1932

Abstract

For over 100 years, the deuterostome clade has been one of the few unchallenged branches in the phylogeny of the animal phyla. Deuterostomia includes the echinoderms and hemichordate worms and also our own phylum of chordates. Molecular phylogenies have shown that some other phyla previously linked to deuterostomes by shared morphology and embryology (most notably the chaetognaths or arrow worms) are in fact members of the second major branch of bilaterian animals: the protostomes. Several supposedly deuterostomian characters found in chaetognaths are therefore common to both branches of bilaterian animals, weakening the support for Deuterostomia. Recent studies of molecular data show equivocal support for the deuterostome clade. The deuterostome clade even seems to get some artefactual support from well-known sources of systematic error. The weak and possibly nonexistent support for Deuterostomia has important consequences for our understanding of bilaterian evolution and the origins of the chordates.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-102722-023501
2025-11-05
2025-12-21

Metrics

Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/56/1/annurev-ecolsys-102722-023501.html?itemId=/content/journals/10.1146/annurev-ecolsys-102722-023501&mimeType=html&fmt=ahah

Literature Cited

  1. Adoutte A, Balavoine G, Lartillot N, Lespinet O, Prud'homme B, de Rosa R. 2000.. The new animal phylogeny: reliability and implications. . PNAS 97::445356
    [Crossref] [Google Scholar]
  2. Álvarez-Presas M, Ruiz-Trillo I, Paps J. 2024.. Novel genomic approaches support Xenacoelomorpha as sister to all Bilateria. . Preprint. Res. Sq. https://doi.org/10.21203/rs.3.rs-5529390/v1
  3. Annona G, Holland ND, D'Aniello S. 2015.. Evolution of the notochord. . EvoDevo 6::30
    [Crossref] [Google Scholar]
  4. Arendt D, Nübler-Jung K. 1994.. Inversion of dorsoventral axis?. Nature 371::26
    [Crossref] [Google Scholar]
  5. Arimoto A, Nishitsuji K, Hisata K, Satoh N, Tagawa K. 2023.. Transcriptomic evidence for Brachyury expression in the caudal tip region of adult Ptychodera flava (Hemichordata). . Dev. Growth Differ. 65::47080
    [Crossref] [Google Scholar]
  6. Balser EJ, Ruppert EE. 1990.. Structure, ultrastructure, and function of the preoral heart-kidney in Saccoglossus kowalevskii (Hemichordata, Enteropneusta) including new data on the stomochord. . Acta Zoologica 71::23549
    [Crossref] [Google Scholar]
  7. Bateson W. 1884.. Note on the later stages in the development of Saccoglossus kowalevskii (Agassiz), and on the affinities of the Enteropneusta. . Proc. R. Soc. B 38::2330
    [Google Scholar]
  8. Bateson W. 1886.. The ancestry of the Chordata. . Q. J. Microsc. Sci. 26::53571
    [Google Scholar]
  9. Boore JL, Lavrov DV, Brown WM. 1998.. Gene translocation links insects and crustaceans. . Nature 392::66768
    [Crossref] [Google Scholar]
  10. Brunet T, Lauri A, Arendt D. 2015.. Did the notochord evolve from an ancient axial muscle? The axochord hypothesis. . Bioessays 37::83650
    [Crossref] [Google Scholar]
  11. Brusca RC, Brusca GJ. 1990.. Invertebrates. Sinauer Associates
    [Google Scholar]
  12. Budd GE, Mann RP. 2024.. Two notorious nodes: a critical examination of relaxed molecular clock age estimates of the bilaterian animals and placental mammals. . Syst. Biol. 73::22334
    [Crossref] [Google Scholar]
  13. Cameron CB. 2002.. Particle retention and flow in the pharynx of the enteropneust worm Harrimania planktophilus: the filter-feeding pharynx may have evolved before the chordates. . Biol. Bull. 202::192200
    [Crossref] [Google Scholar]
  14. Cameron CB. 2005.. A phylogeny of the hemichordates based on morphological characters. . Can. J. Zool. 83::196215
    [Crossref] [Google Scholar]
  15. Cannon JT, Vellutini BC, Smith J, Ronsquist F, Jondelius U, Hejnol A. 2016.. Xenacoelomorpha is the sister group to Nephrozoa. . Nature 530::8993
    [Crossref] [Google Scholar]
  16. Clarke AW, Hoye E, Hembrom AA, Paynter VM, Vinther J, et al. 2025.. MirGeneDB 3.0: improved taxonomic sampling, uniform nomenclature of novel conserved microRNA families and updated covariance models. . Nucleic. Acids. Res. 53::D11628
    [Crossref] [Google Scholar]
  17. De Robertis EM, Sasai Y. 1996.. A common plan for dorsoventral patterning in Bilateria. . Nature 380::3740
    [Crossref] [Google Scholar]
  18. Denes AS, Jékely G, Steinmetz PR, Raible F, Snyman H, et al. 2007.. Molecular architecture of annelid nerve cord supports common origin of nervous system centralization in Bilateria. . Cell 129::27788
    [Crossref] [Google Scholar]
  19. Dohrn A. 1875.. Der Ursprung der Wirbelthiere und das Princip des Functionswechsels. Verlag von Wilhelm Engelmann
    [Google Scholar]
  20. dos Reis M, Thawornwattana Y, Angelis K, Telford MJ, Donoghue PC, Yang Z. 2015.. Uncertainty in the timing of origin of animals and the limits of precision in molecular timescales. . Curr. Biol. 25::293950
    [Crossref] [Google Scholar]
  21. Eernisse DJ, Albert JS, Anderson FE. 1992.. Annelida and Arthropoda are not sister taxa: a phylogenetic analysis of spiralian metazoan morphology. . Syst. Biol. 41::30530
    [Crossref] [Google Scholar]
  22. Felsenstein J. 1978.. Cases in which parsimony or compatibility methods will be positively misleading. . Syst. Zool. 27::40110
    [Crossref] [Google Scholar]
  23. Formery L, Schubert M, Croce JC. 2019.. Ambulacrarians and the ancestry of deuterostome nervous systems. . In Evo-Devo: Non-model Species in Cell and Developmental Biology, ed. W Tworzydlo, SM Bilinski . Results Problems Cell Differ. 68. Springer
    [Google Scholar]
  24. Fritzenwanker JH, Gerhart J, Freeman RM, Lowe CJ. 2014.. The Fox/Forkhead transcription factor family of the hemichordate Saccoglossus kowalevskii. . EvoDevo 5::17
    [Crossref] [Google Scholar]
  25. Geoffroy St.-Hilaire E. 1822.. Considérations générales sur la vertebre. . Mém. Mus. Nat. Hist. 9::89119
    [Google Scholar]
  26. Gillis JA, Fritzenwanker JH, Lowe CJ. 2011.. A stem-deuterostome origin of the vertebrate pharyngeal transcriptional network. . Proc. R. Soc. B 279::23746
    [Crossref] [Google Scholar]
  27. Goette A. 1902.. Lehrbuch der Zoologie. Verlag von Wilhelm Engelmann
    [Google Scholar]
  28. Gonzalez P, Cameron CB. 2009.. The gill slits and pre-oral ciliary organ of Protoglossus (Hemichordata: Enteropneusta) are filter-feeding structures. . Biol. J. Linn. Soc. 98::898906
    [Crossref] [Google Scholar]
  29. Gonzalez P, Uhlinger KR, Lowe CJ. 2017.. The adult body plan of indirect developing hemichordates develops by adding a Hox-patterned trunk to an anterior larval territory. . Curr. Biol. 27::8795
    [Crossref] [Google Scholar]
  30. Grobben K. 1908.. Die systematische Einteilung de Tierreiches. . Verh. Zool. Bot. Ges. Wien 58::491511
    [Google Scholar]
  31. Guijarro-Clarke C, Holland PWH, Paps J. 2020.. Widespread patterns of gene loss in the evolution of the animal kingdom. . Nat. Ecol. Evol. 4::51923
    [Crossref] [Google Scholar]
  32. Halanych KM. 1996.. Convergence in the feeding apparatuses of lophophorates and pterobranch hemichordates revealed by 18S rDNA: an interpretation. . Biol. Bull. 190::15
    [Crossref] [Google Scholar]
  33. Halanych KM, Bacheller JD, Aguinaldo AM, Liva SM, Hillis DM, Lake JA. 1995.. Evidence from 18S ribosomal DNA that the lophophorates are protostome animals. . Science 267::164143
    [Crossref] [Google Scholar]
  34. Hejnol A, Lowe CJ. 2014.. Animal evolution: stiff or squishy notochord origins?. Curr. Biol. 24::R113133
    [Crossref] [Google Scholar]
  35. Hiruta J, Mazet F, Yasui K, Zhang P, Ogasawara M. 2005.. Comparative expression analysis of transcription factor genes in the endostyle of invertebrate chordates. . Dev. Dyn. 233::103137
    [Crossref] [Google Scholar]
  36. Holland LZ. 2015.. Evolution of basal deuterostome nervous systems. . J. Exp. Biol. 218::63745
    [Crossref] [Google Scholar]
  37. Holland ND, Holland LZ, Holland PW. 2015.. Scenarios for the making of vertebrates. . Nature 520::45055
    [Crossref] [Google Scholar]
  38. Hubrecht AAW. 1883.. On the ancestral form of the Chordata. . Q. J. Microsc. Sci. 23::34969
    [Google Scholar]
  39. Huxley TH. 1877.. A Manual of the Anatomy of Invertebrated Animals. D. Appleton and Company
    [Google Scholar]
  40. Jabr N, Gonzalez P, Kocot KM, Cameron CB. 2023.. The embryology, metamorphosis, and muscle development of Schizocardium karankawa sp. nov. (Enteropneusta) from the Gulf of Mexico. . EvoDevo 14::6
    [Crossref] [Google Scholar]
  41. Kapli P, Flouri T, Telford MJ. 2021a.. Systematic errors in phylogenetic trees. . Curr. Biol. 31::R5964
    [Crossref] [Google Scholar]
  42. Kapli P, Natsidis P, Leite DJ, Fursman M, Jeffrie N, et al. 2021b.. Lack of support for Deuterostomia prompts reinterpretation of the first Bilateria. . Sci. Adv. 7::eabe2741
    [Crossref] [Google Scholar]
  43. Kapli P, Telford MJ. 2020.. Topology-dependent asymmetry in systematic errors affects phylogenetic placement of Ctenophora and Xenacoelomorpha. . Sci. Adv. 6::eabc5162
    [Crossref] [Google Scholar]
  44. Kaul-Strehlow S, Stach T. 2013.. A detailed description of the development of the hemichordate Saccoglossus kowalevskii. . Front. Zool. 10::53
    [Crossref] [Google Scholar]
  45. Kowalevsky A. 1866.. Entwickelungsgeschichte der einfachen Ascidien. . Mém. Acad. Imp. Sci. St-Pétersbourg (Sér. VII). 10:(15):119
    [Google Scholar]
  46. Kowalevsky A. 1867.. Entwickelungsgeschichte des Amphioxus lanceolatus. . Mém. Acad. Imp. Sci. St-Pétersbourg (Sér VII). 11:(4):117
    [Google Scholar]
  47. Kowalevsky A. 1877.. Weitere Studien über die Entwickelungsgeschichte des Amphioxus lanceolatus, nebst einem Beitrage zur Homologie des Nervensystems der Würmer und Wierbelthiere. . Arch Mik Anat. 13::181204
    [Crossref] [Google Scholar]
  48. Krauss V, Thummler C, Georgi F, Lehmann J, Stadler PF, Eisenhardt C. 2008.. Near intron positions are reliable phylogenetic markers: an application to holometabolous insects. . Mol. Biol. Evol. 25::82130
    [Crossref] [Google Scholar]
  49. Lavrov D, Lang B. 2005.. Poriferan mtDNA and animal phylogeny based on mitochondrial gene arrangements. . Syst. Biol. 54::65159
    [Crossref] [Google Scholar]
  50. Lehmann J, Stadler PF, Krauss V. 2013.. Near intron pairs and the metazoan tree. . Mol. Phyl. Evol. 66::81123
    [Crossref] [Google Scholar]
  51. Li Y, Dunn FS, Murdock DJE, Guo J, Rahman IA, Cong P. 2023.. Cambrian stem-group ambulacrarians and the nature of the ancestral deuterostome. . Curr. Biol. 33::235966.e2
    [Crossref] [Google Scholar]
  52. Lin CY, Marletaz F, Perez-Posada A, Martinez-Garcia PM, Schloissnig S, et al. 2024.. Chromosome-level genome assemblies of 2 hemichordates provide new insights into deuterostome origin and chromosome evolution. . PLOS Biol. 22::e3002661
    [Crossref] [Google Scholar]
  53. Lowe CJ. 2021.. Molecular insights into deuterostome evolution from hemichordate developmental biology. . Curr. Top. Dev. Biol. 141::75117
    [Crossref] [Google Scholar]
  54. Lowe CJ, Clarke DN, Medeiros DM, Rokhsar DS, Gerhart J. 2015.. The deuterostome context of chordate origins. . Nature 520::45665
    [Crossref] [Google Scholar]
  55. Lowe CJ, Terasaki M, Wu M, Freeman RM Jr., Runft L, et al. 2006.. Dorsoventral patterning in hemichordates: insights into early chordate evolution. . PLOS Biol. 4::160319
    [Crossref] [Google Scholar]
  56. Lowe CJ, Wu M, Salic A, Evans L, Lander E, et al. 2003.. Anteroposterior patterning in hemichordates and the origins of the chordate nervous system. . Cell 113::85365
    [Crossref] [Google Scholar]
  57. Luttrell SM, Swalla BJ. 2015.. Genomic and evolutionary insights into chordate origins. . In Principles of Developmental Genetics, ed. SA Moody . Elsevier
    [Google Scholar]
  58. Marlétaz F, Martin E, Perez Y, Papillon D, Caubit X, et al. 2006.. Chaetognath phylogenomics: a protostome with deuterostome-like development. . Curr. Biol. 16::R57778
    [Crossref] [Google Scholar]
  59. Marlétaz F, Peijnenburg KTCA, Goto T, Satoh N, Rokhsar DS. 2019.. A new spiralian phylogeny places the enigmatic arrow worms among gnathiferans. . Curr. Biol. 29::31218.e3
    [Crossref] [Google Scholar]
  60. Martin-Duran JM, Janssen R, Wennberg S, Budd GE, Hejnol A. 2012.. Deuterostomic development in the protostome Priapulus caudatus. . Curr. Biol. 22::216166
    [Crossref] [Google Scholar]
  61. Matus DQ, Copley RR, Dunn CW, Hejnol A, Eccleston H, et al. 2006.. Broad taxon and gene sampling indicate that chaetognaths are protostomes. . Curr. Biol. 16::R57576
    [Crossref] [Google Scholar]
  62. Mayer G, Bartolomaeus T. 2003.. Ultrastructure of the stomochord and the heart–glomerulus complex in Rhabdopleura compacta (Pterobranchia): phylogenetic implications. . Zoomorphology 122::12533
    [Crossref] [Google Scholar]
  63. Metschnikoff E. 1870.. Untersuchungen über die Metamorphose einiger Seethiere. . Z. Wiss. Zool. 20::13144
    [Google Scholar]
  64. Metschnikoff E. 1881.. Über die systematische Stellung von Balanoglossus. . Zool. Anzeiger 4::13957
    [Google Scholar]
  65. Metschnikow E. 1866.. Ueber eine Larve von Balanoglossus. . Arch. Anat. Physiol. Wiss. Med. 5::59295
    [Google Scholar]
  66. Nanglu K, Cole SR, Wright DF, Souto C. 2023.. Worms and gills, plates and spines: the evolutionary origins and incredible disparity of deuterostomes revealed by fossils, genes, and development. . Biol. Rev. Camb. Philos. Soc. 98::31651
    [Crossref] [Google Scholar]
  67. Natsidis P, Kapli P, Schiffer PH, Telford MJ. 2021.. Systematic errors in orthology inference and their effects on evolutionary analyses. . iScience 24::102110
    [Crossref] [Google Scholar]
  68. Natsidis P, Schiffer PH, Salvador-Martinez I, Telford MJ. 2019.. Computational discovery of hidden breaks in 28S ribosomal RNAs across eukaryotes and consequences for RNA Integrity Numbers. . Sci. Rep. 9::19477
    [Crossref] [Google Scholar]
  69. Nielsen C. 2011.. Animal Evolution. Interrelationships of the Living Phyla. Oxford University Press
    [Google Scholar]
  70. Nielsen C. 2012.. The authorship of higher chordate taxa. . Zool. Scr. 41::43536
    [Crossref] [Google Scholar]
  71. Nielsen C. 2017.. Evolution of deuterostomy – and origin of the chordates. . Biol. Rev. Camb. Philos. Soc. 92::31625
    [Crossref] [Google Scholar]
  72. Nübler-Jung K, Arendt D. 1994.. Is ventral in insects dorsal in vertebrates?. Roux's Arch. Dev. Biol. 203::35766
    [Crossref] [Google Scholar]
  73. Ogasawara M, Di Lauro R, Satoh N. 1999.. Ascidian homologs of mammalian thyroid transcription factor-1 gene are expressed in the endostyle. . Zool. Sci. 16::55965
    [Crossref] [Google Scholar]
  74. Ou Q, Morris SC, Han J, Zhang Z, Liu J, et al. 2012.. Evidence for gill slits and a pharynx in Cambrian vetulicolians: implications for the early evolution of deuterostomes. . BMC Biol. 10::81
    [Crossref] [Google Scholar]
  75. Papillon D, Perez Y, Caubit X, Le Parco Y. 2004.. Identification of chaetognaths as protostomes is supported by the analysis of their mitochondrial genome. . Mol. Biol. Evol. 21::212229
    [Crossref] [Google Scholar]
  76. Perez-Posada A, Lin CY, Fan TP, Lin CY, Chen YC, et al. 2024.. Hemichordate cis-regulatory genomics and the gene expression dynamics of deuterostomes. . Nat. Ecol. Evol. 8::221327
    [Crossref] [Google Scholar]
  77. Peterson KJ, Clarke AW, Zolotarov G, Deline B, McPeek MA, et al. 2024.. Capturing changes to animal complexity from quantifiable patterns in genomic data. . bioRxiv 2024.08.22.609214. https://doi.org/10.1101/2024.08.22.609214
  78. Philippe H, Poustka AJ, Chiodin M, Hoff KJ, Dessimoz C, et al. 2019.. Mitigating anticipated effects of systematic errors supports sister-group relationship between Xenacoelomorpha and Ambulacraria. . Curr. Biol. 29::181826.e6
    [Crossref] [Google Scholar]
  79. Redmond AK. 2024.. Acoelomorph flatworm monophyly is a long-branch attraction artefact obscuring a clade of Acoela and Xenoturbellida. . Proc. Biol. Sci. 291::20240329
    [Google Scholar]
  80. Rokas A, Holland PWH. 2000.. Rare genomic changes as a tool for phylogenetics. . Trends Evol. Ecol. 15::45459
    [Crossref] [Google Scholar]
  81. Röttinger E, Lowe CJ. 2012.. Evolutionary crossroads in developmental biology: hemichordates. . Development 139:(14):246375
    [Crossref] [Google Scholar]
  82. Ruppert EE. 1982.. Comparative ultrastructure of the gastrotrich pharynx and the evolution of myoepithelial foreguts in Aschelminthes. . Zoomorphology 99::181220
    [Crossref] [Google Scholar]
  83. Ruppert EE. 2005.. Key characters uniting hemichordates and chordates: homologies or homoplasies?. Can. J. Zool. 83::823
    [Crossref] [Google Scholar]
  84. Ruppert EE, Cameron CB, Frick JE. 1999.. Endostyle-like features of the dorsal epibranchial ridge of an enteropneust and the hypothesis of dorsal-ventral axis inversion in chordates. . Invert. Biol. 118::20212
    [Crossref] [Google Scholar]
  85. Sackville MA, Cameron CB, Gillis JA, Brauner CJ. 2022.. Ion regulation at gills precedes gas exchange and the origin of vertebrates. . Nature 610::699703
    [Crossref] [Google Scholar]
  86. Satoh N, Tagawa K, Lowe CJ, Yu JK, Kawashima T, et al. 2014.. On a possible evolutionary link of the stomochord of hemichordates to pharyngeal organs of chordates. . Genesis 52::92534
    [Crossref] [Google Scholar]
  87. Schiffer PH, Natsidis P, Leite DJ, Robertson HE, Lapraz F, et al. 2024.. Insights into early animal evolution from the genome of the xenacoelomorph worm Xenoturbella bocki. . eLife 13::e94948
    [Crossref] [Google Scholar]
  88. Schuster HC, Hirth F. 2023.. Phylogenetic tracing of midbrain-specific regulatory sequences suggests single origin of eubilaterian brains. . Sci. Adv. 9::eade8259
    [Crossref] [Google Scholar]
  89. Semper C. 1875.. Die Stammverwandschaft der Wirbelthiere und Wirbellosen. . Arb. Zool.-Zootom. Inst. Würzburg. 2::2576
    [Google Scholar]
  90. Serra Silva A, Natsidis P, Piovani L, Kapli P, Telford MJ. 2025.. Is the deuterostome clade an artifact?. Curr. Biol. 35:(15):361123.e3
    [Crossref] [Google Scholar]
  91. Simakov O, Kawashima T, Marlétaz F, Jenkins J, Koyanagi R, et al. 2015.. Hemichordate genomes and deuterostome origins. . Nature 527::45965
    [Crossref] [Google Scholar]
  92. Simakov O, Marletaz F, Cho SJ, Edsinger-Gonzales E, Havlak P, et al. 2013.. Insights into bilaterian evolution from three spiralian genomes. . Nature 493::52631
    [Crossref] [Google Scholar]
  93. Smith AB. 2012.. Cambrian problematica and the diversification of deuterostomes. . BMC Biol. 12::79
    [Crossref] [Google Scholar]
  94. Stach T. 2013.. Larval anatomy of the pterobranch Cephalodiscus gracilis supports secondarily derived sessility concordant with molecular phylogenies. . Naturwissenschaften 100::118791
    [Crossref] [Google Scholar]
  95. Stach T, Kaul S. 2011.. The postanal tail of the enteropneust Saccoglossus kowalevskii is a ciliary creeping organ without distinct similarities to the chordate tail. . Acta Zoologica 92::15060
    [Crossref] [Google Scholar]
  96. Sun W, Yin Z, Liu P, Zhu M, Donoghue P. 2024.. Developmental biology of Spiralicellula and the Ediacaran origin of crown metazoans. . Proc. Biol. Sci. 291::20240101
    [Google Scholar]
  97. Swalla BJ. 2024.. Deuterostome ancestors and chordate origins. . Integr. Comp. Biol. 64::117581
    [Crossref] [Google Scholar]
  98. Szantho LL, Lartillot N, Szollosi GJ, Schrempf D. 2023.. Compositionally constrained sites drive long-branch attraction. . Syst. Biol. 72::76780
    [Crossref] [Google Scholar]
  99. Takacs CM, Moy VN, Peterson KJ. 2002.. Testing putative hemichordate homologues of the chordate dorsal nervous system and endostyle: expression of NK2.1 (TTF-1) in the acorn worm Ptychodera flava (Hemichordata, Ptychoderidae). . Evol. Dev. 4::40517
    [Crossref] [Google Scholar]
  100. Telford MJ. 2008.. Xenoturbellida: the fourth deuterostome phylum and the diet of worms. . Genesis 46::58086
    [Crossref] [Google Scholar]
  101. Telford MJ, Holland PW. 1993.. The phylogenetic affinities of the chaetognaths: a molecular analysis. . Mol. Biol. Evol. 10::66076
    [Google Scholar]
  102. Vo M, Mehrabian S, Etienne S, Pelletier D, Cameron CB. 2018.. The hemichordate pharynx and gill pores impose functional constraints at small and large body sizes. . Biol. J. Linn. Soc. 127::7587
    [Crossref] [Google Scholar]
  103. Wennberg SA, Janssen R, Budd GE. 2008.. Early embryonic development of the priapulid worm Priapulus caudatus. . Evol. Dev. 10::32638
    [Crossref] [Google Scholar]
  104. Willmer P. 1990.. Invertebrate relationships. Patterns in animal evolution. Cambridge University Press
    [Google Scholar]
  105. Wlizla M. 2011.. Evolution of nodal signaling in deuterostomes: insights from Saccoglossus kowalevskii. PhD Diss. , University of Chicago
    [Google Scholar]
  106. Wray GA, Levinton JS, Shapiro LH. 1996.. Molecular evidence for deep Precambrian divergences among metazoan taxa. . Science 274::56873
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-102722-023501
Loading
/content/journals/10.1146/annurev-ecolsys-102722-023501
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Morty Proxy This is a proxified and sanitized view of the page, visit original site.