Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Warm metalworking for plastic manufacturing in brittle semiconductors

Abstract

Semiconductors are the core of modern electronics1. Because of their brittleness, semiconductors are usually processed by the complicated techniques of sputtering or deposition2,3,4, instead of the effective and versatile metalworking methods like rolling, extrusion and pressing used with metals5. Here we show that brittle semiconductors can be plastically manufactured with an extensibility as large as ~3,000% using warm metalworking, that is, plastic manufacturing at slightly elevated temperatures (empirically below 500 K). Many bulk brittle semiconductors, such as Cu2Se, Ag2Se and Bi90Sb10, can be processed like metals below 400–500 K into free-standing, large and high-quality films with a thickness from the macro-scale to the micrometre scale. A model based on temperature-dependent collective atomic displacement and thermal vibration is proposed to explain the superior plasticity. The warm-metalworked films can retain the excellent and tunable physical properties of the bulk versions, such as a high carrier mobility up to ~5,000 cm2 V−1 s−1 and tunable electrical conductivities over six orders of magnitude by adjusting the chemical composition. A case study in film thermoelectric devices demonstrates ultra-high normalized output power densities of 43–54 μW cm−2 K−2. This work suggests that brittle semiconductors can be manufactured by warm metalworking for applications in various electronics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Extraordinary plastic processability of inorganic semiconductors by warm-metalworking methods.
Fig. 2: Temperature-dependent mechanical properties of inorganic semiconductors.
Fig. 3: Physical model for temperature-dependent plasticity.
Fig. 4: TE materials and devices manufactured by warm-metalworking methods.

Similar content being viewed by others

Data availability

All data are available in this article, the extended data and the Supplementary Information.

References

  1. Seeger, K. Semiconductor Physics (Springer Science & Business Media, 2013).

  2. Zhao, J. et al. Ultrahigh-mobility semiconducting epitaxial graphene on silicon carbide. Nature 625, 60–65 (2024).

    Article  CAS  PubMed  Google Scholar 

  3. Xu, X. et al. Seeded 2D epitaxy of large-area single-crystal films of the van der Waals semiconductor 2H MoTe2. Science 372, 195–200 (2021).

    Article  CAS  PubMed  Google Scholar 

  4. Liu, K. et al. A wafer-scale van der Waals dielectric made from an inorganic molecular crystal film. Nat. Electron. 4, 906–913 (2021).

    Article  CAS  Google Scholar 

  5. Wang, L. et al. Tailoring planar slip to achieve pure metal-like ductility in body-centred-cubic multi-principal element alloys. Nat. Mater. 22, 950–957 (2023).

    Article  CAS  PubMed  Google Scholar 

  6. Yang, Q. et al. Flexible thermoelectrics based on ductile semiconductors. Science 377, 854–858 (2022).

    Article  CAS  PubMed  Google Scholar 

  7. Kim, D.-H. et al. Stretchable and foldable silicon integrated circuits. Science 320, 507–511 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Lee, J.-S., Kovalenko, M. V., Huang, J., Chung, D. S. & Talapin, D. V. Band-like transport, high electron mobility and high photoconductivity in all-inorganic nanocrystal arrays. Nat. Nanotechnol. 6, 348–352 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Choi, M. S. et al. High carrier mobility in graphene doped using a monolayer of tungsten oxyselenide. Nat. Electron. 4, 731–739 (2021).

    Article  CAS  Google Scholar 

  10. Faber, K. T. & Molloy, K. J. The Mechanical Properties of Semiconductors (Academic Press, 1992).

  11. El-Kareh, B. & Hutter, L. N. Fundamentals of Semiconductor Processing Technology (Springer Science & Business Media, 2012).

  12. Ludwig, G. W. & Watters, R. L. Drift and conductivity mobility in silicon. Phys. Rev. 101, 1699–1701 (1956).

    Article  CAS  Google Scholar 

  13. Cheng, L., Zhang, C. & Liu, Y. Why two-dimensional semiconductors generally have low electron mobility. Phys. Rev. Lett. 125, 177701 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Zhao, M. et al. Nb2SiTe4: a stable narrow-gap two-dimensional material with ambipolar transport and mid-infrared response. ACS Nano 13, 10705–10710 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. Tang, X., Li, Z., Liu, W., Zhang, Q. & Uher, C. A comprehensive review on Bi2Te3-based thin films: thermoelectrics and beyond. Interdiscip. Mater. 1, 88–115 (2022).

    CAS  Google Scholar 

  16. Wu, J. et al. High electron mobility and quantum oscillations in non-encapsulated ultrathin semiconducting Bi2O2Se. Nat. Nanotechnol. 12, 530–534 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Xia, F., Wang, H. & Jia, Y. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 5, 4458 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Bandurin, D. A. et al. High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe. Nat. Nanotechnol. 12, 223–227 (2017).

    Article  CAS  PubMed  Google Scholar 

  19. Radisavljevic, B. & Kis, A. Mobility engineering and a metal–insulator transition in monolayer MoS2. Nat. Mater. 12, 815–820 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Sonar, P. et al. High mobility organic thin film transistor and efficient photovoltaic devices using versatile donor–acceptor polymer semiconductor by molecular design. Energy Environ. Sci. 4, 2288–2296 (2011).

    Article  CAS  Google Scholar 

  21. Choi, H. H. et al. Hall effect in polycrystalline organic semiconductors: the effect of grain boundaries. Adv. Funct. Mater. 30, 1903617 (2020).

    Article  CAS  Google Scholar 

  22. Yamashita, Y. et al. Mobility exceeding 10 cm2/(V·s) in donor–acceptor polymer transistors with band-like charge transport. Chem. Mater. 28, 420–424 (2016).

    Article  CAS  Google Scholar 

  23. Nakayama, K. et al. Patternable solution-crystallized organic transistors with high charge carrier mobility. Adv. Mater. 23, 1626–1629 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Zhou, Z. et al. Field-effect transistors based on 2D organic semiconductors developed by a hybrid deposition method. Adv. Sci. 6, 1900775 (2019).

    Article  CAS  Google Scholar 

  25. Pisula, W. et al. Solid-state organization and ambipolar field-effect transistors of benzothiadiazole-cyclopentadithiophene copolymer with long branched alkyl side chains. Polymers 5, 833–846 (2013).

    Article  PubMed  Google Scholar 

  26. Fratini, S., Ciuchi, S., Mayou, D., de Laissardière, G. T. & Troisi, A. A map of high-mobility molecular semiconductors. Nat. Mater. 16, 998–1002 (2017).

    Article  CAS  PubMed  Google Scholar 

  27. Liang, J. et al. Modulation of the morphotropic phase boundary for high-performance ductile thermoelectric materials. Nat. Commun. 14, 8442 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wu, H. et al. Optimized thermoelectric performance and plasticity of ductile semiconductor Ag2S0.5Se0.5 via dual-phase engineering. Adv. Energy Mater. 13, 2302551 (2023).

    Article  CAS  Google Scholar 

  29. Lavenstein, S., Gu, Y., Madisetti, D. & El-Awady, J. A. The heterogeneity of persistent slip band nucleation and evolution in metals at the micrometer scale. Science 370, eabb2690 (2020).

    Article  CAS  PubMed  Google Scholar 

  30. Zhang, J. et al. Plastic deformation in silicon nitride ceramics via bond switching at coherent interfaces. Science 378, 371–376 (2022).

    Article  CAS  PubMed  Google Scholar 

  31. Wu, Y. et al. Twisted-layer boron nitride ceramic with high deformability and strength. Nature 626, 779–784 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wei, T.-R. et al. Exceptional plasticity in the bulk single-crystalline van der Waals semiconductor InSe. Science 369, 542–545 (2020).

    Article  CAS  PubMed  Google Scholar 

  33. Gao, Z. et al. High-throughput screening of 2D van der Waals crystals with plastic deformability. Nat. Commun. 13, 7491 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Oshima, Y., Nakamura, A. & Matsunaga, K. Extraordinary plasticity of an inorganic semiconductor in darkness. Science 360, 772–774 (2018).

    Article  CAS  PubMed  Google Scholar 

  35. Shi, X. et al. Room-temperature ductile inorganic semiconductor. Nat. Mater. 17, 421–426 (2018).

    Article  CAS  PubMed  Google Scholar 

  36. Zhu, T., Li, J., Samanta, A., Leach, A. & Gall, K. Temperature and strain-rate dependence of surface dislocation nucleation. Phys. Rev. Lett. 100, 025502 (2008).

    Article  PubMed  Google Scholar 

  37. Zhang, X. et al. Temperature and size dependent surface energy of metallic nano-materials. J. Appl. Phys. 125, 185105 (2019).

    Article  Google Scholar 

  38. Murayama, Y., Kumagai, T. & Hanada, S. Processing and high temperature deformation of Nb3Al. MRS Online Proc. Libr. 288, 95–106 (1992).

    Article  Google Scholar 

  39. Yonenaga, I., Onose, U. & Sumino, K. Mechanical properties of GaAs crystals. J. Mater. Res. 2, 252–261 (1987).

    Article  CAS  Google Scholar 

  40. Chen, J. et al. Nanostructured monoclinic Cu2Se as a near-room-temperature thermoelectric material. Nanoscale 12, 20536–20542 (2020).

    Article  CAS  PubMed  Google Scholar 

  41. Olvera, A. A. et al. Partial indium solubility induces chemical stability and colossal thermoelectric figure of merit in Cu2Se. Energy Environ. Sci. 10, 1668–1676 (2017).

    Article  CAS  Google Scholar 

  42. Jood, P., Chetty, R. & Ohta, M. Structural stability enables high thermoelectric performance in room temperature Ag2Se. J. Mater. Chem. A 8, 13024–13037 (2020).

    Article  CAS  Google Scholar 

  43. Mao, J. et al. High thermoelectric cooling performance of n-type Mg3Bi2-based materials. Science 365, 495–498 (2019).

    Article  CAS  PubMed  Google Scholar 

  44. Heinz, N. A., Howell, S., Wang, H., Ikeda, T. & Snyder, G. J. Hot pressing and nanostructuring of Bi90Sb10 alloys to concurrently improve mechanical and thermoelectric properties. Phys. Status Solidi A 209, 2565–2569 (2012).

    Article  CAS  Google Scholar 

  45. Cheng, Y. et al. New insight into InSb-based thermoelectric materials: from a divorced eutectic design to a remarkably high thermoelectric performance. J. Mater. Chem. A 5, 5163–5170 (2017).

    Article  CAS  Google Scholar 

  46. Wei, T.-R., Qiu, P., Zhao, K., Shi, X. & Chen, L. Ag2Q-based (Q = S, Se, Te) silver chalcogenide thermoelectric materials. Adv. Mater. 35, 2110236 (2023).

    Article  CAS  Google Scholar 

  47. Liang, J., Zhang, X. & Wan, C. From brittle to ductile: a scalable and tailorable all-inorganic semiconductor foil through a rolling process toward flexible thermoelectric modules. ACS Appl. Mater. Interfaces 14, 52017–52024 (2022).

    Article  CAS  PubMed  Google Scholar 

  48. Wang, X.-D. et al. Designing inorganic semiconductors with cold-rolling processability. Adv. Sci. 9, 2203776 (2022).

    Article  CAS  Google Scholar 

  49. Schultz, J., McHugh, J. P. & Tiller, W. Effects of heavy deformation and annealing on the electrical properties of Bi2Te3. J. Appl. Phys. 33, 2443–2450 (1962).

    Article  CAS  Google Scholar 

  50. Pei, Y., Heinz, N. A. & Snyder, G. J. Alloying to increase the band gap for improving thermoelectric properties of Ag2Te. J. Mater. Chem. 21, 18256–18260 (2011).

    Article  CAS  Google Scholar 

  51. Wang, X. et al. Compound defects and thermoelectric properties in ternary CuAgSe-based materials. J. Mater. Chem. A 3, 13662–13670 (2015).

    Article  CAS  Google Scholar 

  52. Tappan, B. A. et al. Crystal structure of colloidally prepared metastable Ag2Se nanocrystals. Nano Lett. 21, 5881–5887 (2021).

    Article  CAS  PubMed  Google Scholar 

  53. Liu, Z. et al. Maximizing the performance of n-type Mg3Bi2 based materials for room-temperature power generation and thermoelectric cooling. Nat. Commun. 13, 1120 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  55. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  56. Zhang, X. et al. Temperature dependence of the stacking-fault Gibbs energy for Al, Cu, and Ni. Phys. Rev. B 98, 224106 (2018).

    Article  CAS  Google Scholar 

  57. Sun, W. & Ceder, G. Efficient creation and convergence of surface slabs. Surf. Sci. 617, 53–59 (2013).

    Article  CAS  Google Scholar 

  58. SpringerMaterials (Springer Nature, accessed 2024); https://materials.springer.com/

  59. Rice, J. R. Dislocation nucleation from a crack tip: an analysis based on the Peierls concept. J. Mech. Phys. Solids 40, 239–271 (1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2024YFF0505900, X.S.) and the National Natural Science Foundation of China (grants T2122013, T.-R.W.; 52232010, X.S.; and 92463310, T.-R.W.).

Author information

Authors and Affiliations

Authors

Contributions

T.-R.W. and X.S. designed the project. Z.G., T.-R.W., X.C., W.Z. and P.Q. prepared the samples and measured the mechanical properties. Z.G. performed the calculations. S.Y. and Z.G. fabricated the device and measured the performance. Y.M. performed transmission electron microscopy tests. Z.G. and T.-R.W. collected the data, developed the model and provided explanations under the guidance of L.C., X.Z. and X.S.; Z.G., T.-R.W., L.C. and X.S. wrote and edited the paper. All authors contributed helpful discussions to this work.

Corresponding authors

Correspondence to Tian-Ran Wei, Lidong Chen or Xun Shi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Qi An, Yang Lu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Warm metalworking of inorganic semiconductors.

Warm rolling of (a) Ag2Te (393 K), Cu2Se (493 K), Bi90Sb10 (493 K), and (b) Ag2Se (393 K). (c) Warm extrusion of Cu2Se at 493 K. Warm flatbed press of (d) Cu2Se (493 K) and (e) Ag2Se (393 K).

Extended Data Fig. 2 Bending stress-strain curves of various materials at different temperatures.

(a) Ag2Te, (b) Ag2S, (c) Ag2Se, (d) Cu2Se, (e) AgCuS, (f) AgCuSe, (g) PbTe, (h) Bi90Sb10, (i) Mg3Sb2, and (j) Mg3Bi2.

Extended Data Fig. 3 Brittle-to-ductile transition temperature Ttrans vs. melting point Tm for diverse inorganic materials.

Data are obtained by experimental measurement in this work or taken from literature (see Supplementary Table 1 and references therein). The range bars of experimental Ttrans denote the largest and smallest values due to the non-trivial temperature intervals in measurement.

Extended Data Fig. 4 SEM images of the fractured surfaces after warm fracturing.

(a) Ag2Te, (b) AgCuSe, (c) Ag2Se, (d) AgCuS, (e) Cu2Se, and (f) Bi90Sb10.

Extended Data Fig. 5 SEM images of slip bands after warm compression.

(a) Ag2Se, (b) Ag2S, (c) Ag2Te, (d) Cu2Se, (e) AgCuSe, (f) AgCuS, (g) Bi90Sb10, and (h) Mg3Bi2.

Extended Data Fig. 6 TEM characterization of grain size and morphology before and after warm rolling.

TEM images of Ag2Se (a1, a2), Cu2Se(b1, b2), Bi90Sb10 (c1, c2) and AgCuSe (d1, d2) before (a1-d1) and after (a2-d2) warm rolling.

Extended Data Fig. 7 TEM characterization of Cu2Se after warm rolling.

(a) The TEM image and (b) corresponding HRTEM image of Cu2Se after warm rolling, the fast Fourier transform selected area electron diffraction (FFT-SAED) images of grain (c) #1, (d) #2, (e) #3 in (b).

Extended Data Fig. 8 Effect of warm working on electrical properties.

The (a, d, g) electrical conductivity, (b, e, h) Seebeck coefficient, and (c, f, i) power factor of Ag2Se, Cu2Se, and Mg3Bi1.5Sb0.49Te0.01 materials before and after warm rolling.

Extended Data Fig. 9 Vickers hardness and bending strength before and after warm rolling.

(a) Vickers hardness of Ag2Se, Cu2Se, AgCuSe, and AgCuS before and after being rolled from 1.0 mm to 0.5 mm, (b-e) Bending stress-strain curves of of Ag2Se, Cu2Se, AgCuSe, and AgCuS before and after being rolled from the thickness of 1.0 mm to 0.5 mm.

Extended Data Fig. 10 Effect of warm working on Hall mobility.

Hall mobility of Ag2Se, Ag2Te, and AgCuSe before and after warm rolling.

Supplementary information

Supplementary Information

Supplementary Figs. 1–9, Tables 1 and 2, text and references.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Z., Yang, S., Ma, Y. et al. Warm metalworking for plastic manufacturing in brittle semiconductors. Nat. Mater. (2025). https://doi.org/10.1038/s41563-025-02223-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41563-025-02223-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing
Morty Proxy This is a proxified and sanitized view of the page, visit original site.