0126-MT.pdf |
| 712 | */ |
| 713 | static void vli_mmod_fast_192(u64 *result, const u64 *product, |
| 714 | const u64 *curve_prime, u64 *tmp) |
| 715 | { |
| 716 | const unsigned int ndigits = ECC_CURVE_NIST_P192_DIGITS; |
| 717 | int carry; |
| 718 | |
| 719 | vli_set(dest: result, src: product, ndigits); |
| 720 | |
| 721 | vli_set(dest: tmp, src: &product[3], ndigits); |
| 722 | carry = vli_add(result, left: result, right: tmp, ndigits); |
| 723 | |
| 724 | tmp[0] = 0; |
| 725 | tmp[1] = product[3]; |
| 726 | tmp[2] = product[4]; |
| 727 | carry += vli_add(result, left: result, right: tmp, ndigits); |
| 728 | |
| 729 | tmp[0] = tmp[1] = product[5]; |
| 730 | tmp[2] = 0; |
| 731 | carry += vli_add(result, left: result, right: tmp, ndigits); |
| 732 | |
| 733 | while (carry || vli_cmp(curve_prime, result, ndigits) != 1) |
| 734 | carry -= vli_sub(result, result, curve_prime, ndigits); |
| 735 | } |
| 736 | |
| 737 | /* Computes result = product % curve_prime |
| 738 | * from http://www.nsa.gov/ia/_files/nist-routines.pdf |
| 739 | */ |
| 740 | static void vli_mmod_fast_256(u64 *result, const u64 *product, |
| 741 | const u64 *curve_prime, u64 *tmp) |
| 742 | { |
| 743 | int carry; |
| 744 | const unsigned int ndigits = ECC_CURVE_NIST_P256_DIGITS; |
| 745 | |
| 746 | /* t */ |
| 747 | vli_set(dest: result, src: product, ndigits); |
| 748 | |
| 749 | /* s1 */ |
| 750 | tmp[0] = 0; |
| 751 | tmp[1] = product[5] & 0xffffffff00000000ull; |
| 752 | tmp[2] = product[6]; |
| 753 | tmp[3] = product[7]; |
| 754 | carry = vli_lshift(result: tmp, in: tmp, shift: 1, ndigits); |
| 755 | carry += vli_add(result, left: result, right: tmp, ndigits); |
| 756 | |
| 757 | /* s2 */ |
| 758 | tmp[1] = product[6] << 32; |
| 759 | tmp[2] = (product[6] >> 32) | (product[7] << 32); |
| 760 | tmp[3] = product[7] >> 32; |
| 761 | carry += vli_lshift(result: tmp, in: tmp, shift: 1, ndigits); |
| 762 | carry += vli_add(result, left: result, right: tmp, ndigits); |
| 763 | |
| 764 | /* s3 */ |
| 765 | tmp[0] = product[4]; |
| 766 | tmp[1] = product[5] & 0xffffffff; |
| 767 | tmp[2] = 0; |
| 768 | tmp[3] = product[7]; |
| 769 | carry += vli_add(result, left: result, right: tmp, ndigits); |
| 770 | |
| 771 | /* s4 */ |
| 772 | tmp[0] = (product[4] >> 32) | (product[5] << 32); |
| 773 | tmp[1] = (product[5] >> 32) | (product[6] & 0xffffffff00000000ull); |
| 774 | tmp[2] = product[7]; |
| 775 | tmp[3] = (product[6] >> 32) | (product[4] << 32); |
| 776 | carry += vli_add(result, left: result, right: tmp, ndigits); |
| 777 | |
| 778 | /* d1 */ |
| 779 | tmp[0] = (product[5] >> 32) | (product[6] << 32); |
| 780 | tmp[1] = (product[6] >> 32); |
| 781 | tmp[2] = 0; |
| 782 | tmp[3] = (product[4] & 0xffffffff) | (product[5] << 32); |
| 783 | carry -= vli_sub(result, result, tmp, ndigits); |
| 784 | |
| 785 | /* d2 */ |
| 786 | tmp[0] = product[6]; |
| 787 | tmp[1] = product[7]; |
| 788 | tmp[2] = 0; |
| 789 | tmp[3] = (product[4] >> 32) | (product[5] & 0xffffffff00000000ull); |
| 790 | carry -= vli_sub(result, result, tmp, ndigits); |
| 791 | |
| 792 | /* d3 */ |
| 793 | tmp[0] = (product[6] >> 32) | (product[7] << 32); |
| 794 | tmp[1] = (product[7] >> 32) | (product[4] << 32); |
| 795 | tmp[2] = (product[4] >> 32) | (product[5] << 32); |
| 796 | tmp[3] = (product[6] << 32); |
| 797 | carry -= vli_sub(result, result, tmp, ndigits); |
| 798 | |
| 799 | /* d4 */ |
| 800 | tmp[0] = product[7]; |
| 801 | tmp[1] = product[4] & 0xffffffff00000000ull; |
| 802 | tmp[2] = product[5]; |
| 803 | tmp[3] = product[6] & 0xffffffff00000000ull; |
| 804 | carry -= vli_sub(result, result, tmp, ndigits); |
| 805 | |
| 806 | if (carry < 0) { |
| 807 | do { |
| 808 | carry += vli_add(result, left: result, right: curve_prime, ndigits); |
| 809 | } while (carry < 0); |
| 810 | } else { |
| 811 | while (carry || vli_cmp(curve_prime, result, ndigits) != 1) |
| 812 | carry -= vli_sub(result, result, curve_prime, ndigits); |
| 813 | } |
| 814 | } |
| 815 | |
| 816 | #define SL32OR32(x32, y32) (((u64)x32 << 32) | y32) |
| 817 | #define AND64H(x64) (x64 & 0xffFFffFF00000000ull) |
| 818 | #define AND64L(x64) (x64 & 0x00000000ffFFffFFull) |
| 819 | |
| 820 | /* Computes result = product % curve_prime |
| 821 | * from "Mathematical routines for the NIST prime elliptic curves" |
| 822 | */ |
| 823 | static void vli_mmod_fast_384(u64 *result, const u64 *product, |
| 824 | const u64 *curve_prime, u64 *tmp) |
| 825 | { |
| 826 | int carry; |
| 827 | const unsigned int ndigits = ECC_CURVE_NIST_P384_DIGITS; |
| 828 | |
| 829 | /* t */ |
| 830 | vli_set(dest: result, src: product, ndigits); |
| 831 | |
| 832 | /* s1 */ |
| 833 | tmp[0] = 0; // 0 || 0 |
| 834 | tmp[1] = 0; // 0 || 0 |
| 835 | tmp[2] = SL32OR32(product[11], (product[10]>>32)); //a22||a21 |
| 836 | tmp[3] = product[11]>>32; // 0 ||a23 |
| 837 | tmp[4] = 0; // 0 || 0 |
| 838 | tmp[5] = 0; // 0 || 0 |
| 839 | carry = vli_lshift(result: tmp, in: tmp, shift: 1, ndigits); |
| 840 | carry += vli_add(result, left: result, right: tmp, ndigits); |
| 841 | |
| 842 | /* s2 */ |
| 843 | tmp[0] = product[6]; //a13||a12 |
| 844 | tmp[1] = product[7]; //a15||a14 |
| 845 | tmp[2] = product[8]; //a17||a16 |
| 846 | tmp[3] = product[9]; //a19||a18 |
| 847 | tmp[4] = product[10]; //a21||a20 |
| 848 | tmp[5] = product[11]; //a23||a22 |
| 849 | carry += vli_add(result, left: result, right: tmp, ndigits); |
| 850 | |
| 851 | /* s3 */ |
| 852 | tmp[0] = SL32OR32(product[11], (product[10]>>32)); //a22||a21 |
| 853 | tmp[1] = SL32OR32(product[6], (product[11]>>32)); //a12||a23 |
| 854 | tmp[2] = SL32OR32(product[7], (product[6])>>32); //a14||a13 |
| 855 | tmp[3] = SL32OR32(product[8], (product[7]>>32)); //a16||a15 |
| 856 | tmp[4] = SL32OR32(product[9], (product[8]>>32)); //a18||a17 |
| 857 | tmp[5] = SL32OR32(product[10], (product[9]>>32)); //a20||a19 |
| 858 | carry += vli_add(result, left: result, right: tmp, ndigits); |
| 859 | |
| 860 | /* s4 */ |
| 861 | tmp[0] = AND64H(product[11]); //a23|| 0 |
| 862 | tmp[1] = (product[10]<<32); //a20|| 0 |
| 863 | tmp[2] = product[6]; //a13||a12 |
| 864 | tmp[3] = product[7]; //a15||a14 |
| 865 | tmp[4] = product[8]; //a17||a16 |
| 866 | tmp[5] = product[9]; //a19||a18 |
| 867 | carry += vli_add(result, left: result, right: tmp, ndigits); |
| 868 | |
| 869 | /* s5 */ |
| 870 | tmp[0] = 0; // 0|| 0 |
| 871 | tmp[1] = 0; // 0|| 0 |
| 872 | tmp[2] = product[10]; //a21||a20 |
| 873 | tmp[3] = product[11]; //a23||a22 |
| 874 | tmp[4] = 0; // 0|| 0 |
| 875 | tmp[5] = 0; // 0|| 0 |
| 876 | carry += vli_add(result, left: result, right: tmp, ndigits); |
| 877 | |
| 878 | /* s6 */ |
| 879 | tmp[0] = AND64L(product[10]); // 0 ||a20 |
| 880 | tmp[1] = AND64H(product[10]); //a21|| 0 |
| 881 | tmp[2] = product[11]; //a23||a22 |
| 882 | tmp[3] = 0; // 0 || 0 |
| 883 | tmp[4] = 0; // 0 || 0 |
| 884 | tmp[5] = 0; // 0 || 0 |
| 885 | carry += vli_add(result, left: result, right: tmp, ndigits); |
| 886 | |
| 887 | /* d1 */ |
| 888 | tmp[0] = SL32OR32(product[6], (product[11]>>32)); //a12||a23 |
| 889 | tmp[1] = SL32OR32(product[7], (product[6]>>32)); //a14||a13 |
| 890 | tmp[2] = SL32OR32(product[8], (product[7]>>32)); //a16||a15 |
| 891 | tmp[3] = SL32OR32(product[9], (product[8]>>32)); //a18||a17 |
| 892 | tmp[4] = SL32OR32(product[10], (product[9]>>32)); //a20||a19 |
| 893 | tmp[5] = SL32OR32(product[11], (product[10]>>32)); //a22||a21 |
| 894 | carry -= vli_sub(result, result, tmp, ndigits); |
| 895 | |
| 896 | /* d2 */ |
| 897 | tmp[0] = (product[10]<<32); //a20|| 0 |
| 898 | tmp[1] = SL32OR32(product[11], (product[10]>>32)); //a22||a21 |
| 899 | tmp[2] = (product[11]>>32); // 0 ||a23 |
| 900 | tmp[3] = 0; // 0 || 0 |
| 901 | tmp[4] = 0; // 0 || 0 |
| 902 | tmp[5] = 0; // 0 || 0 |
| 903 | carry -= vli_sub(result, result, tmp, ndigits); |
| 904 | |
| 905 | /* d3 */ |
| 906 | tmp[0] = 0; // 0 || 0 |
| 907 | tmp[1] = AND64H(product[11]); //a23|| 0 |
| 908 | tmp[2] = product[11]>>32; // 0 ||a23 |
| 909 | tmp[3] = 0; // 0 || 0 |
| 910 | tmp[4] = 0; // 0 || 0 |
| 911 | tmp[5] = 0; // 0 || 0 |
| 912 | carry -= vli_sub(result, result, tmp, ndigits); |
| 913 | |
| 914 | if (carry < 0) { |
| 915 | do { |
| 916 | carry += vli_add(result, left: result, right: curve_prime, ndigits); |
| 917 | } while (carry < 0); |
| 918 | } else { |
| 919 | while (carry || vli_cmp(curve_prime, result, ndigits) != 1) |
| 920 | carry -= vli_sub(result, result, curve_prime, ndigits); |
| 921 | } |
| 922 | |
| 923 | } |
| 924 | |
| 925 | #undef SL32OR32 |
| 926 | #undef AND64H |
| 927 | #undef AND64L |
| 928 | |
| 929 | /* |
| 930 | * Computes result = product % curve_prime |
| 931 | * from "Recommendations for Discrete Logarithm-Based Cryptography: |
| 932 | * Elliptic Curve Domain Parameters" section G.1.4 |
| 933 | */ |
| 934 | static void vli_mmod_fast_521(u64 *result, const u64 *product, |
| 935 | const u64 *curve_prime, u64 *tmp) |
| 936 | { |
| 937 | const unsigned int ndigits = ECC_CURVE_NIST_P521_DIGITS; |
| 938 | size_t i; |
| 939 | |
| 940 | /* Initialize result with lowest 521 bits from product */ |
| 941 | vli_set(dest: result, src: product, ndigits); |
| 942 | result[8] &= 0x1ff; |
| 943 | |
| 944 | for (i = 0; i < ndigits; i++) |
| 945 | tmp[i] = (product[8 + i] >> 9) | (product[9 + i] << 55); |
| 946 | tmp[8] &= 0x1ff; |
| 947 | |
| 948 | vli_mod_add(result, left: result, right: tmp, mod: curve_prime, ndigits); |
| 949 | } |
| 950 | |
| 951 | /* Computes result = product % curve_prime for different curve_primes. |
| 952 | * |
| 953 | * Note that curve_primes are distinguished just by heuristic check and |
| 954 | * not by complete conformance check. |
| 955 | */ |
| 956 | static bool vli_mmod_fast(u64 *result, u64 *product, |
| 957 | const struct ecc_curve *curve) |
| 958 | { |
| 959 | u64 tmp[2 * ECC_MAX_DIGITS]; |
| 960 | const u64 *curve_prime = curve->p; |
| 961 | const unsigned int ndigits = curve->g.ndigits; |
| 962 | |
| 963 | /* All NIST curves have name prefix 'nist_' */ |
| 964 | if (strncmp(curve->name, "nist_" , 5) != 0) { |
| 965 | /* Try to handle Pseudo-Marsenne primes. */ |
| 966 | if (curve_prime[ndigits - 1] == -1ull) { |
| 967 | vli_mmod_special(result, product, mod: curve_prime, |
| 968 | ndigits); |
| 969 | return true; |
| 970 | } else if (curve_prime[ndigits - 1] == 1ull << 63 && |
| 971 | curve_prime[ndigits - 2] == 0) { |
| 972 | vli_mmod_special2(result, product, mod: curve_prime, |
| 973 | ndigits); |
| 974 | return true; |
| 975 | } |
| 976 | vli_mmod_barrett(result, product, mod: curve_prime, ndigits); |
| 977 | return true; |
| 978 | } |
| 979 | |
| 980 | switch (ndigits) { |
| 981 | case ECC_CURVE_NIST_P192_DIGITS: |
| 982 | vli_mmod_fast_192(result, product, curve_prime, tmp); |
| 983 | break; |
| 984 | case ECC_CURVE_NIST_P256_DIGITS: |
| 985 | vli_mmod_fast_256(result, product, curve_prime, tmp); |
| 986 | break; |
| 987 | case ECC_CURVE_NIST_P384_DIGITS: |
| 988 | vli_mmod_fast_384(result, product, curve_prime, tmp); |
| 989 | break; |
| 990 | case ECC_CURVE_NIST_P521_DIGITS: |
| 991 | vli_mmod_fast_521(result, product, curve_prime, tmp); |
| 992 | break; |
| 993 | default: |
| 994 | pr_err_ratelimited("ecc: unsupported digits size!\n" ); |
| 995 | return false; |
| 996 | } |
| 997 | |
| 998 | return true; |
| 999 | } |
| 1000 | |
| 1001 | /* Computes result = (left * right) % mod. |
| 1002 | * Assumes that mod is big enough curve order. |
| 1003 | */ |
| 1004 | void vli_mod_mult_slow(u64 *result, const u64 *left, const u64 *right, |
| 1005 | const u64 *mod, unsigned int ndigits) |
| 1006 | { |
| 1007 | u64 product[ECC_MAX_DIGITS * 2]; |
| 1008 | |
| 1009 | vli_mult(result: product, left, right, ndigits); |
| 1010 | vli_mmod_slow(result, product, mod, ndigits); |
| 1011 | } |
| 1012 | EXPORT_SYMBOL(vli_mod_mult_slow); |
| 1013 | |
| 1014 | /* Computes result = (left * right) % curve_prime. */ |
| 1015 | static void vli_mod_mult_fast(u64 *result, const u64 *left, const u64 *right, |
| 1016 | const struct ecc_curve *curve) |
| 1017 | { |
| 1018 | u64 product[2 * ECC_MAX_DIGITS]; |
| 1019 | |
| 1020 | vli_mult(result: product, left, right, ndigits: curve->g.ndigits); |
| 1021 | vli_mmod_fast(result, product, curve); |
| 1022 | } |
| 1023 | |
| 1024 | /* Computes result = left^2 % curve_prime. */ |
| 1025 | static void vli_mod_square_fast(u64 *result, const u64 *left, |
| 1026 | const struct ecc_curve *curve) |
| 1027 | { |
| 1028 | u64 product[2 * ECC_MAX_DIGITS]; |
| 1029 | |
| 1030 | vli_square(result: product, left, ndigits: curve->g.ndigits); |
| 1031 | vli_mmod_fast(result, product, curve); |
| 1032 | } |
| 1033 | |
| 1034 | #define EVEN(vli) (!(vli[0] & 1)) |
| 1035 | /* Computes result = (1 / p_input) % mod. All VLIs are the same size. |
| 1036 | * See "From Euclid's GCD to Montgomery Multiplication to the Great Divide" |
| 1037 | * https://labs.oracle.com/techrep/2001/smli_tr-2001-95.pdf |
| 1038 | */ |
| 1039 | void vli_mod_inv(u64 *result, const u64 *input, const u64 *mod, |
| 1040 | unsigned int ndigits) |
| 1041 | { |
| 1042 | u64 a[ECC_MAX_DIGITS], b[ECC_MAX_DIGITS]; |
| 1043 | u64 u[ECC_MAX_DIGITS], v[ECC_MAX_DIGITS]; |
| 1044 | u64 carry; |
| 1045 | int cmp_result; |
| 1046 | |
| 1047 | if (vli_is_zero(input, ndigits)) { |
| 1048 | vli_clear(vli: result, ndigits); |
| 1049 | return; |
| 1050 | } |
| 1051 | |
| 1052 | vli_set(dest: a, src: input, ndigits); |
| 1053 | vli_set(dest: b, src: mod, ndigits); |
| 1054 | vli_clear(vli: u, ndigits); |
| 1055 | u[0] = 1; |
| 1056 | vli_clear(vli: v, ndigits); |
| 1057 | |
| 1058 | while ((cmp_result = vli_cmp(a, b, ndigits)) != 0) { |
| 1059 | carry = 0; |
| 1060 | |
| 1061 | if (EVEN(a)) { |
| 1062 | vli_rshift1(vli: a, ndigits); |
| 1063 | |
| 1064 | if (!EVEN(u)) |
| 1065 | carry = vli_add(result: u, left: u, right: mod, ndigits); |
| 1066 | |
| 1067 | vli_rshift1(vli: u, ndigits); |
| 1068 | if (carry) |
| 1069 | u[ndigits - 1] |= 0x8000000000000000ull; |
| 1070 | } else if (EVEN(b)) { |
| 1071 | vli_rshift1(vli: b, ndigits); |
| 1072 | |
| 1073 | if (!EVEN(v)) |
| 1074 | carry = vli_add(result: v, left: v, right: mod, ndigits); |
| 1075 | |
| 1076 | vli_rshift1(vli: v, ndigits); |
| 1077 | if (carry) |
| 1078 | v[ndigits - 1] |= 0x8000000000000000ull; |
| 1079 | } else if (cmp_result > 0) { |
| 1080 | vli_sub(a, a, b, ndigits); |
| 1081 | vli_rshift1(vli: a, ndigits); |
| 1082 | |
| 1083 | if (vli_cmp(u, v, ndigits) < 0) |
| 1084 | vli_add(result: u, left: u, right: mod, ndigits); |
| 1085 | |
| 1086 | vli_sub(u, u, v, ndigits); |
| 1087 | if (!EVEN(u)) |
| 1088 | carry = vli_add(result: u, left: u, right: mod, ndigits); |
| 1089 | |
| 1090 | vli_rshift1(vli: u, ndigits); |
| 1091 | if (carry) |
| 1092 | u[ndigits - 1] |= 0x8000000000000000ull; |
| 1093 | } else { |
| 1094 | vli_sub(b, b, a, ndigits); |
| 1095 | vli_rshift1(vli: b, ndigits); |
| 1096 | |
| 1097 | if (vli_cmp(v, u, ndigits) < 0) |
| 1098 | vli_add(result: v, left: v, right: mod, ndigits); |
| 1099 | |
| 1100 | vli_sub(v, v, u, ndigits); |
| 1101 | if (!EVEN(v)) |
| 1102 | carry = vli_add(result: v, left: v, right: mod, ndigits); |
| 1103 | |
| 1104 | vli_rshift1(vli: v, ndigits); |
| 1105 | if (carry) |
| 1106 | v[ndigits - 1] |= 0x8000000000000000ull; |
| 1107 | } |
| 1108 | } |
| 1109 | |
| 1110 | vli_set(dest: result, src: u, ndigits); |
| 1111 | } |
| 1112 | EXPORT_SYMBOL(vli_mod_inv); |
| 1113 | |
| 1114 | /* ------ Point operations ------ */ |
| 1115 | |
| 1116 | /* Returns true if p_point is the point at infinity, false otherwise. */ |
| 1117 | bool ecc_point_is_zero(const struct ecc_point *point) |
| 1118 | { |
| 1119 | return (vli_is_zero(point->x, point->ndigits) && |
| 1120 | vli_is_zero(point->y, point->ndigits)); |
| 1121 | } |
| 1122 | EXPORT_SYMBOL(ecc_point_is_zero); |
| 1123 | |
| 1124 | /* Point multiplication algorithm using Montgomery's ladder with co-Z |
| 1125 | * coordinates. From https://eprint.iacr.org/2011/338.pdf |
| 1126 | */ |
| 1127 | |
| 1128 | /* Double in place */ |
| 1129 | static void ecc_point_double_jacobian(u64 *x1, u64 *y1, u64 *z1, |
| 1130 | const struct ecc_curve *curve) |
| 1131 | { |
| 1132 | /* t1 = x, t2 = y, t3 = z */ |
| 1133 | u64 t4[ECC_MAX_DIGITS]; |
| 1134 | u64 t5[ECC_MAX_DIGITS]; |
| 1135 | const u64 *curve_prime = curve->p; |
| 1136 | const unsigned int ndigits = curve->g.ndigits; |
| 1137 | |
| 1138 | if (vli_is_zero(z1, ndigits)) |
| 1139 | return; |
| 1140 | |
| 1141 | /* t4 = y1^2 */ |
| 1142 | vli_mod_square_fast(result: t4, left: y1, curve); |
| 1143 | /* t5 = x1*y1^2 = A */ |
| 1144 | vli_mod_mult_fast(result: t5, left: x1, right: t4, curve); |
| 1145 | /* t4 = y1^4 */ |
| 1146 | vli_mod_square_fast(result: t4, left: t4, curve); |
| 1147 | /* t2 = y1*z1 = z3 */ |
| 1148 | vli_mod_mult_fast(result: y1, left: y1, right: z1, curve); |
| 1149 | /* t3 = z1^2 */ |
| 1150 | vli_mod_square_fast(result: z1, left: z1, curve); |
| 1151 | |
| 1152 | /* t1 = x1 + z1^2 */ |
| 1153 | vli_mod_add(result: x1, left: x1, right: z1, mod: curve_prime, ndigits); |
| 1154 | /* t3 = 2*z1^2 */ |
| 1155 | vli_mod_add(result: z1, left: z1, right: z1, mod: curve_prime, ndigits); |
| 1156 | /* t3 = x1 - z1^2 */ |
| 1157 | vli_mod_sub(result: z1, left: x1, right: z1, mod: curve_prime, ndigits); |
| 1158 | /* t1 = x1^2 - z1^4 */ |
| 1159 | vli_mod_mult_fast(result: x1, left: x1, right: z1, curve); |
| 1160 | |
| 1161 | /* t3 = 2*(x1^2 - z1^4) */ |
| 1162 | vli_mod_add(result: z1, left: x1, right: x1, mod: curve_prime, ndigits); |
| 1163 | /* t1 = 3*(x1^2 - z1^4) */ |
| 1164 | vli_mod_add(result: x1, left: x1, right: z1, mod: curve_prime, ndigits); |
| 1165 | if (vli_test_bit(vli: x1, bit: 0)) { |
| 1166 | u64 carry = vli_add(result: x1, left: x1, right: curve_prime, ndigits); |
| 1167 | |
| 1168 | vli_rshift1(vli: x1, ndigits); |
| 1169 | x1[ndigits - 1] |= carry << 63; |
| 1170 | } else { |
| 1171 | vli_rshift1(vli: x1, ndigits); |
| 1172 | } |
| 1173 | /* t1 = 3/2*(x1^2 - z1^4) = B */ |
| 1174 | |
| 1175 | /* t3 = B^2 */ |
| 1176 | vli_mod_square_fast(result: z1, left: x1, curve); |
| 1177 | /* t3 = B^2 - A */ |
| 1178 | vli_mod_sub(result: z1, left: z1, right: t5, mod: curve_prime, ndigits); |
| 1179 | /* t3 = B^2 - 2A = x3 */ |
| 1180 | vli_mod_sub(result: z1, left: z1, right: t5, mod: curve_prime, ndigits); |
| 1181 | /* t5 = A - x3 */ |
| 1182 | vli_mod_sub(result: t5, left: t5, right: z1, mod: curve_prime, ndigits); |
| 1183 | /* t1 = B * (A - x3) */ |
| 1184 | vli_mod_mult_fast(result: x1, left: x1, right: t5, curve); |
| 1185 | /* t4 = B * (A - x3) - y1^4 = y3 */ |
| 1186 | vli_mod_sub(result: t4, left: x1, right: t4, mod: curve_prime, ndigits); |
| 1187 | |
| 1188 | vli_set(dest: x1, src: z1, ndigits); |
| 1189 | vli_set(dest: z1, src: y1, ndigits); |
| 1190 | vli_set(dest: y1, src: t4, ndigits); |
| 1191 | } |
| 1192 | |
| 1193 | /* Modify (x1, y1) => (x1 * z^2, y1 * z^3) */ |
| 1194 | static void apply_z(u64 *x1, u64 *y1, u64 *z, const struct ecc_curve *curve) |
| 1195 | { |
| 1196 | u64 t1[ECC_MAX_DIGITS]; |
| 1197 | |
| 1198 | vli_mod_square_fast(result: t1, left: z, curve); /* z^2 */ |
| 1199 | vli_mod_mult_fast(result: x1, left: x1, right: t1, curve); /* x1 * z^2 */ |
| 1200 | vli_mod_mult_fast(result: t1, left: t1, right: z, curve); /* z^3 */ |
| 1201 | vli_mod_mult_fast(result: y1, left: y1, right: t1, curve); /* y1 * z^3 */ |
| 1202 | } |
| 1203 | |
| 1204 | /* P = (x1, y1) => 2P, (x2, y2) => P' */ |
| 1205 | static void xycz_initial_double(u64 *x1, u64 *y1, u64 *x2, u64 *y2, |
| 1206 | u64 *p_initial_z, const struct ecc_curve *curve) |
| 1207 | { |
| 1208 | u64 z[ECC_MAX_DIGITS]; |
| 1209 | const unsigned int ndigits = curve->g.ndigits; |
| 1210 | |
| 1211 | vli_set(dest: x2, src: x1, ndigits); |
| 1212 | vli_set(dest: y2, src: y1, ndigits); |
| 1213 | |
| 1214 | vli_clear(vli: z, ndigits); |
| 1215 | z[0] = 1; |
| 1216 | |
| 1217 | if (p_initial_z) |
| 1218 | vli_set(dest: z, src: p_initial_z, ndigits); |
| 1219 | |
| 1220 | apply_z(x1, y1, z, curve); |
| 1221 | |
| 1222 | ecc_point_double_jacobian(x1, y1, z1: z, curve); |
| 1223 | |
| 1224 | apply_z(x1: x2, y1: y2, z, curve); |
| 1225 | } |
| 1226 | |
| 1227 | /* Input P = (x1, y1, Z), Q = (x2, y2, Z) |
| 1228 | * Output P' = (x1', y1', Z3), P + Q = (x3, y3, Z3) |
| 1229 | * or P => P', Q => P + Q |
| 1230 | */ |
| 1231 | static void xycz_add(u64 *x1, u64 *y1, u64 *x2, u64 *y2, |
| 1232 | const struct ecc_curve *curve) |
| 1233 | { |
| 1234 | /* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */ |
| 1235 | u64 t5[ECC_MAX_DIGITS]; |
| 1236 | const u64 *curve_prime = curve->p; |
| 1237 | const unsigned int ndigits = curve->g.ndigits; |
| 1238 | |
| 1239 | /* t5 = x2 - x1 */ |
| 1240 | vli_mod_sub(result: t5, left: x2, right: x1, mod: curve_prime, ndigits); |
| 1241 | /* t5 = (x2 - x1)^2 = A */ |
| 1242 | vli_mod_square_fast(result: t5, left: t5, curve); |
| 1243 | /* t1 = x1*A = B */ |
| 1244 | vli_mod_mult_fast(result: x1, left: x1, right: t5, curve); |
| 1245 | /* t3 = x2*A = C */ |
| 1246 | vli_mod_mult_fast(result: x2, left: x2, right: t5, curve); |
| 1247 | /* t4 = y2 - y1 */ |
| 1248 | vli_mod_sub(result: y2, left: y2, right: y1, mod: curve_prime, ndigits); |
| 1249 | /* t5 = (y2 - y1)^2 = D */ |
| 1250 | vli_mod_square_fast(result: t5, left: y2, curve); |
| 1251 | |
| 1252 | /* t5 = D - B */ |
| 1253 | vli_mod_sub(result: t5, left: t5, right: x1, mod: curve_prime, ndigits); |
| 1254 | /* t5 = D - B - C = x3 */ |
| 1255 | vli_mod_sub(result: t5, left: t5, right: x2, mod: curve_prime, ndigits); |
| 1256 | /* t3 = C - B */ |
| 1257 | vli_mod_sub(result: x2, left: x2, right: x1, mod: curve_prime, ndigits); |
| 1258 | /* t2 = y1*(C - B) */ |
| 1259 | vli_mod_mult_fast(result: y1, left: y1, right: x2, curve); |
| 1260 | /* t3 = B - x3 */ |
| 1261 | vli_mod_sub(result: x2, left: x1, right: t5, mod: curve_prime, ndigits); |
| 1262 | /* t4 = (y2 - y1)*(B - x3) */ |
| 1263 | vli_mod_mult_fast(result: y2, left: y2, right: x2, curve); |
| 1264 | /* t4 = y3 */ |
| 1265 | vli_mod_sub(result: y2, left: y2, right: y1, mod: curve_prime, ndigits); |
| 1266 | |
| 1267 | vli_set(dest: x2, src: t5, ndigits); |
| 1268 | } |
| 1269 | |
| 1270 | /* Input P = (x1, y1, Z), Q = (x2, y2, Z) |
| 1271 | * Output P + Q = (x3, y3, Z3), P - Q = (x3', y3', Z3) |
| 1272 | * or P => P - Q, Q => P + Q |
| 1273 | */ |
| 1274 | static void xycz_add_c(u64 *x1, u64 *y1, u64 *x2, u64 *y2, |
| 1275 | const struct ecc_curve *curve) |
| 1276 | { |
| 1277 | /* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */ |
| 1278 | u64 t5[ECC_MAX_DIGITS]; |
| 1279 | u64 t6[ECC_MAX_DIGITS]; |
| 1280 | u64 t7[ECC_MAX_DIGITS]; |
| 1281 | const u64 *curve_prime = curve->p; |
| 1282 | const unsigned int ndigits = curve->g.ndigits; |
| 1283 | |
| 1284 | /* t5 = x2 - x1 */ |
| 1285 | vli_mod_sub(result: t5, left: x2, right: x1, mod: curve_prime, ndigits); |
| 1286 | /* t5 = (x2 - x1)^2 = A */ |
| 1287 | vli_mod_square_fast(result: t5, left: t5, curve); |
| 1288 | /* t1 = x1*A = B */ |
| 1289 | vli_mod_mult_fast(result: x1, left: x1, right: t5, curve); |
| 1290 | /* t3 = x2*A = C */ |
| 1291 | vli_mod_mult_fast(result: x2, left: x2, right: t5, curve); |
| 1292 | /* t4 = y2 + y1 */ |
| 1293 | vli_mod_add(result: t5, left: y2, right: y1, mod: curve_prime, ndigits); |
| 1294 | /* t4 = y2 - y1 */ |
| 1295 | vli_mod_sub(result: y2, left: y2, right: y1, mod: curve_prime, ndigits); |
| 1296 | |
| 1297 | /* t6 = C - B */ |
| 1298 | vli_mod_sub(result: t6, left: x2, right: x1, mod: curve_prime, ndigits); |
| 1299 | /* t2 = y1 * (C - B) */ |
| 1300 | vli_mod_mult_fast(result: y1, left: y1, right: t6, curve); |
| 1301 | /* t6 = B + C */ |
| 1302 | vli_mod_add(result: t6, left: x1, right: x2, mod: curve_prime, ndigits); |
| 1303 | /* t3 = (y2 - y1)^2 */ |
| 1304 | vli_mod_square_fast(result: x2, left: y2, curve); |
| 1305 | /* t3 = x3 */ |
| 1306 | vli_mod_sub(result: x2, left: x2, right: t6, mod: curve_prime, ndigits); |
| 1307 | |
| 1308 | /* t7 = B - x3 */ |
| 1309 | vli_mod_sub(result: t7, left: x1, right: x2, mod: curve_prime, ndigits); |
| 1310 | /* t4 = (y2 - y1)*(B - x3) */ |
| 1311 | vli_mod_mult_fast(result: y2, left: y2, right: t7, curve); |
| 1312 | /* t4 = y3 */ |
| 1313 | vli_mod_sub(result: y2, left: y2, right: y1, mod: curve_prime, ndigits); |
| 1314 | |
| 1315 | /* t7 = (y2 + y1)^2 = F */ |
| 1316 | vli_mod_square_fast(result: t7, left: t5, curve); |
| 1317 | /* t7 = x3' */ |
| 1318 | vli_mod_sub(result: t7, left: t7, right: t6, mod: curve_prime, ndigits); |
| 1319 | /* t6 = x3' - B */ |
| 1320 | vli_mod_sub(result: t6, left: t7, right: x1, mod: curve_prime, ndigits); |
| 1321 | /* t6 = (y2 + y1)*(x3' - B) */ |
| 1322 | vli_mod_mult_fast(result: t6, left: t6, right: t5, curve); |
| 1323 | /* t2 = y3' */ |
| 1324 | vli_mod_sub(result: y1, left: t6, right: y1, mod: curve_prime, ndigits); |
| 1325 | |
| 1326 | vli_set(dest: x1, src: t7, ndigits); |
| 1327 | } |
| 1328 | |
| 1329 | static void ecc_point_mult(struct ecc_point *result, |
| 1330 | const struct ecc_point *point, const u64 *scalar, |
| 1331 | u64 *initial_z, const struct ecc_curve *curve, |
| 1332 | unsigned int ndigits) |
| 1333 | { |
| 1334 | /* R0 and R1 */ |
| 1335 | u64 rx[2][ECC_MAX_DIGITS]; |
| 1336 | u64 ry[2][ECC_MAX_DIGITS]; |
| 1337 | u64 z[ECC_MAX_DIGITS]; |
| 1338 | u64 sk[2][ECC_MAX_DIGITS]; |
| 1339 | u64 *curve_prime = curve->p; |
| 1340 | int i, nb; |
| 1341 | int num_bits; |
| 1342 | int carry; |
| 1343 | |
| 1344 | carry = vli_add(result: sk[0], left: scalar, right: curve->n, ndigits); |
| 1345 | vli_add(result: sk[1], left: sk[0], right: curve->n, ndigits); |
| 1346 | scalar = sk[!carry]; |
| 1347 | if (curve->nbits == 521) /* NIST P521 */ |
| 1348 | num_bits = curve->nbits + 2; |
| 1349 | else |
| 1350 | num_bits = sizeof(u64) * ndigits * 8 + 1; |
| 1351 | |
| 1352 | vli_set(dest: rx[1], src: point->x, ndigits); |
| 1353 | vli_set(dest: ry[1], src: point->y, ndigits); |
| 1354 | |
| 1355 | xycz_initial_double(x1: rx[1], y1: ry[1], x2: rx[0], y2: ry[0], p_initial_z: initial_z, curve); |
| 1356 | |
| 1357 | for (i = num_bits - 2; i > 0; i--) { |
| 1358 | nb = !vli_test_bit(vli: scalar, bit: i); |
| 1359 | xycz_add_c(x1: rx[1 - nb], y1: ry[1 - nb], x2: rx[nb], y2: ry[nb], curve); |
| 1360 | xycz_add(x1: rx[nb], y1: ry[nb], x2: rx[1 - nb], y2: ry[1 - nb], curve); |
| 1361 | } |
| 1362 | |
| 1363 | nb = !vli_test_bit(vli: scalar, bit: 0); |
| 1364 | xycz_add_c(x1: rx[1 - nb], y1: ry[1 - nb], x2: rx[nb], y2: ry[nb], curve); |
| 1365 | |
| 1366 | /* Find final 1/Z value. */ |
| 1367 | /* X1 - X0 */ |
| 1368 | vli_mod_sub(result: z, left: rx[1], right: rx[0], mod: curve_prime, ndigits); |
| 1369 | /* Yb * (X1 - X0) */ |
| 1370 | vli_mod_mult_fast(result: z, left: z, right: ry[1 - nb], curve); |
| 1371 | /* xP * Yb * (X1 - X0) */ |
| 1372 | vli_mod_mult_fast(result: z, left: z, right: point->x, curve); |
| 1373 | |
| 1374 | /* 1 / (xP * Yb * (X1 - X0)) */ |
| 1375 | vli_mod_inv(z, z, curve_prime, point->ndigits); |
| 1376 | |
| 1377 | /* yP / (xP * Yb * (X1 - X0)) */ |
| 1378 | vli_mod_mult_fast(result: z, left: z, right: point->y, curve); |
| 1379 | /* Xb * yP / (xP * Yb * (X1 - X0)) */ |
| 1380 | vli_mod_mult_fast(result: z, left: z, right: rx[1 - nb], curve); |
| 1381 | /* End 1/Z calculation */ |
| 1382 | |
| 1383 | xycz_add(x1: rx[nb], y1: ry[nb], x2: rx[1 - nb], y2: ry[1 - nb], curve); |
| 1384 | |
| 1385 | apply_z(x1: rx[0], y1: ry[0], z, curve); |
| 1386 | |
| 1387 | vli_set(dest: result->x, src: rx[0], ndigits); |
| 1388 | vli_set(dest: result->y, src: ry[0], ndigits); |
| 1389 | } |
| 1390 | |
| 1391 | /* Computes R = P + Q mod p */ |
| 1392 | static void ecc_point_add(const struct ecc_point *result, |
| 1393 | const struct ecc_point *p, const struct ecc_point *q, |
| 1394 | const struct ecc_curve *curve) |
| 1395 | { |
| 1396 | u64 z[ECC_MAX_DIGITS]; |
| 1397 | u64 px[ECC_MAX_DIGITS]; |
| 1398 | u64 py[ECC_MAX_DIGITS]; |
| 1399 | unsigned int ndigits = curve->g.ndigits; |
| 1400 | |
| 1401 | vli_set(dest: result->x, src: q->x, ndigits); |
| 1402 | vli_set(dest: result->y, src: q->y, ndigits); |
| 1403 | vli_mod_sub(result: z, left: result->x, right: p->x, mod: curve->p, ndigits); |
| 1404 | vli_set(dest: px, src: p->x, ndigits); |
| 1405 | vli_set(dest: py, src: p->y, ndigits); |
| 1406 | xycz_add(x1: px, y1: py, x2: result->x, y2: result->y, curve); |
| 1407 | vli_mod_inv(z, z, curve->p, ndigits); |
| 1408 | apply_z(x1: result->x, y1: result->y, z, curve); |
| 1409 | } |
| 1410 | |
| 1411 | /* Computes R = u1P + u2Q mod p using Shamir's trick. |
| 1412 | * Based on: Kenneth MacKay's micro-ecc (2014). |
| 1413 | */ |
| 1414 | void ecc_point_mult_shamir(const struct ecc_point *result, |
| 1415 | const u64 *u1, const struct ecc_point *p, |
| 1416 | const u64 *u2, const struct ecc_point *q, |
| 1417 | const struct ecc_curve *curve) |
| 1418 | { |
| 1419 | u64 z[ECC_MAX_DIGITS]; |
| 1420 | u64 sump[2][ECC_MAX_DIGITS]; |
| 1421 | u64 *rx = result->x; |
| 1422 | u64 *ry = result->y; |
| 1423 | unsigned int ndigits = curve->g.ndigits; |
| 1424 | unsigned int num_bits; |
| 1425 | struct ecc_point sum = ECC_POINT_INIT(sump[0], sump[1], ndigits); |
| 1426 | const struct ecc_point *points[4]; |
| 1427 | const struct ecc_point *point; |
| 1428 | unsigned int idx; |
| 1429 | int i; |
| 1430 | |
| 1431 | ecc_point_add(result: &sum, p, q, curve); |
| 1432 | points[0] = NULL; |
| 1433 | points[1] = p; |
| 1434 | points[2] = q; |
| 1435 | points[3] = ∑ |
| 1436 | |
| 1437 | num_bits = max(vli_num_bits(u1, ndigits), vli_num_bits(u2, ndigits)); |
| 1438 | i = num_bits - 1; |
| 1439 | idx = !!vli_test_bit(vli: u1, bit: i); |
| 1440 | idx |= (!!vli_test_bit(vli: u2, bit: i)) << 1; |
| 1441 | point = points[idx]; |
| 1442 | |
| 1443 | vli_set(dest: rx, src: point->x, ndigits); |
| 1444 | vli_set(dest: ry, src: point->y, ndigits); |
| 1445 | vli_clear(vli: z + 1, ndigits: ndigits - 1); |
| 1446 | z[0] = 1; |
| 1447 | |
| 1448 | for (--i; i >= 0; i--) { |
| 1449 | ecc_point_double_jacobian(x1: rx, y1: ry, z1: z, curve); |
| 1450 | idx = !!vli_test_bit(vli: u1, bit: i); |
| 1451 | idx |= (!!vli_test_bit(vli: u2, bit: i)) << 1; |
| 1452 | point = points[idx]; |
| 1453 | if (point) { |
| 1454 | u64 tx[ECC_MAX_DIGITS]; |
| 1455 | u64 ty[ECC_MAX_DIGITS]; |
| 1456 | u64 tz[ECC_MAX_DIGITS]; |
| 1457 | |
| 1458 | vli_set(dest: tx, src: point->x, ndigits); |
| 1459 | vli_set(dest: ty, src: point->y, ndigits); |
| 1460 | apply_z(x1: tx, y1: ty, z, curve); |
| 1461 | vli_mod_sub(result: tz, left: rx, right: tx, mod: curve->p, ndigits); |
| 1462 | xycz_add(x1: tx, y1: ty, x2: rx, y2: ry, curve); |
| 1463 | vli_mod_mult_fast(result: z, left: z, right: tz, curve); |
| 1464 | } |
| 1465 | } |
| 1466 | vli_mod_inv(z, z, curve->p, ndigits); |
| 1467 | apply_z(x1: rx, y1: ry, z, curve); |
| 1468 | } |
| 1469 | EXPORT_SYMBOL(ecc_point_mult_shamir); |
| 1470 | |
| 1471 | /* |
| 1472 | * This function performs checks equivalent to Appendix A.4.2 of FIPS 186-5. |
| 1473 | * Whereas A.4.2 results in an integer in the interval [1, n-1], this function |
| 1474 | * ensures that the integer is in the range of [2, n-3]. We are slightly |
| 1475 | * stricter because of the currently used scalar multiplication algorithm. |
| 1476 | */ |
| 1477 | static int __ecc_is_key_valid(const struct ecc_curve *curve, |
| 1478 | const u64 *private_key, unsigned int ndigits) |
| 1479 | { |
| 1480 | u64 one[ECC_MAX_DIGITS] = { 1, }; |
| 1481 | u64 res[ECC_MAX_DIGITS]; |
| 1482 | |
| 1483 | if (!private_key) |
| 1484 | return -EINVAL; |
| 1485 | |
| 1486 | if (curve->g.ndigits != ndigits) |
| 1487 | return -EINVAL; |
| 1488 | |
| 1489 | /* Make sure the private key is in the range [2, n-3]. */ |
| 1490 | if (vli_cmp(one, private_key, ndigits) != -1) |
| 1491 | return -EINVAL; |
| 1492 | vli_sub(res, curve->n, one, ndigits); |
| 1493 | vli_sub(res, res, one, ndigits); |
| 1494 | if (vli_cmp(res, private_key, ndigits) != 1) |
| 1495 | return -EINVAL; |
| 1496 | |
| 1497 | return 0; |
| 1498 | } |
| 1499 | |
| 1500 | int ecc_is_key_valid(unsigned int curve_id, unsigned int ndigits, |
| 1501 | const u64 *private_key, unsigned int private_key_len) |
| 1502 | { |
| 1503 | int nbytes; |
| 1504 | const struct ecc_curve *curve = ecc_get_curve(curve_id); |
| 1505 | |
| 1506 | nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT; |
| 1507 | |
| 1508 | if (private_key_len != nbytes) |
| 1509 | return -EINVAL; |
| 1510 | |
| 1511 | return __ecc_is_key_valid(curve, private_key, ndigits); |
| 1512 | } |
| 1513 | EXPORT_SYMBOL(ecc_is_key_valid); |
| 1514 | |
| 1515 | /* |
| 1516 | * ECC private keys are generated using the method of rejection sampling, |
| 1517 | * equivalent to that described in FIPS 186-5, Appendix A.2.2. |
| 1518 | * |
| 1519 | * This method generates a private key uniformly distributed in the range |
| 1520 | * [2, n-3]. |
| 1521 | */ |
| 1522 | int ecc_gen_privkey(unsigned int curve_id, unsigned int ndigits, |
| 1523 | u64 *private_key) |
| 1524 | { |
| 1525 | const struct ecc_curve *curve = ecc_get_curve(curve_id); |
| 1526 | unsigned int nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT; |
| 1527 | unsigned int nbits = vli_num_bits(curve->n, ndigits); |
| 1528 | int err; |
| 1529 | |
| 1530 | /* |
| 1531 | * Step 1 & 2: check that N is included in Table 1 of FIPS 186-5, |
| 1532 | * section 6.1.1. |
| 1533 | */ |
| 1534 | if (nbits < 224) |
| 1535 | return -EINVAL; |
| 1536 | |
| 1537 | /* |
| 1538 | * FIPS 186-5 recommends that the private key should be obtained from a |
| 1539 | * RBG with a security strength equal to or greater than the security |
| 1540 | * strength associated with N. |
| 1541 | * |
| 1542 | * The maximum security strength identified by NIST SP800-57pt1r4 for |
| 1543 | * ECC is 256 (N >= 512). |
| 1544 | * |
| 1545 | * This condition is met by the default RNG because it selects a favored |
| 1546 | * DRBG with a security strength of 256. |
| 1547 | */ |
| 1548 | if (crypto_get_default_rng()) |
| 1549 | return -EFAULT; |
| 1550 | |
| 1551 | /* Step 3: obtain N returned_bits from the DRBG. */ |
| 1552 | err = crypto_rng_get_bytes(tfm: crypto_default_rng, |
| 1553 | rdata: (u8 *)private_key, dlen: nbytes); |
| 1554 | crypto_put_default_rng(); |
| 1555 | if (err) |
| 1556 | return err; |
| 1557 | |
| 1558 | /* Step 4: make sure the private key is in the valid range. */ |
| 1559 | if (__ecc_is_key_valid(curve, private_key, ndigits)) |
| 1560 | return -EINVAL; |
| 1561 | |
| 1562 | return 0; |
| 1563 | } |
| 1564 | EXPORT_SYMBOL(ecc_gen_privkey); |
| 1565 | |
| 1566 | int ecc_make_pub_key(unsigned int curve_id, unsigned int ndigits, |
| 1567 | const u64 *private_key, u64 *public_key) |
| 1568 | { |
| 1569 | int ret = 0; |
| 1570 | struct ecc_point *pk; |
| 1571 | const struct ecc_curve *curve = ecc_get_curve(curve_id); |
| 1572 | |
| 1573 | if (!private_key) { |
| 1574 | ret = -EINVAL; |
| 1575 | goto out; |
| 1576 | } |
| 1577 | |
| 1578 | pk = ecc_alloc_point(ndigits); |
| 1579 | if (!pk) { |
| 1580 | ret = -ENOMEM; |
| 1581 | goto out; |
| 1582 | } |
| 1583 | |
| 1584 | ecc_point_mult(result: pk, point: &curve->g, scalar: private_key, NULL, curve, ndigits); |
| 1585 | |
| 1586 | /* SP800-56A rev 3 5.6.2.1.3 key check */ |
| 1587 | if (ecc_is_pubkey_valid_full(curve, pk)) { |
| 1588 | ret = -EAGAIN; |
| 1589 | goto err_free_point; |
| 1590 | } |
| 1591 | |
| 1592 | ecc_swap_digits(in: pk->x, out: public_key, ndigits); |
| 1593 | ecc_swap_digits(in: pk->y, out: &public_key[ndigits], ndigits); |
| 1594 | |
| 1595 | err_free_point: |
| 1596 | ecc_free_point(pk); |
| 1597 | out: |
| 1598 | return ret; |
| 1599 | } |
| 1600 | EXPORT_SYMBOL(ecc_make_pub_key); |
| 1601 | |
| 1602 | /* SP800-56A section 5.6.2.3.4 partial verification: ephemeral keys only */ |
| 1603 | int ecc_is_pubkey_valid_partial(const struct ecc_curve *curve, |
| 1604 | struct ecc_point *pk) |
| 1605 | { |
| 1606 | u64 yy[ECC_MAX_DIGITS], xxx[ECC_MAX_DIGITS], w[ECC_MAX_DIGITS]; |
| 1607 | |
| 1608 | if (WARN_ON(pk->ndigits != curve->g.ndigits)) |
| 1609 | return -EINVAL; |
| 1610 | |
| 1611 | /* Check 1: Verify key is not the zero point. */ |
| 1612 | if (ecc_point_is_zero(pk)) |
| 1613 | return -EINVAL; |
| 1614 | |
| 1615 | /* Check 2: Verify key is in the range [1, p-1]. */ |
| 1616 | if (vli_cmp(curve->p, pk->x, pk->ndigits) != 1) |
| 1617 | return -EINVAL; |
| 1618 | if (vli_cmp(curve->p, pk->y, pk->ndigits) != 1) |
| 1619 | return -EINVAL; |
| 1620 | |
| 1621 | /* Check 3: Verify that y^2 == (x^3 + a·x + b) mod p */ |
| 1622 | vli_mod_square_fast(result: yy, left: pk->y, curve); /* y^2 */ |
| 1623 | vli_mod_square_fast(result: xxx, left: pk->x, curve); /* x^2 */ |
| 1624 | vli_mod_mult_fast(result: xxx, left: xxx, right: pk->x, curve); /* x^3 */ |
| 1625 | vli_mod_mult_fast(result: w, left: curve->a, right: pk->x, curve); /* a·x */ |
| 1626 | vli_mod_add(result: w, left: w, right: curve->b, mod: curve->p, ndigits: pk->ndigits); /* a·x + b */ |
| 1627 | vli_mod_add(result: w, left: w, right: xxx, mod: curve->p, ndigits: pk->ndigits); /* x^3 + a·x + b */ |
| 1628 | if (vli_cmp(yy, w, pk->ndigits) != 0) /* Equation */ |
| 1629 | return -EINVAL; |
| 1630 | |
| 1631 | return 0; |
| 1632 | } |
| 1633 | EXPORT_SYMBOL(ecc_is_pubkey_valid_partial); |
| 1634 | |
| 1635 | /* SP800-56A section 5.6.2.3.3 full verification */ |
| 1636 | int ecc_is_pubkey_valid_full(const struct ecc_curve *curve, |
| 1637 | struct ecc_point *pk) |
| 1638 | { |
| 1639 | struct ecc_point *nQ; |
| 1640 | |
| 1641 | /* Checks 1 through 3 */ |
| 1642 | int ret = ecc_is_pubkey_valid_partial(curve, pk); |
| 1643 | |
| 1644 | if (ret) |
| 1645 | return ret; |
| 1646 | |
| 1647 | /* Check 4: Verify that nQ is the zero point. */ |
| 1648 | nQ = ecc_alloc_point(pk->ndigits); |
| 1649 | if (!nQ) |
| 1650 | return -ENOMEM; |
| 1651 | |
| 1652 | ecc_point_mult(result: nQ, point: pk, scalar: curve->n, NULL, curve, ndigits: pk->ndigits); |
| 1653 | if (!ecc_point_is_zero(nQ)) |
| 1654 | ret = -EINVAL; |
| 1655 | |
| 1656 | ecc_free_point(nQ); |
| 1657 | |
| 1658 | return ret; |
| 1659 | } |
| 1660 | EXPORT_SYMBOL(ecc_is_pubkey_valid_full); |
| 1661 | |
| 1662 | int crypto_ecdh_shared_secret(unsigned int curve_id, unsigned int ndigits, |
| 1663 | const u64 *private_key, const u64 *public_key, |
| 1664 | u64 *secret) |
| 1665 | { |
| 1666 | int ret = 0; |
| 1667 | struct ecc_point *product, *pk; |
| 1668 | u64 rand_z[ECC_MAX_DIGITS]; |
| 1669 | unsigned int nbytes; |
| 1670 | const struct ecc_curve *curve = ecc_get_curve(curve_id); |
| 1671 | |
| 1672 | if (!private_key || !public_key || ndigits > ARRAY_SIZE(rand_z)) { |
| 1673 | ret = -EINVAL; |
| 1674 | goto out; |
| 1675 | } |
| 1676 | |
| 1677 | nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT; |
| 1678 | |
| 1679 | get_random_bytes(buf: rand_z, len: nbytes); |
| 1680 | |
| 1681 | pk = ecc_alloc_point(ndigits); |
| 1682 | if (!pk) { |
| 1683 | ret = -ENOMEM; |
| 1684 | goto out; |
| 1685 | } |
| 1686 | |
| 1687 | ecc_swap_digits(in: public_key, out: pk->x, ndigits); |
| 1688 | ecc_swap_digits(in: &public_key[ndigits], out: pk->y, ndigits); |
| 1689 | ret = ecc_is_pubkey_valid_partial(curve, pk); |
| 1690 | if (ret) |
| 1691 | goto err_alloc_product; |
| 1692 | |
| 1693 | product = ecc_alloc_point(ndigits); |
| 1694 | if (!product) { |
| 1695 | ret = -ENOMEM; |
| 1696 | goto err_alloc_product; |
| 1697 | } |
| 1698 | |
| 1699 | ecc_point_mult(result: product, point: pk, scalar: private_key, initial_z: rand_z, curve, ndigits); |
| 1700 | |
| 1701 | if (ecc_point_is_zero(product)) { |
| 1702 | ret = -EFAULT; |
| 1703 | goto err_validity; |
| 1704 | } |
| 1705 | |
| 1706 | ecc_swap_digits(in: product->x, out: secret, ndigits); |
| 1707 | |
| 1708 | err_validity: |
| 1709 | memzero_explicit(s: rand_z, count: sizeof(rand_z)); |
| 1710 | ecc_free_point(product); |
| 1711 | err_alloc_product: |
| 1712 | ecc_free_point(pk); |
| 1713 | out: |
| 1714 | return ret; |
| 1715 | } |
| 1716 | EXPORT_SYMBOL(crypto_ecdh_shared_secret); |
| 1717 | |
| 1718 | MODULE_DESCRIPTION("core elliptic curve module" ); |
| 1719 | MODULE_LICENSE("Dual BSD/GPL" ); |
| 1720 | |