Chalcopyrite
A valid IMA mineral species
This page kindly sponsored by Mark Kucera
About Chalcopyrite
Formula:
CuFeS2
Colour:
Brass yellow, often with an iridescent tarnish.
Lustre:
Metallic
Hardness:
3½ - 4
Specific Gravity:
4.1 - 4.3
Crystal System:
Tetragonal
Member of:
Name:
Named in 1725 by Johann Friedrich Henckel from the Greek "chalkos", copper, and "pyrites", strike fire.
Chalcopyrite Group. Chalcopyrite-Eskebornite Series.
A major ore of copper. Common in sulfide veins and disseminated in igneous rocks.
Weathering may lead to the formation of malachite, azurite, brochantite, langite and numerous other secondary copper minerals.
A Zn-rich variety is known from Atlantis II Deep (see zincian chalcopyrite). Also, the Mid-Atlantic-ridge isocubanite may transform to chalcopyrite and UM1994-22-S:CuFe (Cu1-xFe3+xS4) (Wintenberger et al., 1994).
Compare, e.g., UM1991-16-S:CuFeTl, UM1988-17-S:CuFe, UM1988-18-S:CuFe, and UM2003-19-S:CuFe.
Visit gemdat.org for gemological information about Chalcopyrite.
A major ore of copper. Common in sulfide veins and disseminated in igneous rocks.
Weathering may lead to the formation of malachite, azurite, brochantite, langite and numerous other secondary copper minerals.
A Zn-rich variety is known from Atlantis II Deep (see zincian chalcopyrite). Also, the Mid-Atlantic-ridge isocubanite may transform to chalcopyrite and UM1994-22-S:CuFe (Cu1-xFe3+xS4) (Wintenberger et al., 1994).
Compare, e.g., UM1991-16-S:CuFeTl, UM1988-17-S:CuFe, UM1988-18-S:CuFe, and UM2003-19-S:CuFe.
Visit gemdat.org for gemological information about Chalcopyrite.Unique Identifiers
Mindat ID:
955
Long-form identifier:
mindat:1:1:955:7
IMA Classification of Chalcopyrite
Approved, 'Grandfathered' (first described prior to 1959)
Classification of Chalcopyrite
2.CB.10a
2 : SULFIDES and SULFOSALTS (sulfides, selenides, tellurides; arsenides, antimonides, bismuthides; sulfarsenites, sulfantimonites, sulfbismuthites, etc.)
C : Metal Sulfides, M: S = 1: 1 (and similar)
B : With Zn, Fe, Cu, Ag, etc.
2 : SULFIDES and SULFOSALTS (sulfides, selenides, tellurides; arsenides, antimonides, bismuthides; sulfarsenites, sulfantimonites, sulfbismuthites, etc.)
C : Metal Sulfides, M: S = 1: 1 (and similar)
B : With Zn, Fe, Cu, Ag, etc.
Dana 7th ed.:
2.9.1.1
2.9.1.1
2 : SULFIDES
9 : AmBnXp, with (m+n):p = 1:1
2 : SULFIDES
9 : AmBnXp, with (m+n):p = 1:1
3.1.25
3 : Sulphides, Selenides, Tellurides, Arsenides and Bismuthides (except the arsenides, antimonides and bismuthides of Cu, Ag and Au, which are included in Section 1)
1 : Sulphides etc. of Cu
3 : Sulphides, Selenides, Tellurides, Arsenides and Bismuthides (except the arsenides, antimonides and bismuthides of Cu, Ag and Au, which are included in Section 1)
1 : Sulphides etc. of Cu
Mineral Symbols
As of 2021 there are now IMA–CNMNC approved mineral symbols (abbreviations) for each mineral species, useful for tables and diagrams.
Please only use the official IMA–CNMNC symbol. Older variants are listed for historical use only.
Please only use the official IMA–CNMNC symbol. Older variants are listed for historical use only.
| Symbol | Source | Reference |
|---|---|---|
| Ccp | IMA–CNMNC | Warr, L.N. (2021). IMA–CNMNC approved mineral symbols. Mineralogical Magazine, 85(3), 291-320. doi:10.1180/mgm.2021.43 |
| Ccp | Kretz (1983) | Kretz, R. (1983) Symbols of rock-forming minerals. American Mineralogist, 68, 277–279. |
| Ccp | Siivolam & Schmid (2007) | Siivolam, J. and Schmid, R. (2007) Recommendations by the IUGS Subcommission on the Systematics of Metamorphic Rocks: List of mineral abbreviations. Web-version 01.02.07. IUGS Commission on the Systematics in Petrology. download |
| Ccp | Whitney & Evans (2010) | Whitney, D.L. and Evans, B.W. (2010) Abbreviations for names of rock-forming minerals. American Mineralogist, 95, 185–187 doi:10.2138/am.2010.3371 |
| Cp | The Canadian Mineralogist (2019) | The Canadian Mineralogist (2019) The Canadian Mineralogist list of symbols for rock- and ore-forming minerals (December 30, 2019). download |
Pronunciation of Chalcopyrite
Pronunciation:
| Play | Recorded by | Country |
|---|---|---|
| Jolyon Ralph | United Kingdom |
Physical Properties of Chalcopyrite
Metallic
Transparency:
Opaque
Colour:
Brass yellow, often with an iridescent tarnish.
Streak:
Greenish black
Hardness:
3½ - 4 on Mohs scale
Hardness:
VHN100=187 - Vickers
Hardness Data:
Measured
Tenacity:
Brittle
Cleavage:
Poor/Indistinct
Indistinct on {011}, sometimes distinct.
Indistinct on {011}, sometimes distinct.
Fracture:
Irregular/Uneven
Density:
4.1 - 4.3 g/cm3 (Measured) 4.18 g/cm3 (Calculated)
Optical Data of Chalcopyrite
Anisotropism:
Weak, but distinct blue-gray to yellow-green
Bireflectance:
Weak
Reflectivity:
| Wavelength | R1 (%) | R2 (%) |
|---|---|---|
| 400nm | 16.0% | 17.3% |
| 420nm | 20.0% | 21.3% |
| 440nm | 24.8% | 26.1% |
| 460nm | 30.2% | 31.4% |
| 480nm | 34.9% | 35.9% |
| 500nm | 38.9% | 39.9% |
| 520nm | 41.9% | 42.7% |
| 540nm | 44.0% | 44.9% |
| 560nm | 45.4% | 46.4% |
| 580nm | 46.6% | 47.6% |
| 600nm | 47.1% | 48.3% |
| 620nm | 47.5% | 48.6% |
| 640nm | 47.6% | 48.7% |
| 660nm | 47.6% | 48.7% |
| 680nm | 47.6% | 48.6% |
| 700nm | 47.6% | 48.6% |
Graph shows reflectance levels at different wavelengths (in nm). Peak reflectance is 48.7%.
R1 shown in black, R2 shown in red
Colour in reflected light:
Yellow against a white/gray phase, greenish-yellow when next to gold.
Internal Reflections:
None
Pleochroism:
Weak
Chemistry of Chalcopyrite
Mindat Formula:
CuFeS2
Element Weights:
Elements listed:
Common Impurities:
Ag,Au,In,Tl,Se,Te
Age distribution
Recorded ages:
Phanerozoic : 299.7 ± 1.8 Ma to 57 Ma - based on 8 recorded ages.
Chemical Analysis
Oxide wt%:
| 1 | |
|---|---|
| Fe | 30.45 % |
| Cu | 33.46 % |
| S | 33.46 % |
| Total: | 97.37 % |
Sample references:
| ID | Locality | Reference | Notes |
|---|---|---|---|
| 1 | Kudremukh, Western Ghat region, Chikkamagaluru District, Karnataka, India | EMPA analysis of chalkopyrite found in association with a BIF. |
Crystallography of Chalcopyrite
Crystal System:
Tetragonal
Class (H-M):
4 2m - Scalenohedral
Space Group:
I4 2d
Cell Parameters:
a = 5.289 Å, c = 10.423 Å
Ratio:
a:c = 1 : 1.971
Unit Cell V:
291.57 ų (Calculated from Unit Cell)
Z:
4
Morphology:
Typically found as equant to wedge-shaped pseudo-tetrahedral disphenoidal crystals, often modified by tetragonal scalenohedral faces. Mostly found massive or in disseminated grains and major deposits of such material are known.
Twinning:
Twinned on {112} and {012}, penetration or cyclic.
Comment:
Subcell: I-centred tetragonal, a = 3.74, c = 5.21 Å.
Crystallographic forms of Chalcopyrite
Crystal Atlas:
Image Loading
Click on an icon to view
3d models and HTML5 code kindly provided by
www.smorf.nl.
Toggle
Edge Lines | Miller Indices | Axes
Transparency
Opaque | Translucent | Transparent
View
Along a-axis | Along b-axis | Along c-axis | Start rotation | Stop rotation
Toggle
Edge Lines | Miller Indices | Axes
Transparency
Opaque | Translucent | Transparent
View
Along a-axis | Along b-axis | Along c-axis | Start rotation | Stop rotation
Crystal Structure
Load
Unit Cell | Unit Cell Packed
2x2x2 | 3x3x3 | 4x4x4
Unit Cell | Unit Cell Packed
2x2x2 | 3x3x3 | 4x4x4
Show
Big Balls | Small Balls | Just Balls | Spacefill
Polyhedra Off | Si Polyhedra | All Polyhedra
Remove metal-metal sticks
Big Balls | Small Balls | Just Balls | Spacefill
Polyhedra Off | Si Polyhedra | All Polyhedra
Remove metal-metal sticks
Display Options
Black Background | White Background
Perspective On | Perspective Off
2D | Stereo | Red-Blue | Red-Cyan
Black Background | White Background
Perspective On | Perspective Off
2D | Stereo | Red-Blue | Red-Cyan
View
CIF File Best | x | y | z | a | b | c
CIF File Best | x | y | z | a | b | c
Rotation
Stop | Start
Stop | Start
Labels
Console Off | On | Grey | Yellow
Console Off | On | Grey | Yellow
Data courtesy of the American Mineralogist Crystal Structure Database. Click on an AMCSD ID to view structure
| ID | Species | Reference | Link | Year | Locality | Pressure (GPa) | Temp (K) |
|---|---|---|---|---|---|---|---|
| 0018622 | Chalcopyrite | Knight K S, Marshall W G, Zochowski S W (2011) The low-temperature and high-pressure thermoelastic and structural properties of chalcopyrite, CuFeS2 The Canadian Mineralogist 49 1015-1034 | 2011 | Palabora mine, South Africa | 0 | 300 | |
| 0018623 | Chalcopyrite | Knight K S, Marshall W G, Zochowski S W (2011) The low-temperature and high-pressure thermoelastic and structural properties of chalcopyrite, CuFeS2 The Canadian Mineralogist 49 1015-1034 | 2011 | Palabora mine, South Africa | 0 | 4.2 | |
| 0009476 | Chalcopyrite | Hall S R, Stewart J M (1973) The crystal structure refinement of chalcopyrite, CuFeS2 Acta Crystallographica B29 579-585 | ![]() | 1973 | 0 | 293 | |
| 0017661 | Chalcopyrite | Pauling L, Brockway L (1932) The Crystal Structure of Chalkopyrite Cu Fe S2 _cod_database_code 1010940 Zeitschrift fur Kristallographie 82 188-194 | 1932 | 0 | 293 | ||
| 0017651 | Chalcopyrite | Burdick C, Ellis J (1917) The Crystal Structure of Chalcopyrite Determined by X-Rays _cod_database_code 1010929 Journal of the American Chemical Society 39 2519-2525 | 1917 | 0 | 293 |
CIF Raw Data - click here to close
Epitaxial Relationships of Chalcopyrite
Epitaxial Minerals:
| Pyrite | FeS2 |
Epitaxy Comments:
Pyrite on chalcopyrite from Ege-Khay, Yakutia, Russia (Novgorodova 1977).
X-Ray Powder Diffraction
Loading XRD data...
Data courtesy of RRUFF project at University of Arizona, used with permission.
Powder Diffraction Data:
| d-spacing | Intensity |
|---|---|
| 3.04 Å | (100) |
| 2.64 Å | (10) |
| 1.87 Å | (20) |
| 1.86 Å | (40) |
| 1.59 Å | (300 |
| 1.57 Å | (10) |
| 1.21 Å | (10) |
| 1.08 Å | (10) |
Geological Environment
Paragenetic Mode(s):
| Paragenetic Mode | Earliest Age (Ga) |
|---|---|
| Stage 3a: Earth’s earliest Hadean crust | >4.50 |
| 8 : Mafic igneous rocks | |
| 11 : Volcanic fumarole minerals; reduced phases (see also #45) | |
| Stage 3b: Earth’s earliest hydrosphere | >4.45 |
| 12 : Hadean hydrothermal subsurface sulfide deposits (see also #33) | |
| 15 : Black/white smoker minerals and other seafloor hydrothermal minerals | |
| Stage 4a: Earth’s earliest continental crust | >4.4-3.0 |
| 19 : Granitic intrusive rocks | |
| High-? alteration and/or metamorphism | |
| 32 : Ba/Mn/Pb/Zn deposits, including metamorphic deposits | |
| 33 : Minerals deposited by hydrothermal metal-rich fluids (see also [#12]) | |
| Stage 4b: Highly evolved igneous rocks | >3.0 |
| 34 : Complex granite pegmatites | |
| 37 : Layered igneous intrusions and related PGE minerals | |
| Stage 10a: Neoproterozoic oxygenation/terrestrial biosphere | <0.6 |
| 50 : Coal and/or oil shale minerals | <0.36 |
| 51 : Pyrometamorphic minerals (see also #54 and #56) | <0.36 |
| Stage 10b: Anthropogenic minerals | <10 Ka |
| 54 : Coal and other mine fire minerals (see also #51 and #56) |
Geological Setting:
Chalcopyrite is a prevalent sulfide mineral in ore deposits and hosts various trace elements such as Ag, Co, As, Se, Sb, Te, Bi, etc. The variations in trace element contents, as well as Fe, S, and Cu isotopic compositions of chalcopyrite are controlled by a series of factors including metallogenic temperature and pressure, fluid compositions, metal sources, and sulfide equilibrium. Chalcopyrite is found in porphyry Cu deposits (PCDs), sedimentary rock-hosted stratiform Cu deposits (SSCs), iron oxide Cu-Au deposits (IOCGs), sedimentary exhalative deposits (SEDEXs), magmatic Cu-Ni sulfide deposits (MSDs), and volcanogenic massive sulfide deposits (VMSs), etc. Different types of ore deposits show significantly distinct chalcopyrite geochemical characteristics. For example, in PCDs, chalcopyrite is notably enriched in Zn and Pb, with negative δ34S values (−2.1 ± 3.64 ‰, n = 32) due to sediment contributions. Positive δ65Cu values (1.5 ± 2.00 ‰, n = 140) indicate a mantle-crustal mixed source, while negative δ57Fe values (−4.3 ± 5.10 ‰, n = 32) likely result from Fe isotope fractionation during magnetite precipitation or continental crust contamination. In MSDs, Cr is the most enriched element, with positive δ34S values (1.0 ± 2.14 ‰, n = 185) and slightly negative δ⁶5Cu values (−0.46 ± 0.50 ‰, n = 52). Chalcopyrite in SSCs is enriched in Zn and As, characterized by negative δ34S (−3.6 ± 0.12 ‰, n = 190) and δ65Cu values (−0.59 ± 0.98 ‰, n = 118).
Synonyms of Chalcopyrite
Other Language Names for Chalcopyrite
Basque:Kalkopirita
Bulgarian:Халкопирит
Catalan:Calcopirita
Czech:Chalkopyrit
Dutch:Chalcopyriet
Finnish:Kuparikiisu
Galician:Calcopirita
Hungarian:Kalkopirit
Italian:Calcopirite
Rame giallo
Rame giallo
Japanese:黄銅鉱
Lithuanian:Chalkopiritas
Low Saxon/Low German:Chalkopyrit
Polish:Chalkopiryt
Portuguese:Calcopirite
Romanian:Calcopirită
Russian:Халькопирит
Simplified Chinese:黄铜矿
Slovak:Chalkopyrit
Swedish:Kopparkis
Traditional Chinese:黃銅礦
Ukrainian:Халькопірит
Varieties of Chalcopyrite
| Blistered Copper | A botryoidal variety of chalcopyrite. Very often referred by collectors as "Blister Copper", but this name also refers to a partly purified copper with a blistered surface formed during smelting ( see Blister copper (smelted)). This is a "blistered copp... |
| Gold-bearing Chalcopyrite | A gold-bearing variety of chalcopyrite; probably microscopic or nano-inclusions of gold in the chalcopyrite. |
| PGE-rich Chalcopyrite | A variety, suggested to be a part of a solid solution, extremely rich in platinum-group elements (PGE): up to 43.7 wt.% total PGE. |
| Silver-bearing Chalcopyrite | In association, i.a., with 'Unnamed (Ag Antimonide)', electrum, schapbachite, hessite, and other species. |
| Tin-bearing Chalcopyrite | A tin-bearing variety of chalcopyrite. |
| Zinc-bearing Chalcopyrite | Found as grains with a hexagonal outline, 10-15 microns in size. |
Relationship of Chalcopyrite to other Species
Member of:
Other Members of Chalcopyrite Group:
| Eskebornite | CuFeSe2 | Tet. 4 2m : P4 2c |
| Gallite | CuGaS2 | Tet. 4 2m : I4 2d |
| Laforêtite | AgInS2 | Tet. 4 2m : I4 2d |
| Lenaite | AgFeS2 | Tet. 4 2m : I4 2d |
| Roquesite | CuInS2 | Tet. 4 2m : I4 2d |
| Shenzhuangite | NiFeS2 | Tet. 4 2m : I4 2d |
| Unnamed (Cu-Mn-Sn Sulphide) | Cu2MnSnS4 |
Forms a series with:
Common Associates
Associated Minerals Based on Photo Data:
| 6,675 photos of Chalcopyrite associated with Quartz | SiO2 |
| 4,085 photos of Chalcopyrite associated with Calcite | CaCO3 |
| 4,028 photos of Chalcopyrite associated with Sphalerite | ZnS |
| 3,297 photos of Chalcopyrite associated with Galena | PbS |
| 2,794 photos of Chalcopyrite associated with Pyrite | FeS2 |
| 2,311 photos of Chalcopyrite associated with Dolomite | CaMg(CO3)2 |
| 1,684 photos of Chalcopyrite associated with Fluorite | CaF2 |
| 1,140 photos of Chalcopyrite associated with Siderite | FeCO3 |
| 1,117 photos of Chalcopyrite associated with Pyrrhotite | Fe1-xS |
| 1,023 photos of Chalcopyrite associated with Bornite | Cu5FeS4 |
Related Minerals - Strunz-mindat Grouping
| 2.CB. | Richardsite | Zn2CuGaS4 |
| 2.CB. | Okruginite | Cu2SnSe3 |
| 2.CB. | Hanswilkeite | KFeS2 |
| 2.CB. | Auroselenide | AuSe |
| 2.CB. | Ruizhongite | (Ag2◻)Pb3Ge2S8 |
| 2.CB. | Agmantinite | Ag2MnSnS4 |
| 2.CB. | Tolstykhite | Au3S4Te6 |
| 2.CB. | Gachingite | Au(Te1-xSex) |
| 2.CB.05a | Hawleyite | CdS |
| 2.CB.05 | UM1998-15-S:CuFeZn | Cu2Fe3Zn5S10 |
| 2.CB.05a | Coloradoite | HgTe |
| 2.CB.05a | Metacinnabar | HgS |
| 2.CB.05a | Tiemannite | HgSe |
| 2.CB.05a | Sphalerite | ZnS |
| 2.CB.05b | Sakuraiite | (Cu,Zn,Fe)3(In,Sn)S4 |
| 2.CB.05c | Polhemusite | (Zn,Hg)S |
| 2.CB.05a | Rudashevskyite | (Fe,Zn)S |
| 2.CB.05a | Stilleite | ZnSe |
| 2.CB.05a | Ishiharaite | (Cu,Ga,Fe,In,Zn)S |
| 2.CB.07a | Unnamed (Cu-Mn-Sn Sulphide) | Cu2MnSnS4 |
| 2.CB.07a | Shenzhuangite | NiFeS2 |
| 2.CB.10b | Talnakhite | Cu9(Fe,Ni)8S16 |
| 2.CB.10b | Haycockite | Cu4Fe5S8 |
| 2.CB.10a | Lenaite | AgFeS2 |
| 2.CB.10a | Gallite | CuGaS2 |
| 2.CB.10a | Roquesite | CuInS2 |
| 2.CB.10a | Eskebornite | CuFeSe2 |
| 2.CB.10a | UM1984-30-S:CuFeSn | Cu2Fe2Sn3S7 |
| 2.CB.10c | Omariniite | Cu8Fe2ZnGe2S12 |
| 2.CB.10a | Unnamed (Cu-Zn-In Sulphide) | CuZn2InS4 |
| 2.CB.10b | Mooihoekite | Cu9Fe9S16 |
| 2.CB.10a | Laforêtite | AgInS2 |
| 2.CB.10b | Putoranite | Cu1.1Fe1.2S2 |
| 2.CB.15a | Velikite | Cu2HgSnS4 |
| 2.CB.15c | UM2006-11-S:CuFeGeZn | Cu8(Fe,Zn)3Ge2S12 (?) |
| 2.CB.15a | Hocartite | Ag2(Fe2+,Zn)SnS4 |
| 2.CB.15a | Kësterite | Cu2ZnSnS4 |
| 2.CB.15a | Pirquitasite | Ag2ZnSnS4 |
| 2.CB.15a | Stannite | Cu2FeSnS4 |
| 2.CB.15c | Stannoidite | Cu+6Cu2+2(Fe2+,Zn)3Sn2S12 |
| 2.CB.15b | Mohite | Cu2SnS3 |
| 2.CB.15a | Černýite | Cu2CdSnS4 |
| 2.CB.15a | Idaite | Cu5FeS6 |
| 2.CB.15a | Ferrokësterite | Cu2FeSnS4 |
| 2.CB.15a | Kuramite | Cu3SnS4 |
| 2.CB.17a v | Arsenic-bearing Renierite | Cu11GeAsFe4S16 |
| 2.CB.20 | Mawsonite | Cu6Fe2SnS8 |
| 2.CB.20 | Chatkalite | Cu6FeSn2S8 |
| 2.CB.30 | Frieseite | Ag2Fe5S8 (?) |
| 2.CB.30 | Nekrasovite | Cu26V2(Sn,As,Sb)6S32 |
| 2.CB.30 | Argyropyrite | near Ag2Fe7S11 |
| 2.CB.30 | Maikainite | Cu20(Fe,Cu)6Mo2Ge6S32 |
| 2.CB.30 | Colusite | Cu13VAs3S16 |
| 2.CB.30 | Germanite | Cu13Fe2Ge2S16 |
| 2.CB.30 | Germanocolusite | Cu26V2(Ge,As)6S32 |
| 2.CB.30 | Stibiocolusite | Cu13V(Sb,Sn,As)3S16 |
| 2.CB.30 | Ovamboite | Cu20(Fe,Cu,Zn)6W2Ge6S32 |
| 2.CB.35a | Morozeviczite | (Pb,Fe)3Ge1-xS4 |
| 2.CB.35a | Renierite | (Cu1+,Zn)11Fe4(Ge4+,As5+)2S16 |
| 2.CB.35a | Hemusite | Cu6SnMoS8 |
| 2.CB.35b | Catamarcaite | Cu6GeWS8 |
| 2.CB.35a | Vinciennite | Cu+7Cu2+3Fe2+2Fe3+2Sn(As,Sb)S16 |
| 2.CB.35a | Kiddcreekite | Cu6SnWS8 |
| 2.CB.35a | Polkovicite | (Fe,Pb)3(Ge,Fe)1-xS4 |
| 2.CB.40 | Lautite | CuAsS |
| 2.CB.42 | Lingbaoite | AgTe3 |
| 2.CB.45 | Cadmoselite | CdSe |
| 2.CB.45 | Rambergite | MnS |
| 2.CB.45 | Buseckite | (Fe,Zn,Mn)S |
| 2.CB.45 | Maletoyvayamite | Au3Se4Te6 |
| 2.CB.45 | Greenockite | CdS |
| 2.CB.45 | Wurtzite | (Zn,Fe)S |
| 2.CB.47 | Murchisite | Cr5S6 |
| 2.CB.50 | Zincselenide | ZnSe |
| 2.CB.50 | Wassonite | TiS |
| 2.CB.52 | Dzhezkazganite | ReMoCu2PbS6 ? |
| 2.CB.55b | Isocubanite | CuFe2S3 |
| 2.CB.55a | Cubanite | CuFe2S3 |
| 2.CB.60 | Raguinite | TlFeS2 |
| 2.CB.60 | Picotpaulite | TlFe2S3 |
| 2.CB.65 | Argentopyrite | AgFe2S3 |
| 2.CB.65 | Sternbergite | AgFe2S3 |
| 2.CB.70 | Sulvanite | Cu3VS4 |
| 2.CB.75 | Vulcanite | CuTe |
| 2.CB.80 | Empressite | AgTe |
| 2.CB.85 | Muthmannite | AuAgTe2 |
Other Information
Health Risks:
No information on health risks for this material has been entered into the database. You should always treat mineral specimens with care.
Industrial Uses:
It is the principal ore of copper.
Chalcopyrite in petrology
An essential component of rock names highlighted in red, an accessory component in rock names highlighted in green.
Internet Links for Chalcopyrite
mindat.org URL:
https://www.mindat.org/min-955.html
Please feel free to link to this page.
Please feel free to link to this page.
Search Engines:
External Links:
References for Chalcopyrite
Reference List:
Buerger, N. W. (1934) The unmixing of chalcopyrite from sphalerite. American Mineralogist, 19 (11) 525-530
Buerger, N. W., Buerger, M. J. (1934) Crystallographic relations between cubanite segregation plates, chalcopyrite matrix, and secondary chalcopyrite twins. American Mineralogist, 19 (7) 289-303
YUND, R. A.; KULLERUD, G. (1966) Thermal Stability of Assemblages in the Cu-Fe-S System. Journal of Petrology, 7 (3). 454-488 doi:10.1093/petrology/7.3.454
Nambu, Matsuo; Kano, Shimpei (1968) Phase relations in the system Cu-Fe-S. (I) Relation between chalcopyrite and so-called cubic chalcopyrite. The Journal of the Japanese Association of Mineralogists, Petrologists and Economic Geologists, 60 (4). 127-145 doi:10.2465/ganko1941.60.127
Ramdohr, Paul (1969) The Ore Minerals and their Intergrowths. Pergamon Press, Oxford. 1174pp. doi:10.1016/c2013-0-10027-x
Cabri, Louis J. (1973) New data on Phase Relations in the Cu-Fe-S System. Economic Geology, 68 (4) 443-454 doi:10.2113/gsecongeo.68.4.443
Hall, S. R., Stewart, J. M. (1973) The crystal structure refinement of chalcopyrite, CuFeS2. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 29 (3) 579-585 doi:10.1107/s0567740873002943
Dutrizac, J.E., MacDonald, R.J.C. (1973) The effect of some impurities on the rate of chalcopyrite dissolution. Canadian Metallurgical Quarterly, 12. 409-420 doi:10.1179/cmq.1973.12.4.409
Hall, S. R. (1975) Crystal structures of the chalcopyrite series. The Canadian Mineralogist, 13 (2) 168-172
Sugaki, A., Shima, H., Kitakaze, A., Harada, H. (1975) Isothermal phase relations in the system Cu-Fe-S under hydrothermal conditions at 350°C and 300°C. Economic Geology, 70 (4) 806-823 doi:10.2113/gsecongeo.70.4.806
Dutrizac, J. E. (1976) Reactions in cubanite and chalcopyrite. The Canadian Mineralogist, 14 (2) 172-181
Novgorodova, M. I. (1977) A case of epitaxial growth of pyrite crystals on chalcopyrite. International Geology Review, 19 (12) 1457-1460 doi:10.1080/00206817709471160
Nakai, I., Sugitani, Y., Nagashima, K., Niwa, Y. (1978) X-ray photoelectron spectroscopic study of copper minerals. Journal of Inorganic and Nuclear Chemistry, 40 (5) 789-791 doi:10.1016/0022-1902(78)80152-3
Robie, Richard A, Wiggins, Lovell B, Barton, Paul B, Hemingway, Bruce S (1985) Low-temperature heat capacity and entropy of chalcopyrite (CuFeS2): estimates of the standard molar enthalpy and Gibbs free energy of formation of chalcopyrite and bornite (Cu5FeS4) The Journal of Chemical Thermodynamics, 17 (5) 481-488 doi:10.1016/0021-9614(85)90147-8
Barton, Paul B., Bethke, Philip M. (1987) Chalcopyrite disease in sphalerite: Pathology and epidemiology. American Mineralogist, 72 (5-6) 451-467
Boekema, C, Krupski, A.M, Varasteh, M, Parvin, K, van Til, F, van der Woude, F, Sawatzky, G.A (2004) Cu and Fe valence states in CuFeS2. Journal of Magnetism and Magnetic Materials, 272. 559-561 doi:10.1016/j.jmmm.2003.11.206
Goh, Siew Wei, Buckley, Alan N., Lamb, Robert N., Rosenberg, Richard A., Moran, Damian (2006) The oxidation states of copper and iron in mineral sulfides, and the oxides formed on initial exposure of chalcopyrite and bornite to air. Geochimica et Cosmochimica Acta, 70 (9) 2210-2228 doi:10.1016/j.gca.2006.02.007
Pearce, C.I., Pattrick, R.A.D., Vaughan, D.J., Henderson, C.M.B., van der Laan, G. (2006) Copper oxidation state in chalcopyrite: Mixed Cu d9 and d10 characteristics. Geochimica et Cosmochimica Acta, 70 (18) 4635-4642 doi:10.1016/j.gca.2006.05.017
Knight, K. S., Marshall, W. G., Zochowski, S. W. (2011) The low-temperature and high-pressure thermoelastic and structural properties of chalcopyrite, CuFeS2. The Canadian Mineralogist, 49 (4). 1015-1034 doi:10.3749/canmin.49.4.1015
Li, Kan, Brugger, JoëL, Pring, Allan (2018) Exsolution of chalcopyrite from bornite-digenite solid solution: an example of a fluid-driven back-replacement reaction. Mineralium Deposita, 53 (7) 903-908 doi:10.1007/s00126-018-0820-6
Significant localities for Chalcopyrite
Showing 35 significant localities out of 33,809 recorded on mindat.org.
Locality List
- This locality has map coordinates listed.
- This locality has estimated coordinates.
ⓘ - Click for references and further information on this occurrence.
? - Indicates mineral may be doubtful at this locality.
- Good crystals or important locality for species.
- World class for species or very significant.
(TL) - Type Locality for a valid mineral species.
(FRL) - First Recorded Locality for everything else (eg varieties).
All localities listed without proper references should be considered as questionable.
Australia | |
| S Rust collection |
| RB94/00041 +1 other reference |
Bolivia | |
| Petrov (n.d.) |
Canada | |
| Oscar Jose Tessari (1979) |
China | |
| Jingye Jiang et al. (1998) +1 other reference |
France | |
| Dana 7:I:222. |
| Alain Steinmetz and Thierry Brunsperger ... |
Germany | |
| Mineralogical Collection of the ... |
Ireland | |
| Flannery (n.d.) +2 other references |
Italy | |
| Bonazzi et al. (1992) |
Kazakhstan | |
| RWMW specimen +2 other references |
Kosovo | |
| Féraud J. (1979) +5 other references |
Mexico | |
| Panczner (1987) |
Peru | |
| - (1997) +2 other references |
| Imai et al. (1985) +2 other references |
| - (1997) |
| Crowley et al. (1997) |
| - (1997) +1 other reference |
| Economic Geology November 2009 vol. 104 ... +3 other references |
Romania | |
| Mineral News 14:12 p 1 |
Russia | |
| Dobovol'skaya et al. (1990) +3 other references |
Spain | |
| Calvo Rebollar (2003) |
| Calvo Rebollar (2003) +2 other references |
| Victor Pais Collection |
UK | |
| [var: Blistered Copper] |
| Henwood (1843) +4 other references |
USA | |
| Jones (2001) |
| Rocks and Minerals Magazine Vol. 69 No. 4 (jul/aug 1994) +1 other reference |
| Rocks & Min.: 22&26. +5 other references |
| M Massis collection +1 other reference |
| Dana 7:I:592. +1 other reference |
| Koschmann et al. (1968) |
| Rocks & Min.:64:7. +1 other reference |
| Eric He's Collection |








symbol to view information about a locality.
The
Tincroft Mine, Pool, Carn Brea, Cornwall, England, UK