1932

Abstract

Drought, wildfire, wind, insects, and pathogens can interact across space and time to shape forest ecosystems. Although subdisciplines in ecology have long studied individual disturbances, their interactions remain poorly understood, particularly under climate change. Further, inconsistent terminology used to describe these interactions compounds this gap. To address this challenge, we first develop a unifying framework and then review the literature to synthesize climate change effects on the seven classes of forest disturbance interactions. Climate change alters the impacts of disturbance interactions by shifting () the characteristics of disturbances and () the effects of interactions when they occur. Many studies document amplifying effects of climate change, and disturbance interactions governed by nonlinearities and positive feedbacks can be particularly transformative in forest ecosystems. In some cases, however, climate change can dampen outcomes of disturbance interactions, which may buffer forests from disturbance impacts. Critically, climate change is expected to increase the frequency of ecosystem transitions worldwide by amplifying the outcomes of complex interactions, particularly coupled feedbacks and network effects. Although there is strong evidence that climate change is modifying some disturbance interactions, they remain an important, yet understudied frontier in ecology.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-102723-052437
2025-11-05
2025-12-21

Metrics

Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/56/1/annurev-ecolsys-102723-052437.html?itemId=/content/journals/10.1146/annurev-ecolsys-102723-052437&mimeType=html&fmt=ahah

Literature Cited

  1. Abatzoglou JT, Williams AP. 2016.. Impact of anthropogenic climate change on wildfire across western US forests. . PNAS 113::1177075
    [Crossref] [Google Scholar]
  2. Abella SR. 2018.. Forest decline after a 15-year “perfect storm” of invasion by hemlock woolly adelgid, drought, and hurricanes. . Biol. Invasions 20::695707
    [Crossref] [Google Scholar]
  3. Adams HD, Zeppel MJB, Anderegg WRL, Hartmann H, Landhäusser SM, et al. 2017.. A multi-species synthesis of physiological mechanisms in drought-induced tree mortality. . Nat. Ecol. Evol. 1::128591
    [Crossref] [Google Scholar]
  4. Allison SD, Wallenstein MD, Bradford MA. 2010.. Soil-carbon response to warming dependent on microbial physiology. . Nat. Geosci. 3::33640
    [Crossref] [Google Scholar]
  5. Anderegg WRL, Hicke JA, Fisher RA, Allen CD, Aukema J, et al. 2015.. Tree mortality from drought, insects, and their interactions in a changing climate. . New Phytol. 208::67483
    [Crossref] [Google Scholar]
  6. Armstrong McKay DI, Staal A, Abrams JF, Winkelmann R, Sakschewski B, et al. 2022.. Exceeding 1.5°C global warming could trigger multiple climate tipping points. . Science 377:(6611):eabn7950
    [Crossref] [Google Scholar]
  7. Balch JK, Brando PM, Nepstad DC, Coe MT, Silvério D, et al. 2015.. The susceptibility of southeastern Amazon forests to fire: insights from a large-scale burn experiment. . BioScience 65::893905
    [Crossref] [Google Scholar]
  8. Balch JK, Nepstad DC, Brando PM, Curran LM, Portela O, et al. 2008.. Negative fire feedback in a transitional forest of southeastern Amazonia. . Glob. Change Biol. 14::227687
    [Crossref] [Google Scholar]
  9. Balducci L, Fierravanti A, Rossi S, Delzon S, De Grandpré L, et al. 2020.. The paradox of defoliation: declining tree water status with increasing soil water content. . Agric. For. Meteorol. 290::108025
    [Crossref] [Google Scholar]
  10. Battisti A, Stastny M, Netherer S, Robinet C, Schopf A, et al. 2005.. Expansion of geographic range in the pine processionary moth caused by increased winter temperatures. . Ecol. Appl. 15::208496
    [Crossref] [Google Scholar]
  11. Bebber DP. 2015.. Range-expanding pests and pathogens in a warming world. . Annu. Rev. Phytopathol. 53::33556
    [Crossref] [Google Scholar]
  12. Bebber DP, Ramotowski MAT, Gurr SJ. 2013.. Crop pests and pathogens move polewards in a warming world. . Nat. Clim. Change 3::98588
    [Crossref] [Google Scholar]
  13. Beh MM, Metz MR, Frangioso KM, Rizzo DM. 2012.. The key host for an invasive forest pathogen also facilitates the pathogen's survival of wildfire in California forests. . New Phytol. 196::114554
    [Crossref] [Google Scholar]
  14. Bender EA, Case TJ, Gilpin ME. 1984.. Perturbation experiments in community ecology: theory and practice. . Ecology 65::113
    [Crossref] [Google Scholar]
  15. Bentz BJ, Regniere J, Fettig CJ, Hansen EM, Hayes JL, et al. 2010.. Climate change and bark beetles of the western United States and Canada: direct and indirect effects. . Bioscience 60::60213
    [Crossref] [Google Scholar]
  16. Bernal AA, Kane JM, Knapp EE, Zald HSJ. 2023.. Tree resistance to drought and bark beetle-associated mortality following thinning and prescribed fire treatments. . For. Ecol. Manag. 530::120758
    [Crossref] [Google Scholar]
  17. Boag AE, Ducey MJ, Palace MW, Hartter J. 2020.. Topography and fire legacies drive variable post-fire juvenile conifer regeneration in eastern Oregon, USA. . For. Ecol. Manag. 474::118312
    [Crossref] [Google Scholar]
  18. Bockino NK, Tinker DB. 2012.. Interactions of white pine blister rust and mountain pine beetle in whitebark pine ecosystems in the southern Greater Yellowstone Area. . Nat. Areas J. 32::3140
    [Crossref] [Google Scholar]
  19. Brando PM, Balch JK, Nepstad DC, Morton DC, Putz FE, et al. 2014.. Abrupt increases in Amazonian tree mortality due to drought–fire interactions. . PNAS 111::634752
    [Crossref] [Google Scholar]
  20. Buma B. 2015.. Disturbance interactions: characterization, prediction, and the potential for cascading effects. . Ecosphere 6::art70
    [Crossref] [Google Scholar]
  21. Buma B, Wessman CA. 2011.. Disturbance interactions can impact resilience mechanisms of forests. . Ecosphere 2::art64
    [Crossref] [Google Scholar]
  22. Burgess S, Small DS, Thompson SG. 2017.. A review of instrumental variable estimators for Mendelian randomization. . Stat. Methods Med. Res. 26::233355
    [Crossref] [Google Scholar]
  23. Burton PJ, Jentsch A, Walker LR. 2020.. The ecology of disturbance interactions. . BioScience 70::85470
    [Crossref] [Google Scholar]
  24. Caldeira MC. 2019.. The timing of drought coupled with pathogens may boost tree mortality. . Tree Physiol. 39::15
    [Crossref] [Google Scholar]
  25. Camac JS, Williams RJ, Wahren C-H, Hoffmann AA, Vesk PA. 2017.. Climatic warming strengthens a positive feedback between alpine shrubs and fire. . Glob. Change Biol. 23::324958
    [Crossref] [Google Scholar]
  26. Cannon JB, Henderson SK, Bailey MH, Peterson CJ. 2019.. Interactions between wind and fire disturbance in forests: competing amplifying and buffering effects. . For. Ecol. Manag. 436::11728
    [Crossref] [Google Scholar]
  27. Cannon JB, Peterson CJ, O'Brien JJ, Brewer JS. 2017.. A review and classification of interactions between forest disturbance from wind and fire. . For. Ecol. Manag. 406::38190
    [Crossref] [Google Scholar]
  28. Cansler CA, Wright MC, van Mantgem PJ, Shearman TM, Varner JM, Hood SM. 2024.. Drought before fire increases tree mortality after fire. . Ecosphere 15::e70083
    [Crossref] [Google Scholar]
  29. Chemke R, Ming Y, Yuval J. 2022.. The intensification of winter mid-latitude storms in the Southern Hemisphere. . Nat. Clim. Change 12::55357
    [Crossref] [Google Scholar]
  30. Choat B, Jansen S, Brodribb TJ, Cochard H, Delzon S, et al. 2012.. Global convergence in the vulnerability of forests to drought. . Nature 491::75255
    [Crossref] [Google Scholar]
  31. Cobb RC. 2022.. The intertwined problems of wildfire, forest disease, and climate change interactions. . Curr. For. Rep. 8::21428
    [Crossref] [Google Scholar]
  32. Cobb RC, Metz MR. 2017.. Tree diseases as a cause and consequence of interacting forest disturbances. . Forests 8:(5):147
    [Crossref] [Google Scholar]
  33. Cook BI, Mankin JS, Anchukaitis KJ. 2018.. Climate change and drought: from past to future. . Curr. Clim. Change Rep. 4::16479
    [Crossref] [Google Scholar]
  34. Cooke BJ, Nealis VG, Régnière J. 2021.. Insect defoliators as periodic disturbances in northern forest ecosystems. . In Plant Disturbance Ecology, ed. EA Johnson, Miyanishi K. Academic. , 2nd ed..
    [Google Scholar]
  35. Coop JD, Parks SA, Stevens-Rumann CS, Crausbay SD, Higuera PE, et al. 2020.. Wildfire-driven forest conversion in western North American landscapes. . Bioscience 70::65973
    [Crossref] [Google Scholar]
  36. Cooper LA, Ballantyne AP, Holden ZA, Landguth EL. 2017.. Disturbance impacts on land surface temperature and gross primary productivity in the western United States. . J. Geophys. Res. Biogeosci. 122::93046
    [Crossref] [Google Scholar]
  37. Côté IM, Darling ES, Brown CJ. 2016.. Interactions among ecosystem stressors and their importance in conservation. . Proc. R. Soc. B 283::20152592
    [Crossref] [Google Scholar]
  38. Csilléry K, Kunstler G, Courbaud B, Allard D, Lassègues P, et al. 2017.. Coupled effects of wind-storms and drought on tree mortality across 115 forest stands from the Western Alps and the Jura mountains. . Glob. Change Biol. 23::5092107
    [Crossref] [Google Scholar]
  39. Dale VH, Lugo AE, MacMahon JA, Pickett STA. 1998.. Ecosystem management in the context of large, infrequent disturbances. . Ecosystems 1::54657
    [Crossref] [Google Scholar]
  40. Denissen JMC, Teuling AJ, Pitman AJ, Koirala S, Migliavacca M, et al. 2022.. Widespread shift from ecosystem energy to water limitation with climate change. . Nat. Clim. Change 12::67784
    [Crossref] [Google Scholar]
  41. Desprez-Loustau M-L, Marçais B, Nageleisen L-M, Piou D, Vannini A. 2006.. Interactive effects of drought and pathogens in forest trees. . Ann. For. Sci. 63::597612
    [Crossref] [Google Scholar]
  42. Dobor L, Hlásny T, Zimová S. 2020.. Contrasting vulnerability of monospecific and species-diverse forests to wind and bark beetle disturbance: the role of management. . Ecol. Evol. 10::1223345
    [Crossref] [Google Scholar]
  43. Dollinger C, Rammer W, Suzuki KF, Braziunas KH, Keller TT, et al. 2024.. Beyond resilience: responses to changing climate and disturbance regimes in temperate forest landscapes across the Northern Hemisphere. . Glob. Change Biol. 30::e17468
    [Crossref] [Google Scholar]
  44. Dudney J, Dee LE, Heilmayr R, Byrnes J, Siegel K. 2025.. A causal inference framework for climate change attribution in ecology. . Ecol. Lett. 28::e70192
    [Crossref] [Google Scholar]
  45. Dudney J, Latimer AM, van Mantgem P, Zald H, Willing CE, et al. 2023.. The energy–water limitation threshold explains divergent drought responses in tree growth, needle length, and stable isotope ratios. . Glob. Change Biol. 29::436882
    [Crossref] [Google Scholar]
  46. Dudney J, Nesmith JCB, Cahill MC, Cribbs JE, Duriscoe DM, et al. 2020.. Compounding effects of white pine blister rust, mountain pine beetle, and fire threaten four white pine species. . Ecosphere 11::e03263
    [Crossref] [Google Scholar]
  47. Dudney J, Willing CE, Das AJ, Latimer AM, Nesmith JCB, Battles JJ. 2021.. Nonlinear shifts in infectious rust disease due to climate change. . Nat. Commun. 12::5102
    [Crossref] [Google Scholar]
  48. Falk DA, van Mantgem PJ, Keeley JE, Gregg RM, Guiterman CH, et al. 2022.. Mechanisms of forest resilience. . For. Ecol. Manag. 512::120129
    [Crossref] [Google Scholar]
  49. Fettig CJ, Borys RR, Dabney CP. 2010.. Effects of fire and fire surrogate treatments on bark beetle-caused tree mortality in the Southern Cascades, California. . For. Sci. 56:(1):6073
    [Google Scholar]
  50. Fettig CJ, Mortenson LA, Bulaon BM, Foulk PB. 2019.. Tree mortality following drought in the central and southern Sierra Nevada, California, U.S. . For. Ecol. Manag. 432::16478
    [Crossref] [Google Scholar]
  51. Fettig CJ, Runyon JB, Homicz CS, James PMA, Ulyshen MD. 2022.. Fire and insect interactions in North American forests. . Curr. For. Rep. 8::30116
    [Crossref] [Google Scholar]
  52. Fisher JI, Hurtt GC, Thomas RQ, Chambers JQ. 2008.. Clustered disturbances lead to bias in large-scale estimates based on forest sample plots. . Ecol. Lett. 11::55463
    [Crossref] [Google Scholar]
  53. Flores BM, Montoya E, Sakschewski B, Nascimento N, Staal A, et al. 2024.. Critical transitions in the Amazon forest system. . Nature 626::55564
    [Crossref] [Google Scholar]
  54. Flores BM, Staal A. 2022.. Feedback in tropical forests of the Anthropocene. . Glob. Change Biol. 28::504161
    [Crossref] [Google Scholar]
  55. Gauthier S, Bernier P, Kuuluvainen T, Shvidenko AZ, Schepaschenko DG. 2015.. Boreal forest health and global change. . Science 349::81922
    [Crossref] [Google Scholar]
  56. Gelman A, Hill J, Vehtari A. 2020.. Regression and Other Stories. Cambridge University Press. , 1st ed..
    [Google Scholar]
  57. Gomez-Gallego M, Galiano L, Martínez-Vilalta J, Stenlid J, Capador-Barreto HD, et al. 2022.. Interaction of drought- and pathogen-induced mortality in Norway spruce and Scots pine. . Plant Cell Environ. 45::2292305
    [Crossref] [Google Scholar]
  58. Gora EM, Esquivel-Muelbert A. 2021.. Implications of size-dependent tree mortality for tropical forest carbon dynamics. . Nat. Plants 7::38491
    [Crossref] [Google Scholar]
  59. Guiot J, Cramer W. 2016.. Climate change: the 2015 Paris Agreement thresholds and Mediterranean basin ecosystems. . Science 354::46568
    [Crossref] [Google Scholar]
  60. Hansen WD, Braziunas KH, Rammer W, Seidl R, Turner MG. 2018.. It takes a few to tango: changing climate and fire regimes can cause regeneration failure of two subalpine conifers. . Ecology 99::96677
    [Crossref] [Google Scholar]
  61. Hart SJ, Henkelman J, McLoughlin PD, Nielsen SE, Truchon-Savard A, Johnstone JF. 2019.. Examining forest resilience to changing fire frequency in a fire-prone region of boreal forest. . Glob. Change Biol. 25::86984
    [Crossref] [Google Scholar]
  62. Harvey BJ, Donato DC, Romme WH, Turner MG. 2013.. Influence of recent bark beetle outbreak on fire severity and postfire tree regeneration in montane Douglas-fir forests. . Ecology 94::247586
    [Crossref] [Google Scholar]
  63. Harvey BJ, Donato DC, Romme WH, Turner MG. 2014a.. Fire severity and tree regeneration following bark beetle outbreaks: the role of outbreak stage and burning conditions. . Ecol. Appl. 24::160825
    [Crossref] [Google Scholar]
  64. Harvey BJ, Donato DC, Turner MG. 2014b.. Recent mountain pine beetle outbreaks, wildfire severity, and postfire tree regeneration in the US Northern Rockies. . PNAS 111::1512025
    [Crossref] [Google Scholar]
  65. Harvey BJ, Donato DC, Turner MG. 2016.. High and dry: post-fire tree seedling establishment in subalpine forests decreases with post-fire drought and large stand-replacing burn patches. . Global Ecol. Biogeogr. 25::65569
    [Crossref] [Google Scholar]
  66. Hernández-Duarte A, Saavedra F, González E, Miranda A, Francois J-P, et al. 2024.. Effects of drought and fire severity interaction on short-term post-fire recovery of the Mediterranean forest of South America. . Fire 7::428
    [Crossref] [Google Scholar]
  67. Hicke JA, Johnson MC, Hayes JL, Preisler HK. 2012.. Effects of bark beetle-caused tree mortality on wildfire. . For. Ecol. Manag. 271::8190
    [Crossref] [Google Scholar]
  68. Hicke JA, Meddens AJH, Kolden CA. 2016.. Recent tree mortality in the western United States from bark beetles and forest fires. . For. Sci. 62::14153
    [Google Scholar]
  69. Hlásny T, König L, Krokene P, Lindner M, Montagné-Huck C, et al. 2021.. Bark beetle outbreaks in Europe: state of knowledge and ways forward for management. . Curr. For. Rep. 7::13865
    [Crossref] [Google Scholar]
  70. Homet P, González M, Matías L, Godoy O, Pérez-Ramos IM, et al. 2019.. Exploring interactive effects of climate change and exotic pathogens on Quercussuber performance: Damage caused by Phytophthoracinnamomi varies across contrasting scenarios of soil moisture. . Agric. For. Meteorol. 27677:107605
    [Google Scholar]
  71. Honkaniemi J, Lehtonen M, Väisänen H, Peltola H. 2017.. Effects of wood decay by Heterobasidionannosum on the vulnerability of Norway spruce stands to wind damage: a mechanistic modelling approach. . Can. J. For. Res. 47::77787
    [Crossref] [Google Scholar]
  72. Honkaniemi J, Ojansuu R, Kasanen R, Heliövaara K. 2018.. Interaction of disturbance agents on Norway spruce: a mechanistic model of bark beetle dynamics integrated in simulation framework WINDROT. . Ecol. Model. 388::4560
    [Crossref] [Google Scholar]
  73. Hood S, Sala A, Heyerdahl EK, Boutin M. 2015.. Low-severity fire increases tree defense against bark beetle attacks. . Ecology 96::184655
    [Crossref] [Google Scholar]
  74. Hood SM. 2020.. Fire and bark beetle interactions. . In Encyclopedia of Wildfires and Wildland-Urban Interface (WUI) Fires, ed. SL Manzello:. Springer
    [Google Scholar]
  75. Hossain M, Veneklaas EJ, Hardy GESJ, Poot P. 2019.. Tree host–pathogen interactions as influenced by drought timing: linking physiological performance, biochemical defence and disease severity. . Tree Physiol. 39::618
    [Crossref] [Google Scholar]
  76. Howe M, Hart SJ, Trowbridge AM. 2024.. Budworms, beetles and wildfire: Disturbance interactions influence the likelihood of insect-caused disturbances at a subcontinental scale. . J. Ecol. 112::256784
    [Crossref] [Google Scholar]
  77. Huntington-Klein N. 2021.. The Effect: An Introduction to Research Design and Causality. CRC
    [Google Scholar]
  78. Itter MS, D'Orangeville L, Dawson A, Kneeshaw D, Duchesne L, Finley AO. 2019.. Boreal tree growth exhibits decadal-scale ecological memory to drought and insect defoliation, but no negative response to their interaction. . J. Ecol. 107::1288301
    [Crossref] [Google Scholar]
  79. Jactel H, Petit J, Desprez-Loustau M-L, Delzon S, Piou D, et al. 2012.. Drought effects on damage by forest insects and pathogens: a meta-analysis. . Glob. Change Biol. 18::26776
    [Crossref] [Google Scholar]
  80. Jentsch A, Seidl R, Wohlgemuth T. 2022.. Disturbances and disturbance regimes. . In Disturbance Ecology, ed. T Wohlgemuth, A Jentsch, R Seidl . Springer
    [Google Scholar]
  81. Johnstone JF, Allen CD, Franklin JF, Frelich LE, Harvey BJ, et al. 2016.. Changing disturbance regimes, ecological memory, and forest resilience. . Front. Ecol. Environ. 14::36978
    [Crossref] [Google Scholar]
  82. Jolly WM, Cochrane MA, Freeborn PH, Holden ZA, Brown TJ, et al. 2015.. Climate-induced variations in global wildfire danger from 1979 to 2013. . Nat. Commun. 6:(1):7537
    [Crossref] [Google Scholar]
  83. Kane JM, Varner JM, Metz MR, van Mantgem PJ. 2017.. Characterizing interactions between fire and other disturbances and their impacts on tree mortality in western U.S. Forests. . For. Ecol. Manag. 405::18899
    [Crossref] [Google Scholar]
  84. Keane RE, Loehman R, Clark J, Smithwick EAH, Miller C. 2015.. Exploring interactions among multiple disturbance agents in forest landscapes: simulating effects of fire, beetles, and disease under climate change. . In Simulation Modeling of Forest Landscape Disturbances, ed. AH Perera, BR Sturtevant, LJ Buse . Springer
    [Google Scholar]
  85. Kleinman JS, Goode JD, Fries AC, Hart JL. 2019.. Ecological consequences of compound disturbances in forest ecosystems: a systematic review. . Ecosphere 10::e02962
    [Crossref] [Google Scholar]
  86. Knapp EE, Bernal AA, Kane JM, Fettig CJ, North MP. 2021.. Variable thinning and prescribed fire influence tree mortality and growth during and after a severe drought. . For. Ecol. Manag. 479::118595
    [Crossref] [Google Scholar]
  87. Kolb TE, Fettig CJ, Ayres MP, Bentz BJ, Hicke JA, et al. 2016.. Observed and anticipated impacts of drought on forest insects and diseases in the United States. . For. Ecol. Manag. 380::32134
    [Crossref] [Google Scholar]
  88. Koontz MJ, Latimer AM, Mortenson LA, Fettig CJ, North MP. 2021.. Cross-scale interaction of host tree size and climatic water deficit governs bark beetle-induced tree mortality. . Nat. Commun. 12::129
    [Crossref] [Google Scholar]
  89. Kulakowski D, Jarvis D. 2013.. Low-severity fires increase susceptibility of lodgepole pine to mountain pine beetle outbreaks in Colorado. . For. Ecol. Manag. 289::54450
    [Crossref] [Google Scholar]
  90. Kulakowski D, Veblen TT. 2002.. Influences of fire history and topography on the pattern of a severe wind blowdown in a Colorado subalpine forest. . J. Ecol. 90::80619
    [Crossref] [Google Scholar]
  91. Kulakowski D, Veblen TT. 2015.. Bark beetles and high-severity fires in Rocky Mountain Subalpine Forests. . In The Ecological Importance of Mixed-Severity Fires, ed. DA DellaSala , CT Hanson:. Elsevier
    [Google Scholar]
  92. Kullman L. 2002.. Rapid recent range-margin rise of tree and shrub species in the Swedish Scandes. . J. Ecol. 90::6877
    [Crossref] [Google Scholar]
  93. Kurz WA, Dymond CC, Stinson G, Rampley GJ, Neilson ET, et al. 2008.. Mountain pine beetle and forest carbon feedback to climate change. . Nature 452::98790
    [Crossref] [Google Scholar]
  94. Lafferty KD. 2009.. The ecology of climate change and infectious diseases. . Ecology 90::888900
    [Crossref] [Google Scholar]
  95. Lehmanski LMA, Kösters LM, Huang J, Göbel M, Gershenzon J, Hartmann H. 2024.. Windthrow causes declines in carbohydrate and phenolic concentrations and increased monoterpene emission in Norway spruce. . PLOS ONE 19::e0302714
    [Crossref] [Google Scholar]
  96. Lindberg M, Johansson M. 1992.. Resistance of Piceaabies seedlings to infection by Heterobasidionannosum in relation to drought stress. . Eur. J. For. Pathol. 22::11524
    [Crossref] [Google Scholar]
  97. Mann ME, Gleick PH. 2015.. Climate change and California drought in the 21st century. . PNAS 112::385859
    [Crossref] [Google Scholar]
  98. Marini L, Økland B, Jönsson AM, Bentz B, Carroll A, et al. 2017.. Climate drivers of bark beetle outbreak dynamics in Norway spruce forests. . Ecography 40::142635
    [Crossref] [Google Scholar]
  99. Marlon JR, Bartlein PJ, Gavin DG, Long CJ, Anderson RS, et al. 2012.. Long-term perspective on wildfires in the western USA. . PNAS 109::E53543
    [Crossref] [Google Scholar]
  100. Meigs GW, Campbell JL, Zald HSJ, Bailey JD, Shaw DC, Kennedy RE. 2015.. Does wildfire likelihood increase following insect outbreaks in conifer forests?. Ecosphere 6::art118
    [Crossref] [Google Scholar]
  101. Metz MR, Varner JM, Frangioso KM, Meentemeyer RK, Rizzo DM. 2013.. Unexpected redwood mortality from synergies between wildfire and an emerging infectious disease. . Ecology 94::215259
    [Crossref] [Google Scholar]
  102. Millar CI, Stephenson NL. 2015.. Temperate forest health in an era of emerging megadisturbance. . Science 349::82326
    [Crossref] [Google Scholar]
  103. Moriarty K, Cheng AS, Hoffman CM, Cottrell SP, Alexander ME. 2019.. Firefighter observations of “surprising” fire behavior in mountain pine beetle-attacked lodgepole pine forests. . Fire 2::34
    [Crossref] [Google Scholar]
  104. Nardi D, Finozzi V, Battisti A. 2022.. Massive windfalls boost an ongoing spruce bark beetle outbreak in the Southern Alps. . L'Italia Forestale Montana 77::2334
    [Crossref] [Google Scholar]
  105. Negrón J.F. 2020.. Within-stand distribution of tree mortality caused by mountain pine beetle, Dendroctonusponderosae Hopkins. . Insects 11::112
    [Crossref] [Google Scholar]
  106. Norlen CA, Hemes KS, Wang JA, Randerson JT, Battles JJ, et al. 2024.. Recent fire history enhances semi-arid conifer forest drought resistance. . For. Ecol. Manag. 573::122331
    [Crossref] [Google Scholar]
  107. Paine RT, Tegner MJ, Johnson EA. 1998.. Compounded perturbations yield ecological surprises. . Ecosystems 1::53545
    [Crossref] [Google Scholar]
  108. Parks SA, Abatzoglou JT. 2020.. Warmer and drier fire seasons contribute to increases in area burned at high severity in western US forests from 1985 to 2017. . Geophys. Res. Lett. 47::e2020GL089858
    [Crossref] [Google Scholar]
  109. Peters DPC, Pielke RA, Bestelmeyer BT, Allen CD, Munson-McGee S, Havstad KM. 2004.. Cross-scale interactions, nonlinearities, and forecasting catastrophic events. . PNAS 101::1513035
    [Crossref] [Google Scholar]
  110. Phillips ML, Lauria C, Spector T, Bradford JB, Gehring C, et al. 2024.. Trajectories and tipping points of piñon–juniper woodlands after fire and thinning. . Glob. Change Biol. 30::e17149
    [Crossref] [Google Scholar]
  111. Pickett STA, White PS, eds. 1985.. The Ecology of Natural Disturbance and Patch Dynamics. Academic
    [Google Scholar]
  112. Powell EN, Raffa KF. 2011.. Fire injury reduces inducible defenses of lodgepole pine against mountain pine beetle. . J. Chem. Ecol. 37::118492
    [Crossref] [Google Scholar]
  113. Raffa KF, Aukema BH, Bentz BJ, Carroll AL, Hicke JA, et al. 2008.. Cross-scale drivers of natural disturbances prone to anthropogenic amplification: the dynamics of bark beetle eruptions. . Bioscience 58::50117
    [Crossref] [Google Scholar]
  114. Ramsfield TD, Bentz BJ, Faccoli M, Jactel H, Brockerhoff EG. 2016.. Forest health in a changing world: effects of globalization and climate change on forest insect and pathogen impacts. . Forestry 89::24552
    [Crossref] [Google Scholar]
  115. Resco de Dios V, Hedo J, Cunill Camprubí À, Thapa P, Martínez del Castillo E, et al. 2021.. Climate change induced declines in fuel moisture may turn currently fire-free Pyrenean mountain forests into fire-prone ecosystems. . Sci. Total Environ. 797::149104
    [Crossref] [Google Scholar]
  116. Romualdi DC, Wilkinson SL, James PMA. 2023.. On the limited consensus of mountain pine beetle impacts on wildfire. . Landsc Ecol. 38::215978
    [Crossref] [Google Scholar]
  117. Romps DM, Seeley JT, Vollaro D, Molinari J. 2014.. Projected increase in lightning strikes in the United States due to global warming. . Science 346:(6211):85154
    [Crossref] [Google Scholar]
  118. Salesa D, Baeza MJ, Santana VM. 2024.. Fire severity and prolonged drought do not interact to reduce plant regeneration capacity but alter community composition in a Mediterranean shrubland. . Fire Ecol. 20::61
    [Crossref] [Google Scholar]
  119. Sasaki T, Collins SL, Rudgers JA, Batdelger G, Baasandai E, Kinugasa T. 2023.. Dryland sensitivity to climate change and variability using nonlinear dynamics. . PNAS 120::e2305050120
    [Crossref] [Google Scholar]
  120. Scheffer M, Carpenter SR, Lenton TM, Bascompte J, Brock W, et al. 2012.. Anticipating critical transitions. . Science 338::34448
    [Crossref] [Google Scholar]
  121. Seidl R, Rammer W. 2017.. Climate change amplifies the interactions between wind and bark beetle disturbances in forest landscapes. . Landscape Ecol. 32::148598
    [Crossref] [Google Scholar]
  122. Seidl R, Schelhaas M-J, Lexer MJ. 2011.. Unraveling the drivers of intensifying forest disturbance regimes in Europe. . Glob. Change Biol. 17::284252
    [Crossref] [Google Scholar]
  123. Seidl R, Spies TA, Peterson DL, Stephens SL, Hicke JA. 2016.. Searching for resilience: addressing the impacts of changing disturbance regimes on forest ecosystem services. . J. Appl. Ecol. 53::12029
    [Crossref] [Google Scholar]
  124. Seidl R, Thom D, Kautz M, Martin-Benito D, Peltoniemi M, et al. 2017.. Forest disturbances under climate change. . Nat. Clim. Change 7::395402
    [Crossref] [Google Scholar]
  125. Senf C, Seidl R. 2018.. Natural disturbances are spatially diverse but temporally synchronized across temperate forest landscapes in Europe. . Glob. Change Biol. 24::120111
    [Crossref] [Google Scholar]
  126. Shive KL, Preisler HK, Welch KR, Safford HD, Butz RJ, et al. 2018.. From the stand scale to the landscape scale: predicting the spatial patterns of forest regeneration after disturbance. . Ecol. Appl. 28::162639
    [Crossref] [Google Scholar]
  127. Silvério DV, Brando PM, Bustamante MMC, Putz FE, Marra DM, et al. 2019.. Fire, fragmentation, and windstorms: a recipe for tropical forest degradation. . J. Ecol. 107::65667
    [Crossref] [Google Scholar]
  128. Simard M, Romme WH, Griffin JM, Turner MG. 2011.. Do mountain pine beetle outbreaks change the probability of active crown fire in lodgepole pine forests?. Ecol. Monogr. 81::324
    [Crossref] [Google Scholar]
  129. Simler AB, Metz MR, Frangioso KM, Meentemeyer RK, Rizzo DM. 2018.. Novel disturbance interactions between fire and an emerging disease impact survival and growth of resprouting trees. . Ecology 99::221729
    [Crossref] [Google Scholar]
  130. Simler-Williamson AB, Metz MR, Frangioso KM, Rizzo DM. 2021.. Wildfire alters the disturbance impacts of an emerging forest disease via changes to host occurrence and demographic structure. . J. Ecol. 109::67691
    [Crossref] [Google Scholar]
  131. Simler-Williamson AB, Rizzo DM, Cobb RC. 2019.. Interacting effects of global change on forest pest and pathogen dynamics. . Annu. Rev. Ecol. Evol. Syst. 50::381403
    [Crossref] [Google Scholar]
  132. Singh BK, Delgado-Baquerizo M, Egidi E, Guirado E, Leach JE, et al. 2023.. Climate change impacts on plant pathogens, food security and paths forward. . Nat. Rev. Microbiol. 21::64056
    [Crossref] [Google Scholar]
  133. Sommerfeld A, Rammer W, Heurich M, Hilmers T, Müller J, Seidl R. 2021.. Do bark beetle outbreaks amplify or dampen future bark beetle disturbances in Central Europe?. J. Ecol. 109::73749
    [Crossref] [Google Scholar]
  134. Steel ZL, Jones GM, Collins BM, Green R, Koltunov A, et al. 2022.. Mega-disturbances cause rapid decline of mature conifer forest habitat in California. . Ecol. Appl. 33::e2763
    [Crossref] [Google Scholar]
  135. Stephenson NL, Das AJ, Ampersee NJ, Bulaon BM, Yee JL. 2019.. Which trees die during drought? The key role of insect host-tree selection. . J. Ecol. 107::2383401
    [Crossref] [Google Scholar]
  136. Stevens-Rumann CS, Kemp KB, Higuera PE, Harvey BJ, Rother MT, et al. 2018.. Evidence for declining forest resilience to wildfires under climate change. . Ecol. Lett. 21::24352
    [Crossref] [Google Scholar]
  137. Stevens-Rumann CS, Prichard SJ, Whitman E, Parisien M-A, Meddens AJH. 2022.. Considering regeneration failure in the context of changing climate and disturbance regimes in western North America. . Can. J. For. Res. 52::1281302
    [Crossref] [Google Scholar]
  138. Sturrock RN, Frankel SJ, Brown AV, Hennon PE, Kliejunas JT, et al. 2011.. Climate change and forest diseases. . Plant Pathol. 60::13349
    [Crossref] [Google Scholar]
  139. Sturtevant BR, Fortin M-J. 2021.. Understanding and modeling forest disturbance interactions at the landscape level. . Front. Ecol. Evol. 9::653647
    [Crossref] [Google Scholar]
  140. Talucci AC, Krawchuk MA. 2019.. Dead forests burning: the influence of beetle outbreaks on fire severity and legacy structure in sub-boreal forests. . Ecosphere 10::e02744
    [Crossref] [Google Scholar]
  141. Taylor SL, MacLean DA. 2009.. Legacy of insect defoliators: increased wind-related mortality two decades after a spruce budworm outbreak. . For. Sci. 55::25667
    [Google Scholar]
  142. Temperli C, Bugmann H, Elkin C. 2013.. Cross-scale interactions among bark beetles, climate change, and wind disturbances: a landscape modeling approach. . Ecol. Monogr. 83::383402
    [Crossref] [Google Scholar]
  143. Temperli C, Veblen TT, Hart SJ, Kulakowski D, Tepley AJ. 2015.. Interactions among spruce beetle disturbance, climate change and forest dynamics captured by a forest landscape model. . Ecosphere 6::art231
    [Crossref] [Google Scholar]
  144. Thom D, Rammer W, Seidl R. 2017.. The impact of future forest dynamics on climate: interactive effects of changing vegetation and disturbance regimes. . Ecol. Monogr. 87::66584
    [Crossref] [Google Scholar]
  145. Tubbesing CL, Fry DL, Roller GB, Collins BM, Fedorova VA, et al. 2019.. Strategically placed landscape fuel treatments decrease fire severity and promote recovery in the northern Sierra Nevada. . For. Ecol. Manag. 436::4555
    [Crossref] [Google Scholar]
  146. Turner MG. 2010.. Disturbance and landscape dynamics in a changing world. . Ecology 91::283349
    [Crossref] [Google Scholar]
  147. Turner MG, Braziunas KH, Hansen WD, Hoecker TJ, Rammer W, et al. 2022.. The magnitude, direction, and tempo of forest change in Greater Yellowstone in a warmer world with more fire. . Ecol. Monogr. 92::e01485
    [Crossref] [Google Scholar]
  148. Turner MG, Seidl R. 2023.. Novel disturbance regimes and ecological responses. . Annu. Rev. Ecol. Evol. Syst. 54::6383
    [Crossref] [Google Scholar]
  149. Van de Water KM, Safford HD. 2011.. A summary of fire frequency estimates for California vegetation before Euro-American settlement. . Fire Ecol. 7::2658
    [Crossref] [Google Scholar]
  150. van Mantgem PJ, Milano ER, Dudney J, Nesmith JCB, Vandergast AG, Zald HSJ. 2023.. Growth, drought response, and climate-associated genomic structure in whitebark pine in the Sierra Nevada of California. . Ecol. Evol. 13::e10072
    [Crossref] [Google Scholar]
  151. van Mantgem PJ, Nesmith JCB, Keifer M, Knapp EE, Flint A, Flint L. 2013.. Climatic stress increases forest fire severity across the western United States. . Ecol. Lett. 16::115156
    [Crossref] [Google Scholar]
  152. van Mantgem PJ, Stephenson NL, Keifer M, Keeley J. 2004.. Effects of an introduced pathogen and fire exclusion on the demography of sugar pine. . Ecol. Appl. 14::1590602
    [Crossref] [Google Scholar]
  153. Walden L, Fontaine JB, Ruthrof KX, Matusick G, Harper RJ. 2023.. Drought then wildfire reveals a compound disturbance in a resprouting forest. . Ecol. Appl. 33::e2775
    [Crossref] [Google Scholar]
  154. Walker XJ, Baltzer JL, Cumming SG, Day NJ, Ebert C, et al. 2019.. Increasing wildfires threaten historic carbon sink of boreal forest soils. . Nature 572::52023
    [Crossref] [Google Scholar]
  155. Wallin KF, Raffa KF. 2004.. Feedback between individual host selection behavior and population dynamics in an eruptive herbivore. . Ecol. Monogr. 74::10116
    [Crossref] [Google Scholar]
  156. Wang W, Wang X, Flannigan MD, Guindon L, Swystun T, et al. 2025.. Canadian forests are more conducive to high-severity fires in recent decades. . Science 387::9197
    [Crossref] [Google Scholar]
  157. Wayman RB, Safford HD. 2021.. Recent bark beetle outbreaks influence wildfire severity in mixed-conifer forests of the Sierra Nevada. , California, USA:. Ecol. Appl. 31::e02287
    [Crossref] [Google Scholar]
  158. Weed AS, Ayres MP, Hicke JA. 2013.. Consequences of climate change for biotic disturbances in North American forests. . Ecol. Monogr. 83::44170
    [Crossref] [Google Scholar]
  159. Weston CJ, Di Stefano J, Hislop S, Volkova L. 2022.. Effect of recent fuel reduction treatments on wildfire severity in southeast Australian Eucalyptussieberi forests. . For. Ecol. Manag. 505::119924
    [Crossref] [Google Scholar]
  160. Williams AP, Abatzoglou JT, Gershunov A, Guzman-Morales J, Bishop DA, et al. 2019.. Observed impacts of Anthropogenic climate change on wildfire in California. . Earth's Future 7::892910
    [Crossref] [Google Scholar]
  161. Williams JN, Safford HD, Enstice N, Steel ZL, Paulson AK. 2023.. High-severity burned area and proportion exceed historic conditions in Sierra Nevada, California, and adjacent ranges. . Ecosphere 14::e4397
    [Crossref] [Google Scholar]
  162. Wong CM, Daniels LD. 2017.. Novel forest decline triggered by multiple interactions among climate, an introduced pathogen and bark beetles. . Glob. Change Biol. 23::192641
    [Crossref] [Google Scholar]
  163. Wootton JT. 1994.. The nature and consequences of indirect effects in ecological communities. . Annu. Rev. Ecol. Syst. 25::44366
    [Crossref] [Google Scholar]
  164. Wunderling N, Staal A, Sakschewski B, Hirota M, Tuinenburg OA, et al. 2022.. Recurrent droughts increase risk of cascading tipping events by outpacing adaptive capacities in the Amazon rainforest. . PNAS 119::e2120777119
    [Crossref] [Google Scholar]
  165. Young DJN, Werner CM, Welch KR, Young TP, Safford HD, Latimer AM. 2019.. Post-fire forest regeneration shows limited climate tracking and potential for drought-induced type conversion. . Ecology 100::e02571
    [Crossref] [Google Scholar]
  166. Yue C, Ciais P, Zhu D, Wang T, Peng SS, Piao SL. 2016.. How have past fire disturbances contributed to the current carbon balance of boreal ecosystems?. Biogeosciences 13::67590
    [Crossref] [Google Scholar]
  167. Zhao J, Yue C, Wang J, Hantson S, Wang X, et al. 2024.. Forest fire size amplifies postfire land surface warming. . Nature 633::82834
    [Crossref] [Google Scholar]
  168. Zhou L, Wang S. 2023.. The bright side of ecological stressors. . Trends Ecol. Evol. 38::56878
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-102723-052437
Loading
/content/journals/10.1146/annurev-ecolsys-102723-052437
Loading

Data & Media loading...

Supplemental Materials

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Morty Proxy This is a proxified and sanitized view of the page, visit original site.